Consistency Checking of Semantic Web
Ontologies

Kenneth Baclawski!, Mieczyslaw M. Kokar?, Richard Waldinger*, and Paul
A. Kogut?

1 College of Computer Science, Northeastern University
2 Department of Electrical and Computer Engineering, Northeastern University
3 Lockheed Martin Management and Data Systems
4 SRI International

Abstract. Ensuring that ontologies are consistent is an important part
of ontology development and testing. This is especially important when
autonomous software agents are to use ontologies in their reasoning. Rea-
soning with inconsistent ontologies may lead to erroneous conclusions.
In this paper we introduce the ConsVISor tool for consistency checking
of ontologies. This tool is a consistency checker for formal ontologies,
including both traditional data modeling languages and the more recent
ontology languages. ConsVISor checks consistency by verifying axioms.
ConsVISor is part of the UBOT toolkit that uses a variety of techniques
such as theorem proving and logic programming. Some examples of the
use of these tools are given.

1 Introduction to ConsVISor

Formal ontologies are fundamental for the Semantic Web. They are especially
important for autonomous software agents for which a shared ontology is nec-
essary for meaningful communication. However, because autonomous software
agents perform their reasoning and come to conclusions without human super-
vision, it is essential that the shared ontology be consistent. If an ontology is
inconsistent, then any conclusion may be deduced.

The ConsVISor tool is a consistency checker for formal ontologies. ConsVISor
can check consistency for a variety of languages. It currently supports class
diagrams specified in the Unified Modeling Language (UML) [1], and formal
ontologies specified in RDF [11] and DAML+OIL [3]. ConsVISor is part of the
UBOT toolkit [14]. In addition to UML, RDF and DAML+OIL, the UBOT
toolkit can be used to check the consistency of logical theories specified using
the Knowledge Interchange Format (KIF) [5].

The architecture of ConsVISor is shown in Figure 1. The ontology file is first
translated from the input ontology language to the language required by a logic
programming engine. The translation step incorporates some of the semantics of
DAML. For example, if two names are explicitly stated to represent equivalent re-
sources (by using a property such as daml:equivalentTo or daml:sameClassAs,



Fact and
Rule base

: Translated Inference
& Ontology H{ franslator > Ontology Engine
| Final
@ Messages | Messazes

Fig. 1. ConsVISor Architecture

then the names are mapped to the same internal name. A background frame-
work (fact and rule base) is combined with the translated ontology and also used
by the logic programming engine. The output of the logic programming engine
is translated back to a form compatible with the input ontology language and
presented to the user.

The ConsVISor tool currently uses Prolog as its logic programming engine,
but we are in the process of adding support for other engines such as Jess [7].
ConsVISor not only checks all of the axioms of the ontology, but it also checks for
situations that might be mistakes even though they are not inconsistencies. Such
cases are less severe than inconsistencies and can be suppressed if requested.
For example, suppose that an ontology developer inadvertently misspelled a
class name at one place in an ontology. This is both syntactically correct and
semantically consistent because one can infer that the misspelled name is a class
by the fact that it has been used as a class. Yet it is clearly a mistake, and
finding such situations is of great practical benefit. Another example of a typical
mistake in ontology development is given in Section 3 below.

If no error messages or warnings are printed by ConsVISor, then the ontology
is consistent. However, an ontology might be consistent even though ConsVISor
prints warnings. For example, ConsVISor does not support paramodulation. In
particular, this means that ConsVISor is implicitly assuming that if two resources
have different names and are not explicitly specified to be the same, then they
are distinct resources. In other words, if s and ¢ are resources that are mapped to
distinct names by the translation step (see Figure 1), then ConsVISor adds the
axiom not(s = t). More generally, ConsVISor uses “negation as failure” rather
than logical negation. The limitations of ConsVISor are a consequence of its
use of Prolog, whose logical limitations are well known. In addition, ConsVISor
cannot check the consistency of the logical system within which it resides (i.e.,
KIF, RDF, RDFS and DAML+OIL). To deal with these limitations, one can
make use of another component of UBOT. Section 4 gives an example of the use
of the SNARK theorem prover to find a logical inconsistency in the axioms for
RDF.



If there is an inconsistency, then there is a good chance that SNARK can
find it. Unlike the error messages and warnings produced by ConsVISor, these
are true inconsistencies, not just possible mistakes. Since SNARK need not ter-
minate, it either finds an inconsistency or it gives up when it runs out of time
or space.

