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ABSTRACT 

This paper describes an ongoing effort to use formal 

methods of software specification and refinement in order to 

achieve interoperability of Cognitive Radios. In particular, 

we are interested in the scenario in which two nodes 

negotiate the composition of software functionality from 

simpler components, including the ability to infer that the 

composed module has the same functionality as requested. 

We show examples of the use of the formal language 

(Metaslang) to express composition, refinement and 

abstraction. Moreover, we show that a formal reasoning 

system can infer the equivalence of two structurally 

different modules. We also discuss our current research 

directions towards solving the goal of representation and 

composition of behavioral (dynamical) models of radio 

components. 

 

1. INTRODUCTION 

 

We consider a scenario in which two cognitive radios 

negotiate the use of software components needed for (better) 

communication. When one radio does not have the 

component that the other radio asks for, it attempts to 

achieve the requested functionality by composing it using 

other components that it has in its software library. One of 

the questions that the radios need to answer in such a case is 

whether a specific type of composition results in a 

functionality that is equivalent to the request.  

 

In order to implement such a scenario, one needs to select a 

language that is capable of expressing not only descriptions 

of components, but also their functionality and composition. 

In addition to this, the formal system built on this language 

must provide means for inferring equivalences between 

components. And on top of all this, the language must be 

able to capture behavioral characteristics of components, 

i.e., it needs to be able to describe dynamics of systems. It 

turns out that a relatively powerful language and logic are 

needed for such an application. 

 

In our previous work [1] we proposed that an approach 

based on constructivism [5, 6] could be used for achieving 

dynamic interoperability between Cognitive Radio (CR) 

nodes. We based our proposal on several key assumptions, 

of which the most important one was the existence of a base 

ontology, which is a set of basic concepts that is shared 

among all cognitive radios. Since all more advanced 

concepts can be expressed in terms of the base ontology, 

Cognitive Radio nodes can always understand each other. A 

CR node can add facts to its knowledge databases based on 

its current status and also based on the data obtained from 

other CRs. It can also use an inference engine to reason 

about those facts and can generate composite software 

components based on data gathered from other nodes.  

 

During our further investigation it became apparent that the 

previously proposed interoperability scenario has some 

limitations. 

• Equivalent software modules can have different internal 

structure. For example a software module implementing 

the equation f(a,b,c,d) = (a+b)(c+d) is functionally 

equivalent to the module implementing the equation 

f(x,y,v,u) = (xv + xu + yv +yu) but their respective 

internal structures are different.  

• The same functional modules operating on different 

data types are seen as two different structures as the 

structure-based approach does not allow for easy 

separation of the abstract functionality from the 

underlying data type. 

• The lack of “understanding” of the functionality might 

lead to implementation inefficiencies. For example, if a 

CR node receives a description of the quadrature 

modulator expressed in terms of the base ontology 

elements (e.g., a composition of an adder, two 

multipliers and a phase shifter together with the 

appropriate connections among these sub-components), 

the CR node might not be able to realize that there 

might be an alternative, more efficient implementation. 

In that particular example, if the CR node has hardware 

support for the multiply-add operation (hardware MAC 

unit), using a single MAC unit in place of an adder and 

a multiplier would probably result in better overall 

efficiency (see Fig. 1). 

• There is no obvious way to express dynamics - time 

dependencies and constraints. One of the possible 

methods is the use of delay components in the 

description of the composite software modules. That 

might however additionally complicate the structure of 

the module, especially when pipeline processing is 

considered. 

 

To address all these issues we followed the following 

approach. 

 

1. Use a more expressive language for describing 

components. We chose Metaslang for this exercise. 

Metaslang is a language that supports composition 



using constructs of category theory, like morphism and 

colimit. We investigate how to express the fact that two 

(syntactically different) components are semantically 

the same. Moreover, we use Metaslang to capture 

common parts of different components. 

2. Use a tool (Specware) that supports the use of 

Metaslang, to define abstract specifications of radio 

components and their further refinements through 

morphisms and colimit operations. 

3. Use a theorem prover that is easily integrated with 

Specware. We used a theorem prover (Snark) to prove 

conjectures on functional equivalences of components. 

4. Use temporal logic to capture behavioral aspects of 

components. We used temporal logic to capture such 

issues as delays and pipelining.  

5. Investigate ways of representing behavioral 

components. We came to the conclusion that an 

extension to Metaslang, like the Accord framework 

recently developed at Kestrel institute, might be helpful 

here. 

