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ABSTRACT 
 

In this paper we offer an overview of design principles and propose a fusion process reference model that provides guidance 

for the design of data fusion systems. We incorporate a formal method approach to fusion system design and show the rôle of 

the psychology of the human / computer interface in the system design process. Data fusion is a complex, multi-faceted field 

that has evolved from a number of different disciplines. This disparate nature has lead to a largely bottom-up approach to data 

fusion system design where the components are constructed first and the system-level issues addressed afterwards. The result 

is an ad hoc, prototype driven philosophy which, we content, is neither efficient nor effective. We believe that design of data 

fusion systems needs to be given proper consideration, with a top-down approach that addresses system-level constraints 

first, thereby offering the possibility of re-usable, abstract structures. We offer an object-centred model of data fusion 

together with practical tools for studying and refining the model so that it can be useful in designing real data fusion systems. 

 

Keywords: Information fusion, process model, object orientation, formal methods, Petri-nets, cognitive psychology. 

 

1. BACKGROUND 
 

 “When all is said and done about data fusion, how come there’s so much more said than done?” 1 

 

The observation above is sadly all too true and strikes a resonant chord with many a customer of data fusion systems. Since 

data fusion went “international” in the final decade of the last millennium, the world seems to have been steadily filling up 

with prototype data fusion systems and an (almost) equal quantity of disappointed customers. So what has been going wrong 

– why are we so naïve at turning obviously successful techniques into truly useful (and usable) systems?2 The authors believe 

that the answer lies in the way most of us are viewing data fusion. By concentrating on fusion as a means of operating on 

data, we make the error of thinking in terms of data fusion systems† rather than systems with a data fusion capability. 

 

Research is leveraged through re-use, and in the multi-disciplined field of data fusion re-usability is required, not only of 

code, but also of architectures, design specifications and operating principles. In this paper we take apart conventional 

notions of fusion process modelling and re-invent it from an object-centred, multiple perspective viewpoint. We do this 

                                                           
† Despite our reticence about the appellation “data fusion system” we shall continue to use the term herein for the 

grammatical convenience it offers the reader. Wherever it appears the reader should think of it as describing a system that 

possesses a fusion capability rather than implying a data fusion system in its own right.  



specifically with the intention of developing re-usable concepts and methodologies for designing and developing a data 

fusion capability at the system level. From a system design viewpoint, data fusion is not about data but about structures.12,10 

By combining theories and models rather than data it is possible to reason about the system before the system is actually 

constructed. We make no claims that we have addressed all of the problems, rather that we have defined a crucial, but 

neglected, requirement and made the first tentative steps towards its solution. 

 

2. INTRODUCTION 
 

Design (di’zain) verb: To (skilfully) work out the structure or form of something, 

         to plan or invent it, as intended for a specific purpose. 

 

To work out the structure of a data fusion system and ensure that it is fit for the intended purpose, at least three issues should 

be addressed: 

 

• A process model should be constructed that is simple enough to allow predictive analysis yet rich enough to admit a 

variety of complex designs. The model should admit a process of gradual, piece-wise refinement which eventually 

leads to the deployable system but at the same time should not be overly constraining (and thus giving the designer 

enough flexibility for choosing design solutions) 

 

• A framework for specifying tasks (goals and solutions) should be developed which permits achievability to be 

assessed without the need to implement the system. This necessitates a means of representing the state of available 

knowledge about the world, the information sources and the effectors (but not necessarily a representation of the 

knowledge itself) 

 

• A theory for the dynamics of the information and of the information processors should be studied. The latter should 

incorporate both humans and machines and allow for the decision making process to be modelled as a team activity 

 

We propose a fusion reference model that addresses these issues in the following way: 

 

− A prescriptive but tractable object-relationship model 

− A formal method for analysing the relationships between objects 

− A mathematical tool for simulating the information flow at the system level 

− An appreciation of the psychological factors in the human components  

 

By applying these concepts to data fusion substructures, and the way they may be composed, the important distinction 

between design and implementation may be clarified. It is our intention that this will eventually lead to a set of standard data 

fusion substructures that have known operating behaviour, both individually and in context. Our aim is to increase the 

awareness of system design considerations in data fusion and to start the transition of this endeavour from an art to a science. 

In this final respect we believe that there is still far to go. 