In Section 5 we conclude the paper and discuss some of the future work we
have planned for ConsVISor and UBOT.

2 Related Work

There are a number of other systems for consistency checking. The OilEd [10]
ontology editor that is intended for small-scale ontology development and con-
sistency checking. It is not a complete ontology development environment. OilEd
uses FaCT for its consistency checking. FaCT [6] is description logic classifier
that can also be used for modal logic satisfiability testing. It can check the
consistency of a DAML+OIL ontology, but it cannot check DAML+OIL itself.
Furthermore, one can use FaCT only if one imposes some additional limitations
on a DAML+OIL ontology that go beyond those of DAML+OIL itself. For ex-
ample, one cannot have a cardinality restriction on a transitive property. Finally,
FaCT only checks consistency, it does not issue warnings that indicate possible
mistakes that are not inconsistencies in themselves.

JTP is a theorem prover written in Java [4]. JTP accepts KIF axioms, but it
doesn’t support paramodulation and only accepts axioms in Horn clause form.
Since the DAML+OIL axioms contain equalities, equivalences and other non-
Horn structures, it is not compatible with DAML+OIL.

Chimeera is a software system that supports users in creating and maintain-
ing distributed ontologies on the web [2]. Two major functions it supports are
merging multiple ontologies together and diagnosing individual or multiple on-
tologies. It supports users in such tasks as loading knowledge bases in differing
formats, reorganizing taxonomies, resolving name conflicts, browsing ontologies,
editing terms, etc. While the Chimeara system is an effective tool for ontology
integration, its diagnostic suite is currently limited and not connected to a full
theorem prover [9].

3 The Expression/Operation Ontology

In this section we give some an example of an inconsistent ontology that can
arise in ontology development, and the results of running ConsVISor on it. The
example is an ontology for expressions consisting of binary or higher operators
that can be combined recursively. For example, (z+y+5)*(z+3)*(a+b) would be
such an expression. This includes operators such as addition and multiplication.
In the first diagram, the notion of Expression is introduced with two exclusive
subtypes, Elementary and Operation. An elementary expression has no further
substructure. It would include constants and variables. This ontology is shown
in Figure 2 using UML. An association, called operands between Expression and



Operation specifies that an operation is a subexpression that combines operands
that are either elementary expressions or other operations.

Expression

P " (
2

Elementary Operation

Fig. 2. Expression/Operation Ontology

The Expression/Operation ontology is not obviously inconsistent. The cardi-
nality restrictions of the association between Operation and Expression specify
that there are at least twice as many instances of Operation as there are in-
stances of Expression. However, Operation is a subtype of Expression, so every
instance of Operation is also an instance of Expression. Using the symbol # to
mean the number of instances, we have shown that:

#Expression > #Operation > 2#Expression

which implies that the Operation class (as well as the Expression class) is either
empty or has an infinite number of elements.

The problem with this ontology is that the cardinality restrictions are in
the wrong order. Reversing cardinality restrictions is a common mistake in data
modeling languages. The ConsVISor tool will, in this case, warn the user that
some of the classes cannot be instantiated.

4 Functional Property Example

The example in this section considers a logical theory that cannot be checked by
the ConsVISor approach, and it illustrates the role of theorem proving in con-
sistency checking. The theorem prover in the UBOT toolkit is SNARK [12,13].
The principal inference rules used by SNARK are resolution and paramodula-
tion. Some distinctive features of SNARK are its support for special unification
algorithms, sorts, nonclausal formulas, answer construction for program synthe-
sis, procedural attachment, and extensibility by Lisp code.
The example is an axiom written in KIF as follows:

(<=> (Type 7fp FunctionalProperty)
(and (Type 7fp Property)
(=> (and (PropertyValue 7fp 7s 7vl)



(PropertyValue 7fp 7s 7v2))
(= 7vl 7v2))))

All of the variables in this axiom are implicitly universally quantified. This axiom
was, at one time, one of the axioms in the RDF ontology language. The axiom
attempts to formalize the concept of a functional property, i.e., a property that
takes exactly one value on every element of its domain, much as a mathematical
function (or more precisely a partial function) does. It should exclude properties
that are sometimes multi-valued.

