
An architecture for software that adapts to changes in requirements

Y�onet A. Eracar, Mieczyslaw M. Kokar *

Electrical & Computer Engineering Department, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA

Received 19 February 1998; received in revised form 14 August 1998; accepted 28 August 1998

Abstract

The goal of the research presented in this paper was to study a new software paradigm ± adaptive software ± in which the

structure of an adaptive program is patterned upon the structure of an adaptive controller. Towards this aim, we implemented a

domain-speci®c (object/target recognition) program (A Recon®gurable Architecture for Adapting to Changes in the Requirements

(RAACR)) that can adapt to changes in software requirements through the incorporation of feedback. RAACR is a hierarchy of

domains (blackboards). Each domain includes multiple knowledge sources (KSs) and a domain scheduler (DS). In response to

feedback, KSs change their processing parameters, while DSs change the scheduling policy of the KSs. A generic communication

mechanism is implemented on the CORBA compliant SPRING operating system. The adaptability of the program is evaluated

quantitatively using a requirements volatility measure and the probability of correct recognition. Ó 2000 Elsevier Science Inc. All

rights reserved.

1. Introduction

In object/target recognition applications, it is di�cult
to predict all possible scenarios that the sensors would
have to deal with. In addition, the signal processing
hardware, due to the complexity of processing, intro-
duces all kind of randomness in the sensory data.
Consequently, object/target recognition software is built
without complete speci®cation of inputs, functionality
and constraints. The result is that such software fails to
achieve its goal, i.e., recognize objects/targets when un-
expected changes in the inputs occur. To deal with this
kind of a problem, without rebuilding the software, the
software developer would have to add some additional
functionality to the software so that it would be able to
adapt to the changes during its operation (run-time
adaptability). The question is what kind of functionality
would achieve the desired result?

Control engineers are faced with a similar problem:
they have to design controllers that deal with input
disturbances that are di�cult to predict at the design
time of the controlled system (in control terminology
called plant). The main idea of control is to utilize
feedback (a measure of performance of the system) and

to add some redundancy to the system (this redundancy
is called controller). Depending on the control paradigm,
feedback is used to determine control inputs (feedback
control), adjust the parameters of the model of the con-
trolled plant and of the control law (adaptive control
(�Astr�om, 1989)), select or recon®gure a control law (gain
scheduling (Shamma, 1996) and recon®gurable control
(Montoya et al., 1982). The area of control that deals
with unexpected disturbances is called intelligent control
(cf. Antsaklis, 1994). Intelligent control, in addition to
the methods of adaptation and restructuring, uses such
methods as expert control (�Astr�om and �Arz�en, 1992),
neural and fuzzy control (Berenji, 1992), hybrid control
(Nerode and Kohn, 1993) and learning control (Kokar,
1993; Reveliotis and Kokar, 1995).

The goal of research presented in this paper was to
study a new software paradigm ± adaptive software. The
structure of an adaptive program is patterned upon the
structure of an adaptive controller. Towards this aim,
we implemented a domain-speci®c (object/target recog-
nition) program (we call it RAACR: Recon®gurable
Architecture for Adapting to Changes in the Require-
ments) that incorporates some of the ideas of adaptive
and recon®gurable control to deal with changes in
speci®cations of software requirements.

The most typical meaning of the term ``software
requirements'' is the functionality of the software, i.e.,
how it should respond to particular inputs from its
``environment''. But, as Zave and Jackson state (Zave

The Journal of Systems and Software 50 (2000) 209±219
www.elsevier.com/locate/jss

* Corresponding author. Tel.: +1-617-373-4849; fax; +1-617-373-

8970.

E-mail addresses: yeracar@coe.neu.edu (Y.A. Eracar),

kokar@coe.neu.edu (M.M. Kokar).

0164-1212/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 9) 0 0 0 9 8 - 9

and Jackson, 1996), all statements made in the course
of requirements engineering are the statements about
the environment. Inputs and outputs of a program are
parts of the environment of the problem and any
changes occurring at the inputs and outputs relate to
the changes at the requirements of the program. This
point of view is also re¯ected in the formal approach to
software speci®cation where the speci®cations of the
functionality are expressed in terms of pre- and post-
conditions. The pre-conditions specify what relation-
ships should be ful®lled by the program inputs for the
program to work correctly. Therefore, any changes in
the inputs to the program that end up in the violation
of the pre-conditions must be considered as changes in
the software requirements. For this reason, in our
study of adaptability of software to changes in the
speci®cations we considered changes in the inputs to
the program.