 

4. PROCESS MODEL 
 

A process model is a description of a set of processes and the relationships between them. The set of processes such 

determined should be constructed before the system may be regarded as fully operational. As such it highlights the 

component functions which the system has but makes no statement regarding their software implementation or physical 

instantiation. Existing data fusion models (such as JDL3 and Omnibus4 for example, see figure 1) are still largely descriptive 

models and thus cover a large number of designs that are it should be able to rule out, even before introducing the constraints 

imposed by the specific application. 

 



  
 

      (a)              (b) 

 

Figure 1a) The updated JDL data fusion process model and (1b) the Omnibus model introduced in 1999. 
 

4.1 Information Centred 
 

In the fusion model proposed by the US Joint Directors of Laboratories Data Fusion Sub-Group3, the Dasarathy model5 and 

the Waterfall model6 the data fusion process is divided according to the abstraction of the information being fused. There is 

therefore no need to make sequencing of functions or processors explicit. Typically the levels of abstraction include: 

 

Sensor data – such as scalar measurements, waveforms or images 

 

Signals – which are the result of some elementary signal processing, alignment or registration activities  

 

Features – which capture the relevant characteristics of the signal and represents the lowest level at which desired 

capabilities affect the information being stored 

 

Object state estimates - which is concerned with the estimation and prediction of continuous (e.g. spatial or 

kinematic) or discrete (e.g. behaviour or identity) states of objects 

 

Situation estimates – which introduces context by examining the relations among entities, aggregating objects into 

meta-objects and placing interpretations on the situation 

 

Planning decisions – implication and possible courses of action are analysed in light of the current situation 

 

4.2 Function Centred 
 

While the models referred to in the previous section are centred on the level of abstraction of the information, the intelligence 

cycle7, the Boyd control loop8 and the Omnibus model4 are mainly organised from a functional viewpoint. In this case the 

sequence of functions that are to be performed are made explicit. Each of these models uses a four-stage model: 

 

 Feeding – observing or collecting information and passing it on 

 

 Informing – collating and orientating the information to increase its relevance 

 

 Directing – by evaluating choices and making decisions 

 

 Managing – implementing those decisions 

 

Implied by this structure are the agents that perform the functions (actors, perceivers, directors and managers). The merging 

of these the three viewpoints of information, functions and agents leads us to the object-relationship model presented in the 

next section. 

 



4.3 Object Centred 
 

A natural extension of all of the above models can be captured using a model based on object-oriented design. This is shown 

in figure 2. 

 

 

 
 

Figure 2: The first two perspectives in the object-relationship model of data fusion. 

 

 

This object-relationship diagram shows the agent and information perspectives of the model. The notation is similar to that 

used in object-oriented design and is as follows: 

 

• a class is shown in boldface in a grey box – an actor is an example of a class 

• A class may be composed of several component classes connected to it via a triangle – for instance a sensor is a 

component class of an actor 

• Component classes have cardinality constraints – for instance an actor may possess no sensors or many sensors 

• A class may have cardinality constraints  – for instance an actor must have at least one of effector or sensor 

• Two classes may be directionally related by a function – for instance inform is a function of perceiver 

• A function has cardinality constraints – for instance each director may be informed by one or more perceivers and 

zero or more other directors 

 

At first the model in figure 2 may appear complex, but can be viewed from of a set of concentric perspectives. This is its 

simplicity and also its power since it can be gradually refined all the way to a software code and hence to a deployed system. 

At the core a fusion system is described as a set of agents (computers or people) that are arranged in the same sequencing 

loop as the earlier functional models. From the information perspective fusion is described as a set of data abstractions which 

map directly onto the JDL and other models. The level of abstraction is a consequence of the agents, their ordering and their 

functions, rather than being imposed as an intrinsic property of the system. By allowing the state class to contain information 

about this information as well as the environment the loops-within-loops alluded to by Bedworth4 are easily included. This 

captures well the ideas that “one man’s knowledge is another man’s data”
9. Although figure 2 shows only two layers, this 

layering of perspectives can continue until the system is deployed (and then further to assist in its maintenance and 

replacement). See table 1 and figure 3. 

 

 



Perspective layer What is described Example 

Agent Processors and sequencing Perceiver informs director 

Information Abstraction levels States, entities and contexts 

Theory Theories and knowledge Characteristics of a visual sensor 

Instance Methods and formats An image format 

Realisation Algorithms and data A particular image 

 

Table 1: Examples of the perspective layers in the object-relationship fusion model. 

 

 
 

Figure 3: An example of refinement of the object-relationship fusion model, in this case following the JDL philosophy. 