 

This paper is organized as follows. In Section 2 we give 

simple examples of using Metaslang and Specware and 

show how composition can be expressed in Metaslang. In 

Section 3 we show how to capture common parts of 

different components. In Section 4 we continue the same 

thread by showing how we were able to (automatically, 

using a theorem prover) infer that two seemingly different 

components have the same functionality. In Section 5 we 

discuss the issue of expressing dynamic behaviors. And 

finally in Section 6 we present our conclusions and 

directions for future research. 

 

2. COMPOSITION OF COMPONENTS 

 

Specware is a framework created by Kestrel Institute that 

implements some results of their research into the 

application of category theory in formalized software 

development. Specware supports systematic construction of 

software from abstract specifications to executable code 

through a series of refinements [2]. In Specware, the 

software design process starts with an abstract specification, 

which through category theory operations of morphism and 

colimit can be refined up to the point where source code in 

Lisp, Java or C can be generated. An automated theorem 

prover (such as SRI’s SNARK [7]) can be used in each of 

the refinement steps to prove their correctness. If this 

process is followed rigorously, the resulting code is correct 

(i.e. it strictly adheres to the axioms defined in the abstract 

specifications). 

 

The basis of Specware is a category of specifications and 

specification morphisms [2]. Pavlovic and Smith [3] define 

specification as a finite presentation of a theory. The 

signature of a specification defines concepts for describing 

objects, operations and properties in some domain. The 

axioms included in the specification put constraints on the 

meaning of the symbols. 

 
Figure 1  Functionally equivalent composite software 

modules. 

 

The following code shows an example of two simple 

specifications encoded in Metaslang – the language of 

Specware. 
 

BinRel = spec 

  type E 

  op le infixl 24 : E*E -> Boolean 

endspec 

 

PreOrder = spec 

  import BinRel 

 

  axiom reflexivity is  

    fa(x) x le x = true 

 

  axiom transitivity is 

    fa(x,y,z) 

      ( x le y ) && ( y le z ) => ( x le z ) 

endspec 

 

The first spec BinRel defines an abstract specification with 

an undefined type E and a binary operation, le. The second 

spec (PreOrder) refines the first one by adding two axioms 

concerning the op le. 

 

A specification morphism is a translation of the language of 

one specification into the language of another such that all 

theorems from the source specification are preserved in the 

target specification. 



 
Antisymmetry = spec 

  type X 

  op binOp : X*X -> Boolean 

  axiom antisymmetry is fa(x,y) 

      binOp(x,y) && binOp(y,x) => x = y 

endspec 

 

m_BinRel_Antisymmetry =  

  morphism BinRel-> Antisymmetry  

    { E +-> X, le+->binOp } 

 

In the example above, there exists a morphism 

(m_BinRel_Antisymmetry)  from BinRel to Antisymmetry 

such that all types and ops of the source specification are 

mapped into appropriate types and ops of the target 

specification. In this particular case, E is mapped to X and le 

is mapped to binOp.  

 

A specification diagram is a directed graph in which nodes 

represent specifications and edges represent specification 

morphisms. For the example specifications and morphism 

given above we can create the following diagram. 
 

BinRelDiag = diagram { 

  n1 +-> BinRel, 

  n2 +-> PreOrder, 

  n3 +-> Antisymmetry, 

  e1: n1->n2 +-> morphism BinRel -> PreOrder {}, 

  e2: n1->n3 +-> m_BinRel_Antisymmetry 

} 

 

The first three lines in the definition of the diagram define 

its nodes (n1, n2, n3) and map them to appropriate specs. 

The definitions of e1 and e2 describe the edges in the graph 

and map them to morphisms. Note that since the PreOrder 

specification imports BinRel (in other words, it is an 

extension of BinRel) the morphism from BinRel to 

PreOrder is trivial, i.e. all types and ops of BinRel map into 

themselves. 

 

Given the specification diagram, Specware can produce the 

colimit of the specs in the diagram. The result of the colimit 

operation is a spec that contains all the types, ops and 

axioms of the specs in the diagram in which all types and 

ops that are linked through morphisms are identified as the 

same. The colimit of the above diagram can be produced by 

adding the following statement to the MetaSlang file. 