The SNARK theorem prover very quickly found an inconsistency due to this
axiom. The problem is that the axiom, as originally formulated, allows one to
deduce that every property is functional. As a result, if a property is multi-
valued, then one can deduce that some of its values must be equivalent. For
example, the rdf:type property is heavily used by RDF and is highly multi-
valued. For example, rdf :Bag is both of type rdfs:Class and rdf:Resource
which implies that rdfs:Class is the same as rdf : Resource. Here is the output
produced by SNARK at the conclusion of its refutation of consistency:

(Row 604 (= Class Resource) (resolve 407 406))
(Row 637 false (rewrite (paramodulate 70 604) 394))

The problem with the axiom above is that the variables 7s, ?vl and 7v2
should not be quantified using a global universal quantification. Their quantifi-
cation must be scoped as follows:

(<=> (Type 7fp FunctionalProperty)
(and (Type 7fp Property)
(forall (7s ?7vl 7v2)
(=> (and (PropertyValue 7fp 7s ?7vl)
(PropertyValue 7fp ?7s 7v2))
(= 7vl ?v2)))))

SNARK also uncovered an inconsistency in the axioms for KIF, which served
as a basis for the DAML axioms and which had been published since 1998 [5].
But probably the most far-reaching discovery SNARK made was that the axioms
for the DAML cardinality restrictions were too weak to imply their intended
consequences.

For example, in the Structured Walk-Through [15], a cardinality restriction
was used to define a class (say OneFather) of elements with precisely one father.
While it was possible to prove that an element of OneFather had at least one
father, SNARK was unable to prove, because of the error in the axioms, that
it could not have two fathers. As a result of SNARK’s critique, the error was
corrected in the revised axioms, which do imply the intended consequences.

5 Conclusions and Future Work

We have introduced the ConsVISor consistency checking tool that can be used to
verify consistency of formal ontologies. A demonstration version is now available



[8]. We are in the process of introducing new features to ConsVISor. One area of
special concern is the problem of building more complex ontologies by merging
smaller ontologies. The smaller ontologies are distinct but overlap one another.
When two ontologies are combined, it is necessary to specify how to mediate
between concepts that are similar, but not entirely the same, in the ontologies.
Inconsistencies are a common occurrence due to the differing assumptions and
commitments made in the two ontologies, and ConsVISor can help to identify
such problems and to correct them.

Acknowledgements

This material is based upon work supported by the Air Force Research Labo-
ratory, Contract Number F30602-00-C-0188. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Air Force.

References

1. G. Booch, J. Rumbaugh, and I. Jacobsen. UML Notation Guide, Version 1.1,
September 1997.

2. Chimaera. Web site. www.ksl.Stanford.edu/software/chimaera.

3. DAML. DARPA Agent Markup Language Web Site, 2001. www.daml.org.

4. G. Frank. Hybrid reasoning architecture general purpose first-order logic theorem
prover suite of special-purpose reasoners. www.ksl.stanford.edu/software/JTP.

5. M. Genesereth. Knowledge Interchange Format draft proposed American National
Standard (dpANS) NCITS.T2/98-004, 1998. Available at logic.stanford.edu/-
kif/dpans.html.

6. I. Horrocks. FaCT: Fast Classification of Terminologies Web Site.

WWW.cs.man.ac.uk/~horrocks/FaCT.

Jess. Java expert system shell. herzberg.ca.sandia.gov/jess.

M. Kokar, J. Letkowski, K. Baclawski, and J. Smith. The ConsVISor con-

sistency checking tool, March 2001. Available at vis.home.mindspring.com/-

® N

consvisor.html.

9. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and
testing large ontologies. In Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning (KR2000), Breckenridge,
Colorado, USA, April 12-15 2000.

10. OilEd. Ontology editor for DAML+OIL. oiled.man.ac.uk.

11. RDF. Resource description framework (RDF) model and syntax specification,
Feburary 1999. www.w3.org/TR/REC-rdf-syntax.

12. SNARK. SRI’s new automated reasoning kit. www.ai.sri.com/~stickel/-
snark.html.

13. M. E. Stickel, R. J. Waldinger, and V. K. Chaudhri. A Guide to SNARK.
www.ai.sri.com/snark/tutorial/tutorial.html.

14. UML Based Ontology Toolset. Web Site, 2001. ubot.lockheedmartin.com.

15. F. Harmelen van, P. Patel-Schneider, I. Horrocks, D. Connolly, L. Stein,
and D. McGuinness, editors. Annotated DAML+OIL Ontology Markup.
DARPA Agent Markup Language, March 2001. www.daml.org/2001/03/-
daml+oil-walkthru.html.