 

This way of thinking is powerful because it may be reasoned about from the core out, that is at all stages in design, 

development and implementation. 

 

5. RELATIONSHIP ANALYSIS 
 

It is important to separate the system knowledge (the data and procedures which operate on that data within the system) from 

the state of the general knowledge (the availability and quality of data or the specifications of the procedures). The system 

knowledge will only become available once a version of the system is constructed whereas the state of the general knowledge 

will be available during the initial design process. This general knowledge will be input to the development process, while 

the system knowledge will be the output of this process. Consequently, in the development process the knowledge must be 

manipulated.  

 

As we stated earlier in this paper, this feature is a distinguishing one for our approach to fusion: we consider fusion as an 

automatic (or at least semi-automatic) manipulation of knowledge structures, rather than just data. This point of view raises 

the level of abstraction – instead of considering algorithms that manipulate data objects, we need algorithms that manipulate 

algorithms (which in turn manipulate data).  As a consequence of this departure point, we need methods that can provide an 

ability to reason about the performance criteria of fusion systems that are being designed. This kind of ability is typically 

achieved through the analysis process carried out by the (human) developer of the fusion system (during design) and through 

simulations (during system verification). The requirement on “reasoning” in the context of the human makes an implicit 

assumption that the human is responsible for managing the degree of rigor in the reasoning process. The human is expected 



to carry out a sound reasoning process, rather than just guessing. The human is also expected to relax the rigor, to an 

acceptable level, whenever there is a lack of information that would be needed for a fully sound process. This kind of a 

requirement is very difficult to implement in a mechanical reasoner. Typical approaches to this problem are on the edges, 

either a fully consistent process like logic (but then we encounter the known problems of undecidablity) or a heuristic 

approach like expert systems (but then we cannot guarantee consistency). In order to deal with this problem, we selected a 

formal method approach based on category theory.  

 

Within the framework of category theory we can address all of the problems stated above. In particular, we can analyse the 

effects of combining (fusing) structures (e.g.. algorithms) into one structure with respect to the system level criteria. In other 

words, we can analyse various design choices. The input to this fusion process is the state of the general knowledge (as stated 

above) and the system level requirements (we also refer to this as knowledge structures). The development consists of a 

number of steps of structure fusion. Since each of the steps is provably correct, i.e. the resulting structure is guaranteed to 

preserve the system requirements of the previous step, the whole process is provably correct. The process consists of two 

phases: specification development and refinement. The specification development phase ends with a complete specification 

of the system. The refinement phase takes such a complete specification and ends with code. Again, since only formal, 

provably correct operators are used in the refinement process, the resulting code is provably correct with respect to the 

specification. In the rest of this section, we give a glimpse of our approach. More information on this subject can be found in 

our paper. 12 

A category
24is an abstract mathematical construct consisting of category objects and category arrows. Category objects 

are the objects in the category of interest. In our case they are algebraic specifications of computational objects; the category 

is called Spec.  Category arrows define a mapping from the internal structure of one category object to another and are also 

called morphisms. In our case they are specification morphisms. In the category Spec, specification morphisms map the sorts 

and operations of one algebraic specification into the sorts and operations of a second algebraic specification such that 

the  axioms in the first specification become provable theorems in the second specification. Thus, in essence, a specification 

morphism defines an embedding of one specification into a second specification. 

 

Specification morphisms are required for defining and refining specifications. Additionally, we need the combination, or 

composition, of existing specifications to create new specifications. This is where category theory is extremely useful in 

information fusion.  Often two specifications that were originally extensions from the same ancestor need to be combined.  

Therefore, the desired combined specification consists of the unique parts of two specifications and some “shared part” that is 

common to both specifications (the part defined in the shared ancestor specification).  This combining operation is called a 

colimit
24. The colimit operation creates a new specification from a set of existing specifications.  This new specification has 

all the sorts and operations of the original set of specifications without duplicating the “shared” sorts and operators.  

 

Diagrams are the main modeling tool used to represent category objects and category arrows. A diagram consists of nodes 

representing category objects, and arrows, representing category arrows. In our approach, the category objects are the 

specifications (structures) of sensors, objects of interest (e.g. targets), goals of the system, general knowledge, and system 

knowledge. A whole system is represented as one diagram. Once such a diagram is developed, one can reason about the 

properties of the system by using theorem proving. In other words, one needs to state a hypothesis and then prove or disprove 

the hypothesis within the knowledge included in the diagram. 