The changes in the inputs from the environment in
our case study include: binary vs. gray scale images,
noisy vs. noise-free images, types of objects in the im-
ages, alignment of edges with image borders vs. un-
constrained orientation of edges. Since these speci®c
changes in the environment were not represented in the
initial speci®cations and were not considered in the de-
sign of our program, they represent the unexpected
changes in our requirements speci®cation.

Although we are dealing with a speci®c domain, our
intention is to investigate generic methods for building
software systems that can adapt to changes in the re-
quirements through the incorporation of feedback in
their processing. Consequently, the mechanisms we in-
vestigate in this paper are generic mechanisms (archi-
tectural solutions and statistical algorithms) rather than
speci®c to the domain of object recognition. Our main
thrust is to ®nd an architectural solution that allows for
the passing of feedback among particular system ele-
ments and to allow for the restructurability of the pro-
cessing through changing the sequencing of the
processing algorithms. Additionally, we add the pro-
cessing capability (redundancy) required by the adaptive
and restructurable control paradigms.

Our object recognition application, similarly as many
other applications, is composed of di�erent tasks, each
accomplished in a di�erent software component. These
components are organized into a number of abstraction
levels. Each level includes a group of components with
similar tasks and data types. The resulting architecture
is a hierarchical multi-level blackboard (Shaw and
Garlan, 1996; Erman et al., 1980; Nii, 1986).

The main reason for this kind of hierarchical orga-
nization is to reduce the complexity of processing. For
example, object recognition on raw data, although
possible, cannot be performed e�ciently. Instead, fea-
ture extraction takes place ®rst, and then features are
used for object identi®cation. Feature extraction is an

example of data abstraction. Often, multiple consecutive
abstractions need to be performed before objects can be
recognized. This results in a hierarchy of processing.
Another reason for the hierarchical organization is to
increase the reuse of this kind of programs. Such ab-
straction layers containing functionality common to
many applications in a speci®c domain, can constitute a
framework (Baumer et al., 1997; Fayad and Schmidt,
1997; Posnak et al., 1997) that can be easily recon®gured
(o�-line) to a new application. For example, typical
functionality for the image processing domain contains
various ®lters, matrix operations and feature extractors
that can be reused by various image processing pro-
grams.

The components of our application are called
knowledge sources (KSs); each of them implements an
application-speci®c function. These components are
organized into abstraction levels, called domains. Each
domain includes a group of KSs with similar data types
and similar functionality. Additionally, each domain
includes a domain scheduler (DS), which implements the
scheduling of the KSs. Each domain includes also a
number of data transfer and initialization modules
(DTS), which initialize the domain data structures and
processing parameters of the KSs.

KSs may obtain feedback either from the user or
from other domains. Each KS has an adaptation
mechanism that adjusts processing parameters in re-
sponse to feedback. To provide means for dealing with
structural changes in the inputs to the system, when
adaptation alone may be insu�cient to maintain the
performance of the system, domain schedulers incor-
porate an adaptable KS scheduling mechanism which
provides on-line restructuring of the processing. This
mechanism changes its KS scheduling policy in response
to feedback obtained from other KSs in either the same
or a di�erent domain of the RAACR. This results in a
real-time restructuring of the processing.

A system with multiple abstraction levels may consist
of many KSs implemented as processes in each layer,
running sequentially or parallel, communicating, coop-
erating or competing. To enable communication within
the levels and among the levels, we implemented a
software bus. In order to provide a generic (domain in-
dependent) bus for communication between the levels,
and to provide for portability and interoperability of the
RAACR, the communication among the RAACR do-
mains uses the Object Request Broker (ORB) of the
CORBA standard (Obj, 1993). The system is imple-
mented on the CORBA compliant SPRING operating
system (Hamilton and Kougiouris, 1993).

To quantitatively evaluate the ability of the program
to adapt to changing requirements, the volatility of re-
quirements is measured using the Total Requirements
Volatility (TRV) measure (Costello, 1997). The perfor-
mance of the program for particular volatility levels is

210 Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219

measured in terms of the probability of correct recog-
nition. The dependence of the program's performance
on the volatility of the requirements is obtained for both
with and without the adaptation mechanism. Changing
requirements are realized by providing inputs (images)
that are out of bounds of the initial requirements spec-
i®cations.