 
PartialOrder = colimit BinRelDiag 

 

The result of that operation can be examined in the 

Specware control shell: 
 

showx test1#PartialOrder 

 

As a result, the following listing will be displayed: 
 

spec 

type {X, E} 

op  {binOp, le} : X * X -> Boolean 

import translate (BinRel) by { type E +-> {X, E, 

E},  op le +-> le} 

axiom reflexivity is fa(x : E) x le x = true 

axiom transitivity is fa(x : E, y : E, z : E) x le 

y && y le z => x le z 

axiom antisymmetry is fa(x : X, y : X) binOp(x, y) 

&& binOp(y, x) => x = y 

endspec 

 

3. ABSTRACTION AND COMMONALITY OF 

COMPONENTS 

 

In our current experiments we looked into how the category 

theory ideas developed in Specware could help with solving 

the interoperability problem. One of the problems with the 

structure-based interoperability scenario was the difficulty 

of separating the abstract functionality of the composite 

software module from the underlying data type.  

 

For example a multiply-add unit processing real samples 

represented by floating point numbers will be composed 

quite differently than a unit processing pairs of integers 

representing complex samples. Nevertheless, both will have 

some commonality. If we simply treat such two components 

as totally different, we loose the ability to capture the 

commonality. This will lead to some inefficiency since the 

part that is common to both will be represented twice, while 

in fact both components are “the same” at some level of 

abstraction. The notion of abstract specification and its 

refinement through morphism and colimit operation seem to 

be very well suited for addressing this problem. 

 
Samples = spec 

  type Sample 

  type NonZeroSample = (Sample | nonzero?) 

 

  op Sample.zero: Sample 

  op Sample.one: Sample 

 

  op Sample.nonzero?: Sample->Boolean 

  def Sample.nonzero?(x) = x ~= Sample.zero 

 

  op Sample.multiply: Sample*Sample->Sample 

  op Sample.add: Sample*Sample->Sample 

  op Sample.minus: Sample->Sample 

 

  op Sample.subtract: Sample*Sample->Sample 

  def Sample.subtract(x,y) = add( x, minus(y)) 

 

  op Sample.next: Sample->Sample 

  op Sample.prev: Sample->Sample 

 

  axiom Sample_mul_ax is 

    fa(a:Sample, b:Sample)  

      Sample.multiply(a,b) = Sample.multiply(b,a) 

  axiom Sample.add_ax is 

    fa(a:Sample, b:Sample)  

      Sample.add(a,b) = Sample.add(b,a) 

  axiom Sample.mul_add_ax is 

    fa(a:Sample, b:Sample, c:Sample) 

      Sample.multiply(a, Sample.add(b,c)) =  

        Sample.add( Sample.multiply(a,b), 

                    Sample.multiply(a,c) ) 

   



endspec 

 

IntSamples = spec 

  import Samples 

  type Sample = Integer 

 

  def Sample.zero = 0 

  def Sample.one = 1 

  def Sample.multiply(x,y) = x*y 

  def Sample.add(x,y) = x+y 

  def Sample.minus(x) = -x 

endspec  

 

CplxIntSamples = spec 

  import Samples 

  type Sample = { re:Integer, im:Integer} 

  def Sample.zero = { re=0, im=0 } 

  def Sample.one = { re=1, im=0 } 

  def Sample.multiply(x,y) =  

      { re = ( x.re*y.re - x.im*y.im ),  

        im = ( x.re*y.im + x.im*y.re ) } 

def Sample.add(x,y) =  

    { re = (x.re+y.re), im = (x.im+y.im) } 

  def Sample.minus(x) = { re = -x.re, im = -x.im } 

   

  op  Sample.conj: Sample -> Sample 

  def Sample.conj(x) = { re = x.re, im = -x.im } 

endspec 

 

In the MetaSlang code shown above an abstract 

specification Samples is defined. Two concrete refinements 

IntSamples and CplxIntSamples (for real and complex 

samples, respectively) are also defined. If a software module 

using Samples is defined, it can easily be refined into a 

concrete software module specification using real samples 

or a module using complex samples. It is generally 

considered a good practice to introduce real data types at the 

very end of the refinement process, just before the source 

code is generated.  