 

An example of a diagram for a simple object recognition system is presented in Figure 4. In this figure, the top category 

object is termed WORLD. It contains specifications of the world constraints, e.g., that two (world) objects cannot appear in 

the same place at the same time and what are the expected types of objects in this world. This specification embeds the 

specification called RECT-TRIAN-SHADOW, represented as a morphism between the two category objects. RECT-TRIAN-

SHADOW, in turn is formed as a colimit of three specifications below. The lower layer represents specificaitons of the two 

sensors involved – RANGE-SENSOR and INTENSITY-SENSOR. At the bottom there are specifications of mathematical 

objects needed to model the sensors. 

 



WORLD

RECT-TRIAN-SHADOW

RECT-TRIAN SHADOW

ONE-SORT

RANGE-SENSOR INTENSITY-SENSOR

XREAL

REAL

 
Figure 4: A diagram of an information fusion system 

 

As we have shown in our earlier work11, formal methods (such as category theory) provide a reasoning framework that 

allows to analyse how abstract, system level performance criteria can affect design choices. Formal methods have recently 

been successfully applied to the analysis of relatively simple data fusion systems. In order to apply formal methods to design 

systems for real-word applications of typical complexity, system solutions and theories are needed that constrain the design 

space. In this paper we outline an approach to combining these methods and tools with other methods and tools that are 

relevant to the development of information fusion systems. 

 

 

6. INFORMATION DYNAMICS 
 

Petri-net modelling is an abstract, formal way of modelling information flow in concurrent systems13, which were proposed 

as a means of representing asynchronous parallel processing. A Petri-net is a directed bipartite graph of information 

processors (which are called transitions and drawn as bars in Petri-net diagrams), the information stores (called places and 

represented by circles) and the information itself (in the form of tokens). In coloured Petri-nets the tokens are typed 

(coloured) and the information dynamics that can be modelled are somewhat richer14. In both the standard and coloured 

versions, a substantial arsenal of mathematical tools has been built up to enable the detection of waiting, blocking and 

deadlock. There are a number of commercial and freeware Petri-net tools which can simulate systems and perform these 

kinds of analyses15. 

 

  
 

Figure 5: A marked, coloured Petri-net representation of a fusion system. 



 

In figure 4 a coloured Petri-net representation of a particular fusion system is shown. In this case the environment supplies 

data to the two sensors simultaneously. The sensors are on separate platforms (actors), one of which is autonomous and the 

other is under system control. Separate perceptions are formed from the two information sources and the fusion takes place at 

this perception stage (which may be feature-level fusion or soft decision-level fusion). The decisions made by the director are 

implemented by a just one manager. Using appropriate simulation and analysis tools it is possible to determine that this 

system will not deadlock and that the critical loop is the control loop on the second actor. 

 

 

 

7. HUMAN ASPECTS: PLUG-AND-PLAY WELL TOGETHER 

 

The power of an object-oriented architecture lies, in part, in the ability to populate any of its objects with any instance that 

satisfies the specifications for the given object.  The proposed object-oriented architecture is one in which the specifications 

have historically been job descriptions for actors, perceivers, directors and managers, with the instance objects being human 

beings who attempt to satisfy their job descriptions.  Only in the past couple of decades has there been a serious attempt to 

instantiate this architecture’s component objects with automated systems that attempt to satisfy some substantial part of the 

job descriptions.  As fusion architectures’ objects are populated with more complete automations working alongside people, 

each automated object becomes progressively less of a mere tool and more of a co-worker. 

  

Social Competence and Inference.  Whether in a humans-only system or a mixed human-automated system, the people are 

typically mature adults who are already fully trained to exhibit adequate adaptive competencies (including social 

competencies). People normally bring to the workplace an entire repertoire of responses for social interaction. These are 

usually highly differentiated, highly articulated and highly automated.  Properly exploited, peoples’ established repertoires 

offer a substantial advantage. With little (if any) additional training, people can immediately apprehend the intentions of other 

autonomous agents within their shared context and position themselves appropriately.  To leverage people’s existing social 

competence, each automated object similarly needs to position itself correctly, cueing its human counterparts within social 

norms, and responding to peoples’ cues within the same norms. To the extent that an automated object satisfies normal social 

specifications, it is likely to fit into a fusion architecture with its human counterparts as seamlessly as any human could be 

said to fit in.   