The paper is structured as follows. Section 2 brie¯y
describes the RAACR and the main components of
the architecture. This is followed by the description of
the adaptation and recon®guration mechanisms. In
Section 3, an experimental scenario is described. Sec-
tion 4 describes the evaluation steps and results of the
experiments. And ®nally, in Section 5, the results of
the experiments are analyzed and conclusions are
presented.

2. RAACR: A Recon®gurable Architecture for Adapting

to Changes in the Requirements

The top-level view of the RAACR is shown in Fig. 1
The main components of this architecture are domains,
software buses, and databases. The external elements are
the user and sensors. The domains are shown as boxes
with dashed-line borders. The domains consist of three
kinds of subcomponents (shown as boxes inside of the
domain representation): data transfer components
(DTC), DSs and KSs. KSs are the main working mod-
ules of an application. DSs coordinate the domains; they
schedule KSs according to the type or request (data)
that needs to be processed, and communicate with other
domains. DTCs provide the transfer of data between the
domains and the databases, and among the domains.

Fig. 1. Top-level view of the RAACR.

Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219 211

Additionally, they serve the purpose of initializing
domains' data structures.

KSs are subcomponents of domains; they implement
the main functionality of the application. According to
the control terminology, we call this functionality plant.
The adaptive control scheme (�Astr�om, 1989) is repre-
sented in Fig. 2. To implement such an adaptation
scheme, a KS must have some additional functionality
(Model Estimator, Controller Designer, Controller) and a
number of additional attributes: feedback, model-pa-
rameters, controller-parameters, control-input and goal.

According to the adaptive control scheme, Plant re-
ceives control-input from Controller. This input a�ects
the Plant's processing scheme. Plant's output (feedback)
is sent to both Controller and Model Estimator. Con-
troller calculates control-input according to its control
law. Control law's parameters are updated by Controller
Designer based on the input from Model Estimator.
Model Estimator estimates parameters of the Plant's
model, based upon both control input and Plant's out-
put, and passes the updated values to Controller
Designer. All the parameters (model parameters, control
parameters, goal) are initialized with a predetermined
set of values stored in State Information Database of
each domain (see Fig. 1).

The restructuring process is represented in Fig. 3. The
main idea of this control scheme is to monitor the
quality of control (Model Selector) and switch to a new
model and a new control law (Controller Selector) when
the current control law does not provide satisfactory
results.

In RAACR, the restructuring scheme consists of the
Knowledge Source selection mechanism implemented in
the DS (ScheduleKS shown in Fig. 1). ScheduleKS picks
the best output of all the object operations performing
the same kind of function. For instance, in the case of
the edge detection application, two of the operations
performing edge detection are SobelEdgeFinder and
LaplacianEdgeFinder. Since SobelEdgeFinder is a direc-
tional edge ®nder, it detects horizontal and vertical
edges more precisely than LaplacianEdgeFinder. How-
ever, for rotated or round objects, LaplacianEdgeFinder
performs better, since it is a directionless operator.
ScheduleKS changes its selection procedure based upon
the best output among the outputs of the operations
performing the same kind of function based upon the
feedback it receives.

3. Scenario

3.1. Object recognition system overview

To investigate the adaptability of the system to
changing software requirements we use the application
of object recognition. The input to the system (accord-
ing to initial requirements) is a binary image containing
one object. The goal of the system is to recognize
whether the image contains a square or not. The system
is shown in Fig. 4.

The object recognition algorithm consists of two
major processing steps: detecting edges of the object and
recognizing the object. These two processing steps are
implemented as two domains: the image domain, where
edge points are detected, and the histogram domain,
where edges are classi®ed, angles between the edges are
analyzed, and the object is recognized. Additionally, the
system contains the user interface domain.

The image domain contains two KSs: SobelEdge-
Finder and LaplacianEdgeFinder. Each of these KSs
returns a histogram of the image. The histogram domain
contains two KSs: FindEdges and IdentifyObject. The
details of these algorithms can be found in (Eracar,
1996).

3.2. Adaptation mechanism

As we mentioned earlier, each knowledge source is a
small system with an autonomous adaptive controller
containing all the components, as shown in Fig. 2: Plant,
Model Estimator, Controller Designer, and Controller.
Below we describe each of these components for the
knowledge source IdentifyObject (see Fig. 5).

The main function of Plant is to input a set of edge
classes X, along with the environment feedback d�t ÿ 1�
on the previous decision, and to produce a new decision
d�t�: square or non-square. Plant makes this decision

Fig. 2. Adaptive control architecture.

Fig. 3. Restructurable control architecture.

212 Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219

based upon a con®dence constant a which is a control
input from Controller. Essentially, Plant tests the hy-
pothesis that the angles between consecutive edges are
all 90�. Additionally, Plant outputs some intermediate
results to Model Estimator: Xi, si and PCR, where Xi is
the mean of the gradient direction for edge i, and si is its

estimated variance. The details of calculating these val-
ues were presented in (Eracar, 1996). PCR�t� is the
feedback that goes to Controller; it is updated according
to the feedback update equation

PCR�t� � PCR�t ÿ 1� � �t ÿ 1� � D
t

; �1�

where

D � 0 if d�t ÿ 1� 6� d�t ÿ 1�;
1 if d�t ÿ 1� � d�t ÿ 1�:

�
Model Estimator estimates the model of the plant. The
model is probabilistic and is represented by a normal
distribution N�Di; li; ri�, where Di is the angle between
two consecutive edges i and iÿ 1. The model (estimates
for li and ri) is updated incrementally after receiving an

Fig. 4. The domains of the experimental object recognition system.

Fig. 5. Adaptation Mechanism for IdentifyObject.

Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219 213

input from the plant (Xi and s2
i) according to the fol-

lowing rules:

li � Xi ÿ Xiÿ1; �2�

ri �
�����������������
s2

i

ni
� s2

iÿ1

niÿ1

s
; �3�

where ni is the number of points in edge class i. The
mean value r of the updated estimates for ri is passed to
Controller Designer.

Controller Designer updates the gain K of the control
law according to the following equation:

K � C r; �4�
where C is a constant selected at the design time of the
system.

The control goal is to achieve the high probability of
correct recognition, i.e., to have PCR�t� � 1. Towards
this goal, Controller sets the value of its output a
according to the following control law:

a�t� � K�PCR�t ÿ 1� ÿ PCR�t�� � a�t ÿ 1�; �5�
where a�0� � 0:05. The new value of a is passed to Plant
as the new control input.

3.3. Restructuring mechanism for the image domain

In our application, the restructuring mechanism (see
Fig. 3) was used only in the Image domain. It re-
structures both the plant and the control functionality.
Towards this aim, the DS (ScheduleImageDomain)
makes a decision on which of the KSs to schedule
next, either SobelEdgeFinder or LaplacianEdgeFinder,
based upon the feedback it receives from IdentifyOb-
ject. The feedback has the value of 1 if IdentifyObject
is satis®ed with the input provided to it and 0 other-
wise. The feedback calculation is based on the number
of edges. IdentifyObject expects a geometric object to
have close to 4 edges. If the number of edges is greater
than 5 or smaller than 3, the feedback value is 0,
otherwise it is 1.

The restructuring policy is simply to select a di�erent
knowledge source in the list, when the previously re-
ceived feedback was 0. If the feedback was 1, the se-
lection is the same as before. The underlying
presumption for this policy is that the input to the sys-
tem has some inertia and sustains some pattern for a
number of sequential images. Although this assumption
is not always satis®ed, it is a reasonable one; general
dynamic systems (cf. Mesarovic and Takahara, 1989;
IFP, 1985) are based on such an assumption. RAACR
provides an architecture that can accommodate han-
dling multiple KSs and various restructuring policies. In
this particular application, we had only two KSs and
this simple restructuring policy.

3.4. Measuring changes in requirements

To quantitatively evaluate the amount of changes in
software requirements, the TRV metric was used (Cos-
tello, 1997). According to the methodology for calcu-
lating TRV described in (Costello, 1997), changes in the
requirements must be simpli®ed, divided and enumer-
ated as independent countable pieces indexed by s. The
time period has to be divided into time intervals enu-
merated by p. Then three measures of change, RA�s; p�,
RD�s; p� and RM�s; p�, need to be computed for each
time period p and each speci®cation S�s; p�. RA�s; p�
counts requirements that were added, RD�s; p� counts
requirements that were deleted, and RM�s; p� counts
requirements that were modi®ed in the speci®cation s
during the time period p. These three measures are cal-
culated according to the following rule:
1. Add 1 if one new requirement was added, deleted, or

modi®ed.
2. Add k � 1 if one requirement was split into k sub-

requirements.
3. Add k ÿ 1 if k requirements are merged into one

requirement.
Finally, the cumulative TRV measure, TRVcum, is

calculated according to the following formulas:

TRVcum � RAcum �RDcum �RVcum; �6�

RAcum �
Xpm

p�p1

Xsn

s�s1

RA�s; p�; �7�

RDcum �
Xpm

p�p1

Xsn

s�s1

RD�s; p�; �8�

RMcum �
Xpm

p�p1

Xsn

s�s1

RM�s; p�: �9�

In our study we entertained an idea of using Function
Points (Albrecht, 1979; IFP, 1994) to measure initial
requirements, instead of TRV measure. In the Function
Points method, the visible aspects of the software system
are examined: inputs, outputs, inquiries, data ®les, and
interfaces. These ®ve aspects are counted, multiplied by
an appropriate weight and added together; this results in
an Unadjusted Total. The Unadjusted Total is multiplied
by a Value Adjustment Factor (VAF), which depends on
14 general system characteristics. The items are weighted
according to the di�culty of their implementation. The
weighting factors were developed empirically (IFP,
1994).

While the idea of using Function Points seemed to be
a natural choice, it is not appropriate for our problem,
mainly because the aspects that de®ne the Function
Points measure do not re¯ect the changes in the envi-
ronment. The number of inputs, outputs, inquires, data
®les and interfaces in each of the modules in our ap-
plication remains constant and does not relate to the

214 Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219

fact whether the module needs to deal with the noise or
noise-free input, whether the objects to be identi®ed are
aligned with the frame borders or not. Simply stated, the
Function Points measure is not sensitive to the changes
in the environment and thus cannot be used to evaluate
adaptive processing software. For this reason, the TRV
measure, although less known in the literature, was
more appropriate for our task.

3.5. Measuring performance

To evaluate the degree of degradation of the system
performance that results from changes in the require-
ments we use the probability of correct recognition
(P �p�) of the object. This probability was calculated as

P�p� � q� n
N

; �10�

where q is the number of squares recognized correctly, n
± number of non-squares classi®ed as non-squares, N ±
number of images for the time period p.

3.6. Incremental changes

The main idea behind our study was that the system
designed to ful®ll a set of software requirements should
be adaptable to new more demanding requirements.
Therefore, in the ®rst step of our experiments, we tested
the system on a set of test data (images) that were within
the bounds of the initial speci®cations. Then, we gen-
erated three more sets of images of progressing com-
plexity as measured by the TRV measure. The four types
of input images are described below.

Set 1. Binary images containing either a square or a
®lled circle. Images are perfect images, i.e., there is no
noise in the data. Edges of the squares are aligned with
the frame of the image.

Set 2. Binary images containing one of the following
objects: a square, a ®lled circle, a rectangle, a triangle.

Images do not contain noise. Edges of squares, rectan-
gles and bases of triangles are aligned with the frame of
the image.

Set 3. In addition to the images as above, squares are
rotated by a randomly selected angle.

Set 4. In addition to the images as above, Shot and
Gaussian noise is added to the images of Set 3. Images
can be of the gray scale type.

According to the methodology described in (Costello,
1994), these requirements have been enumerated in the
following way.
1. S�1; 1�: An image shall contain either a square or a

®lled circle.
2. S�1; 2�: Edges of a square shall be aligned with the

image frame.
3. S�1; 3�: Pixel values shall be binary.
4. S�1; 4�: Images shall be noise free.
5. S�2; 1�: An image can contain a rectangle.
6. S�2; 2�: An image can contain a triangle.
7. S�3; 1�: Squares can be rotated by any angle with

respect to the image frame.
8. S�4; 1�: Images can contain Gaussian noise.
9. S�4; 2�: Images can contain Shot noise.

10. S�4; 3�: Images can be of the gray scale type.
These requirements are shown in Table 1. The asso-

ciated values of the measures RA, RD, RM and TRV
are shown in Table 2.

4. Experimental results

To evaluate the adaptability of the system we ana-
lyzed the e�ect of change in the software requirements
on the system performance. Towards this aim, we
measured the probability of correct recognition for each
of the four levels of change as measured by the TRV
measure. We have also compared the performance of the
RAACR against the system without the adaptability
mechanism. For this purpose, we ran the same set of

Table 1

Requirements changes for each image set

Set Added requirements A�ected requirements

1(base) S�1; 1�, S�1; 2�, S�1; 3�, S�1; 4� ÿ
2 S�2; 1�, S�2; 2� S�1; 1�(modi®ed)

3 S�3; 1� S�1; 2�(deleted)

4 S�4; 1�, S�4; 2�, S�4; 3� S�1; 3�(deleted), S�1; 4�(deleted)

Table 2

TRV values for each image set

Set RA RAcum RD RDcum RM RMcum TRVcum

1(base) 0 0 0 0 0 0 0

2 2 2 0 0 1 1 3

3 1 3 1 1 0 1 5

4 3 6 2 3 0 1 10

Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219 215

experiments with the adaptation mechanism turned o�.
The same sets of input images were input to this non-
adaptive system in the same order as for the adaptive
system and the probability of correct recognition P�p�
was calculated.