 

There, however, is the rub.  Game theory would seem to suggest that, as specifications for behaviour, job descriptions would 

serve as a substantial body of shared information that would insure well-oiled co-operative social relationships in which 

every person knows how to fit themselves in.  Yet, as a result of the broad variability of peoples’ aptitudes and intentions, 

people (no less machines) rarely fit seamlessly into complex social organisations.  It is long settled psychology that a 

substantial part of the human social repertoire is focused on apprehension of the nature of one’s own and others’ fit into the 

social context16.  

 

Identifying the redundancies of others’ intentions with one’s own is the foundation for trust.  With respect to their own 

perceived interests, people want to know if their fellow social agents are co-operative or competitive, reliable and trustworthy 

or dangerously unpredictable.  In addition to the first order problem of understanding how to behave to satisfy the 

specification of some job description, people put substantial energy into monitoring the performance of others.  By engaging 

in a second order analysis of the competencies and intentions of others, people try to determine if others making an adequate 

fit and, more importantly, whether they are trying to.  Because humans are a social species the adaptive competence of whom 

is closely tied to competent social functioning, the second-order analysis of others’ aptitudes, reliability and intentions is so 

fundamental to human adaptive competence that it is highly automated and often largely unconscious.  Peoples’ automated 

responses to each other are first and foremost emotional responses, with rationales lagging behind (if they follow at all). 

 

Emotional Governance.  The emotionality that automates social behaviour results from emotions’ role as control signals in 

peoples’ adaptively competent information processing17,18.  Figure 6 (originally in Frankel17) shows an adaptive 

(feedforward) control topology that is closely related to the topology of the fusion architecture proposed in this paper, with 

two exceptions: 



 

1. adaptive controls are explicitly articulated 

 

2. data abstraction is treated as an orthogonal problem to control. 

 

In Figure 6, emotions are shown to control the feedforward process of adapting to changing circumstances.  Salience:  

Emotions control salience, appraising the urgency of changing situational contingencies and interrupting current activities to 

draw attention to events of equal or greater priority.  Categorisation:  Emotions control evaluative categorisation, appraising 

event type and vectoring memory access to a palette of relevant response options from the individual’s repertoire.  Response 

Selection: Emotions control response selection, appraising both current harm and benefit and also the expected harm and 

benefit associated with the response options in the palette. Emotions then drive the selection of what is expected to be the 

most favourable (or least unfavourable) response.  Settling: Emotions control the rate of settling on selected responses.  

Emotional confidence appraises (a) that the selected response is a good fit, (b) that the response is commensurate with 

available abilities, and (c) that the cost of an inappropriate response is low.  Conversely, anxiety appraises (a) that the 

selected response is still a poor or uncertain fit, (b) that situational demands exceed abilities, or (c) that the cost of an 

inappropriate response is high.  Error detection is dampened in inverse proportion to anxiety (or in direct proportion to 

confidence, where a region of certain knowledge disables all relevant error checking). 

 

Emotions embody, automate and signal to others the appraisals and intentions that organise and motivate behaviour.  In 

effect, emotions are the control and social signals in the adaptively competent information processing architecture that 

governs real-time human fusion.  

 

 

Figure 6.  Affectively Governed, Expectancy Biased Adaptive (Feedforward) Control: 

An Architecture for the Adaptively Competent Fusion in the Human Individual 

 

If emotions govern human fusion internally and signal human fusion externally, then automated fusion objects can, in 

principle, fit into fusion architectures as seamlessly as people do. However, automations will fit in only to the extent that they 

both satisfy their job descriptions and also participate appropriately in the exchanges of emotional display by means of which 

people read each others’ intentions.  One implication, not treated here, is that automated co-workers should both cue human 

co-workers with emotional displays and also utilise people’s emotions, thereby constructing a shared social narrative between 

automation and person.  The other more tractable implication is that, beyond satisfying the job description, the task-oriented 

behaviour of automated systems must satisfy peoples’ social expectations, so that people will come to trust the automation.  
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Much study is needed in this area; however, existing psychology points to emotional factors that can undermine trust and 

render fusion automations under-utilised.  A few such factors follow. 

 

Settling.  In any feedforward control problem with significant performance pressure, there is always a tension between 

selecting the best reference for changed contingencies and settling on some adequate reference in a timely fashion.   For 

people, the same anxiety that slows settling due to low confidence also punishes slow settling, decreasing the amount of 

information taken in and processed19, and eventually increasing impulsive settling19.  Because people apprehend the 

variability of human behaviour, they become confident of others based on experience with others in the range of 

circumstances likely to be encountered together with others.  In this way, people come to learn when to depend upon others’ 

aptitudes and when to avoid their ineptitude, so that it is possible at all events to settle quickly.  Automated fusion objects 

should thus support simulation over their entire operating range, so that, through training, people can come to trust their own 

judgements of automation performance and maintain a settled relationship with automations’ behaviour.  Moreover, training 

regimens must trade-off the need to focus on the most commonly occurring scenarios with the likelihood that trust of the 

automation may break down more quickly, exactly when the automation is most needed, that is, under the anxiety of 

unfamiliar situations in which the automation is exhibiting unfamiliar or unexpected (but correct) productions. 

 

Editing.  It is the function of emotions to make unusual and anomalous events salient, so as to generate considered responses.  

However, a side-effect of salience of unusual events is an editing effect21 that makes unusual events seem more likely, a 

distortion of the probability distribution against which an automation is likely to be robust. Human and automated actors can 

become significantly mismatched in the orientation of their vigilance.  Moreover, in the course of transformation from the 

concrete domain of actors to the abstract domain of directors, small divergences in the content of percept streams can become 

amplified into large divergences of situational analysis. Thus, the judgements of a less distortion prone automation can come 

to diverge significantly from those of a more distortion prone human counterpart, potentially reducing trust. 

 

Regret-avoidance.  People are regret averse22, and can fall into protracted “sunk-cost” behaviour22, increasing risk-taking in 

the course of trying to make up for losses incurred.  Both director and manager automations that are more robustly rational in 

cost-benefit analyses and decision-making can make recommendations that people may experience as depriving them of the 

opportunity to cover their losses. This may cause the panic, anger and distrust that people often feel when they perceive 

others to be thwarting their attempts to avoid feeling (and looking) bad. 

7. SUMMARY 
 

We have outlined a relationship model for data fusion based on object-oriented principles that goes beyond existing 

descriptive models and provides a prescriptive model that can be gradually refined to the point where it can be deployed. The 

model is amenable to analysis at the design stage through the use of formal methods. The information flow in a design may 

be studied using Petri-net theory. The human aspects of information fusion systems are easily accommodated within the 

model, since no distinction is drawn between human and computer objects until model is viewed from the realisation 

perspective. 

 

The orthogonality of abstraction and control has not yet been fully integrated into our model. This needs to be resolved 

before moving on. The design approach also needs to evolve from a largely theoretical model to a practical prescription for 

efficient system design. The associated tools need to be honed to provide tractable analyses of realistic, full-scale problems. 

As these analysis tools develop in a fusion setting a network of specifications and theories will need to be established and the 

fusion object model populated with specifications for generic fusion objects (at least) from the agent and information 

perspectives. Particular specialisations can then inherit the attributes and behavioral characteristics of these objects. The 

practical experience acquired using a case study has much to offer and we should look towards applying this design 

philosophy to a medium-scale system in the near term. 

 

Recently, the Unified Modeling Language (UML) has become a de facto standard for representing software systems. The 

object diagram shown in this paper does not use the UML notation. It may be useful, for the sake of reaching a wider 

software engineering community, to translate this diagram into UML. Also, we may incorporate some aspects of the Unified 

Software Development Process (USDP) to capture the evolution of a fusion system – from specification to implementation. 

Addtionally, in order to combine such a diversity of representations of a fusion system as described in this paper, we may 

employ the concepts of various views, as promoted by the Reference Model for Open Distributed Processing (RM-ODP), in 

which five different views of a system are used to represent the interest of various stakeholders. 

 

 



Finally, the underpinning psychological theories for dynamic teams of mixed human and computer co-workers is far from 

established. The problem is not so much that mixed human-computer teams are poorly understood.  What is known about 

human-computer interaction suggests that people fairly automatically parse the computer the same as any other autonomous 

agent, projecting a personality onto the computer and behaving as they would with any other social agent.  The computer, 

however, is only very rarely programmed with the sophistication to be a credible social agent, and so eventually comes to 

take on the personality of a flaky, frustrating agent that is warily trusted more as a matter of necessity than of choice.  The 

problem, rather, is that psychological theory regarding purely human teams is still in its infancy and is quite far from being 

any kind of settled science.  As such, the challenge is to understand the social expectations of the humans, so that the 

computer can live up to them, and so that, where the computer can outperform the humans, the computer can successfully 

elicit peoples' genuine, settled trust.  Further research in this area will be necessary before designs based on the object model 

can properly integrate humans and machines as peers. 
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