The results of our experiments are summarized in
Figs. 6±8. Fig. 6 shows the probability of correctly rec-
ognizing squares (dark bars), and probability of cor-
rectly recognizing non-squares (white bars), for each
measured level of the TRV measure. The same kind of
results are shown in Fig. 7 for the non-adaptive system.
Finally, in Fig. 8, the probabilities of correct recogni-
tion, P �p�, as de®ned by Eq. 10, for the two cases are
compared.

5. Conclusions and future research

Control and adaptation embedded into algorithms
are not new to software systems. Examples of software
that incorporates some kind of adaptation include the
following:
· Software for dynamic adjustments of the bu�ering

strategy in a database management system;
· Routing algorithms for networks;
· Load balancing algorithms for distributed computer

systems;
· Graphical User Interfaces (GUI) that adapt to a spe-

ci®c user;
· Caching strategies for memory management in oper-

ating systems.

Our research goal is to develop a methodology for
designing adaptive software that would (1) unify the
design of adaptive software for di�erent application
domains, and (2) extend the capability to adapt to other
domains for which such capabilities have not been es-
tablished. In this paper we addressed the issue of ar-
chitecture for such adaptive systems. Towards this goal,
we achieved the following results.

Fig. 6. Probability of correct recognition for the RAACR.

Fig. 7. Probability of correct recognition for non-adaptive system.

Fig. 8. Comparison of the probabilities of correct recognition of

adaptive and non-adaptive systems.

216 Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219

1. We identi®ed appropriate adaptive processing mech-
anisms known in the control literature (adaptation
and restructuring of control) and transplanted these
mechanisms into the software engineering domain.

2. We investigated a number of features that can be
used in a framework for building software systems
that are adaptable to changes in the software require-
ments through adaptation and restructuring of con-
trol. The main features of this framework are:
2.1. Organization of tasks performing similar func-

tions into domains, allowing in this way restruc-
turing of the processing through either selecting
one of the processing components or scheduling
processing components in various orders.

2.2. Closed-loop organization of the main function-
ality of the application (plant) and the feedback
processing mechanisms. The feedback processing
mechanisms include: calculation of feedback,
model estimation, controller design and control.

2.3. Hierarchical organization of the processing com-
ponents as a way of dealing with the complexity
of processing.

2.4. Generic, standard-based (CORBA) communica-
tion mechanism among domains and KSs.

3. We implemented a system according to the princi-
ples described above. We tested the system experi-
mentally.

4. We evaluated quantitatively the quality of the adap-
tation mechanism in response to changes in software
requirements. For this purpose, we used the TRV
measure (to measure changes in the inputs to the sys-
tem) and the probability of correct recognition (to
measure the output of the system). We compared
the performance of the adaptable system against
the performance of a non-adaptable system. The
testing results clearly indicate that the performance
of the system with the adaptation mechanism is
much better than the performance of the system
without the adaptation mechanism. While the per-
formance of the system without adaptation drops
dramatically while di�erent classes of inputs are pro-
vided, the performance of the adaptive system de-
grades by only 20%.

While the results of this experiment show that it is
possible to build systems that possess the characteristic
of on-line adaptation to unexpected changes in soft-
ware requirements, it should be clear that this kind of
capability does not come for free. As shown in this
paper, the functionality of the application needs to be
supplemented with some redundancy to implement the
mechanisms of control: feedback, adaptation and re-
structuring. It also should be noted that the results
shown in this paper constitute an initial step in the
right direction. To achieve the level of knowledge that
would allow for engineering of systems adaptable to
changes in software requirements, more research is

necessary. This includes such issues as: generic feed-
back calculation mechanisms (for instance, the Quality
of Service (QoS) metrics (Parris et al., 1993; Sabata et
al., 1997)), generic adaptation and restructuring mech-
anisms, e�cient communication mechanisms, support
for measuring changes in requirements, and many
others.

Another issue that needs to be investigated is the
scope of applicability of such adaptation mechanisms to
software engineering at large. The control technology
has been developed for dynamical systems, i.e., systems
that have state and change their state due to both ex-
ternal inputs and as a result of the passing of time. Such
systems exhibit some inertia, i.e., their behavior pattern
does not change instantly, it changes slowly over time, a
feature that is important for the adaptability of the
controller. The question is which of the software systems
can be classi®ed into this category and how large is the
percentage of such systems among all software systems?

The architecture described in this paper has been used
in the design of two other programs: a spell checker and
a local area network analyzer. We brie¯y describe these
programs simply to show that the same ideas and the
same architecture are applicable in various programs
and that they are not limited to the image processing
domain.

A typical spell checker consists of two steps: check
each word against a dictionary, and if a word is not
found in the dictionary, suggest to the user what should
be the correct word. The latter step involves ®nding a
close match between the word that was ¯agged as
misspelled and a word in the dictionary. The result of
such a matching process is not unique and thus the spell
checker can give a number of suggestions. Too many
suggestions could create a problem, since the user
would need review the list each time such a problem is
identi®ed. In a non-adaptive system, if the user makes
the same mistake the system always gives the same
suggestions and in the same order. An adaptive system,
on the other hand, can adapt to the user and give
suggestions that re¯ect the typical behavior for that
particular user. Such an adaptation process is driven by
the feedback, which is part of normal interaction with
the spell checker, i.e., from the selections the user
makes whenever a speci®c list of suggestions is dis-
played. Our adaptive spell checker has ®ve KSs related
to particular user mistakes: Left±Right Character
Shifter, Character Doubler, End Character Appender,
Character Remover and Subsequent Character
Switcher. Each of the KSs makes a number of sugges-
tions; all of them are passed to the evaluation domain.
Also, probabilities of correct suggestion are maintained
by the KSs and passed along with the suggestion to the
evaluation domain. Evaluation domain checks sugges-
tions against a dictionary and passes valid suggestions
to the display. The valid suggestions are displayed in

Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219 217

the order that re¯ects the current knowledge about the
given user's probability of particular mistakes. The
most likely mistakes (suggestions to correct them) are
displayed at the top of the list. After the user makes a
selection, feedback is passed back to the KSs, indicating
whether their suggestions were correct or not. In re-
sponse to the feedback, the KSs update their proba-
bilities of correct suggestion. As a result of this
adaptation mechanism, the most likely suggestions are
shown to the user ®rst.

The LAN analyzer is designed to diagnose errors on a
computer TCP/IP network and to display error mes-
sages to the network administrator. The idea is not to
display a message related to the same fault over and over
again. The goal is to keep the number of error messages
within some bounds. Too many messages will over-
whelm the network administrator, while missed errors
will result in the network failure.

We focused on four kinds of errors, designing a
knowledge source for each type of error: ping failure,
TCP connect failure, repeating overload, and node or
network down. The goal for the system is to inform the
operator of a particular error only a limited number of
times. Also, the system should be able to adjust its
threshold on the number of repeated packets with fail-
ures. The system is organized into three domains: input
domain (collecting raw data from a snoop process),
symptom domain (four KSs responsible for detecting
particular errors), diagnosis domain (an evaluation KS
that processes feedback from the network administrator
and two KSs that process that feedback and generate
feedback for particular KSs of the symptom domain).
The system, through the interaction with the adminis-
trator, adjusts its behavior so that the administrator is
not overburdened with too many error messages and
thus is more free to make decisions regarding the net-
work performance.

References

Albrecht, A.J., 1979. Measuring application development productivity.

In: The Joint SHARE/GUIDE/IBM Application Development

Symposium. pp. 83±92.

Antsaklis, P., 1994. De®ning intelligent control: Report of the task

force on intelligent control. IEEE Control Systems Magazine

14(3), 4±5 and 58±66.
�Astr�om, K.J. 1989. Adaptive Control. Addison-Wesley, Reading, MA.
�Astr�om, K.J., �Arz�en, K.E., 1992. Expert control. In: K.M. Passino and

P.J. Antsaklis (Eds.), Introduction to Intelligent and Autono-

mous Control. Kluwer Academic Publishers, Dordrecht.

Baumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D.,

Zullighoven, H., 1997. Framework development for large sys-

tems. Communications of the ACM 40 (10), 43±47.

Berenji, H.R., 1992. Fuzzy and neural control. In: K.M. Passino and

P.J. Antsaklis (Ed.), Introduction to Intelligent and Autonomous

Control. Kluwer Academic Publishers, Dordrecht.

Costello, R.J., 1994. Metrics for requirements engineering. Master's

Thesis, California State University, Long Beach.

Costello, R.J. 1997. Requirements tracibility metrics for the soft-

ware system lifecycle. In: Applications of Software Measure-

ment Conference. Software Quality Engineering, Atlanta,

Georgia.

Eracar, Y.A., 1996. RAACR: A recon®gurable architecture for

adapting to changes in the requirements. Master's Thesis,

Northeastern University, Boston, MA, September.

Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, D.R., 1980. The

Hearsay-ii speech-understanding system: integrating knowledge

to resolve uncertainty. Computing Surveys 12 (2), 213±253.

Fayad, M.E., Schmidt, D., 1997. Object-oriented application frame-

works. Communications of the ACM 40 (10), 32±38.

Hamilton, G., Kougiouris, P., 1993. The spring nucleus: a microkernel

for objects. In: Proceedings of the 1993 Summer Usenix Confer-

ence. Cincinnati, June.

IFP, 1994. Function Point Counting Practices Manual, Release 4.0.

IFPUG, Westerville, Ohio.

Klir, G., 1985. Architecture of Systems Problem Solving. Plenum

Press, New York.

Kokar, M.M., 1993. Learning control: methods, needs and architec-

tures. In: K.M. Passino and P.J. Antsaklis (Eds.), Introduction to

Intelligent and Autonomous Control. Kluwer Academic Pub-

lishers, Dordrecht, pp. 263±282.

Mesarovic, M.D., Takahara, Y., 1989. Abstract Systems Theory.

Springer, Berlin.

Montoya, R.J., Howell, W.E., Bundick, W.T., Ostro�, A.J., Hueschen,

R.M., Belcastro, C.M., 1982. Restructurable control. Technical

Report NASA CP-2277, NASA Langley Research Center, VA.

Nerode, A., Kohn, W., 1993. Hybrid Systems. Springer, Berlin.

Nii, P.H., 1986. Blackboard systems. AI Magazine 7 (3), 38±53.

Obj, 1993. The Common Object Request Broker: Architecture and

Speci®cation. Object Management Group, Revision 1.1 edition,

December.

Parris, C., Ventre, G., Zhang, H., 1993. Graceful adaptation of

guaranteed performance service connections. In Globecom'93.

Houston, TX.

Posnak, E., Lavender, G., Vin, H., 1997. An adaptive framework for

developing multimedia software components. Communications

of the ACM 40 (10), 43±47.

Reveliotis, S.A., Kokar, M.M., 1995. A framework for on-line learning

of plant models and control policies for restructurable control.

IEEE Transactions on Systems Man and Cybernetics 25 (11),

1502±1512.

Sabata, B., Chatterjee, S., Sydir, J., Lawrance, T. 1997. Hierarchical

modeling of systems for QoS based distributed resource man-

agement. Technical Report, SRI International.

Shamma, J.S., 1996. Linearization and gain-scheduling. In: The

Control Handbook. CRC Press, Guelph.

Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an

Emerging Discipline. Prentice-Hall, Englewood Cli�s, NJ.

Zave, P., Jackson, M., 1996. Four dark corners of requirements

engineering. ACM Transactions on Software Engineering and

Methodology 6 (1).

Yonet Eracar received his B.S. degree in electrical engineering and
physics from Bosphorus University, Istanbul (1993) and M.S. degrees
in Computer Systems Engineering and Engineering Management from
Northeastern University (1996). He is currently working as a Software
Design Engineer at Teradyne, Inc. and is a Ph.D. candidate in Com-
puter Systems Engineering at Northeastern University. His research
interests include adaptive software systems, object-oriented design
methodologies and software metrics.

Mieczyslaw M. Kokar received his M.S. and Ph.D. degrees in Com-
puter Systems Engineering from the Technical University of Wroclaw,
Poland, in 1969 and 1973, respectively. His research interests include
software engineering, intelligent and hybrid control, and sensor/data
fusion. Dr. Kokar worked at the Technical University of Wroclaw
(1969±1981) and Millersville University of Pennsylvania (1982±1984).

218 Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219

Since 1984 he has been with Northeastern University in Boston (cur-
rently in Department of Electrical and Computer Engineering).

Dr. Kokar served as a committee member of the IEEE International
Symposium on Intelligen Control (1989±1994) and was the Publica-

tions Chair of this conference (1991), the Finance Chair (1997), and the
General Chair (1999). He was also on the committee of the 1994 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems, and Intelligent Robotic Systems (IRS). Dr. Kokar
is a member of the IEEE, AAAI, AIAA and ACM.

Y.A. Eracar, M.M. Kokar / The Journal of Systems and Software 50 (2000) 209±219 219