 
MorphInt =  

morphism Samples -> IntSamples { } 

 

MorphCplxInt =  

  morphism Samples -> CplxIntSamples { } 

 

Adder= spec 

  import SampleSpec#Samples 

  op Adder.Func: Sample*Sample -> Sample 

  def Adder.Func(x,y) = Sample.add(x,y) 

endspec 

 

Adder_Int = Adder[MorphInt] 

Adder_CplxInt = Adder[MorphCplxInt] 

 

The example above shows the underlying data type 

refinement. Specifications Adder_Int and Adder_CplxInt are 

obtained by specification substitution, which is a simplified 

form of colimit operation.  

 

4. FUNCTIONAL EQUIVALENCE 

 

The use of theorem provers makes it possible to prove that 

two software modules are equivalent. For example the 

following spec defines two ops Func1 and Func2.  

 
Funcs = spec 

  import Adder 

  import Multiplier 

 

  op Funcs.Func1: Sample*Sample*Sample -> Sample 

  def Funcs.Func1(a,b,c) =  

    Multiplier.Func( a, Adder.Func(b,c) ) 

 

  op Funcs.Func2: Sample*Sample*Sample -> Sample 

def Funcs.Func2(a,b,c) =  

  Adder.Func( Multiplier.Func(a,b), 

              Multiplier.Func(a,c) ) 

 

  conjecture Funcs_eq_conj is  

    fa(a:Sample, b:Sample, c:Sample) 

      Func1(a,b,c) = Func2(a,b,c) 

endspec 

 

The evaluation of the conjecture Funcs_eq_conj is done by 

the theorem prover invocation: 
 

p0 = prove Funcs_eq_conj in Funcs options  

     "(use-resolution t) (use-paramodulation t)" 

 

In the above example, SNARK [7] is able to prove that 

Func1 and Func2 are the same, even though they are defined 

in a different way. It has to be emphasized though that 

SNARK is not able to deal with any knowledge 

representations that require higher order logic.  

 

Although Specware itself cannot optimize the 

implementation of a specific software module, at least it can 

recognize that an implementation is equivalent to the given 

specification even though it might be constructed using 

composite software modules rather than simple components 

from the base ontology. In the following example 

specification QuadratureMod is expressed with elements 

from base ontology. The receiving CR node composes 

specification Quad2, which uses a composite module MAC 

not present in the base ontology. The reasoner is able to 

prove that the specification used by the receiving CR node 

is equivalent to the original specification. 

 
QuadratureMod = spec 

  import CplxIntSamples 

 

  op QuadratureMod.Func: Sample*Sample*Sample -> 

Sample 

def QuadratureMod.Func(I,Q,C) =  

  Sample.add( Sample.multiply( I, C ),  

              Sample.multiply( Sample.conj(C), Q 

) )   

endspec 

 

MAC = spec 

  import CplxIntSamples 

  import Adder_CplxInt 

  import Multiplier_CplxInt 

 

  op MAC.Func: Sample*Sample*Sample -> Sample 

def MAC.Func(m1,m2,a) =  

  Adder.Func( Multiplier.Func(m1,m2),a ) 

endspec 

 



Quad2 = spec 

  import CplxIntSamples 

  import Adder_CplxInt 

  import Multiplier_CplxInt 

  import PhShifter90Deg 

  import MAC 

  import QuadratureMod 

 

  op Quad2.Func: Sample*Sample*Sample -> Sample 

def Quad2.Func(I,Q,C) =  

  MAC.Func(I, C, Multiplier.Func( 

                   PhShifter90Deg.Func(C), Q ) ) 

 

  conjecture Quad2_conj is 

    fa(I:Sample, Q:Sample, C:Sample) 

     Quad2.Func(I,Q,C) = QuadratureMod.Func(I,Q,C) 

endspec 

 

Quad2_p0 = prove Quad2_conj in Quad2  

     options "(use-resolution t) (use-

paramodulation t)" 

 

5. TEMPORAL LOGIC ELEMENTS IN 

COMPOSITE SOFTWARE MODULE 

SPECIFICATIONS 

 

Practical implementations of Cognitive Radio algorithms 

require that timing constraints are considered when 

composite modules are constructed from simpler entities. It 

is especially important when hardware components are used 

as the algorithms have to adjust to delays introduced by 

pipelining, which is a technique regularly used to improve 

the speed of hardware implementations. 

 

There are many temporal logics aimed at tackling different 

aspects of time in complex systems without introducing 

time explicitly. In our limited experimentation we borrowed 

a simple concept from Linear Temporal Logic – the operator 

X (next). 

 

In discrete time systems (as all sample-based systems are) 

the operator X is a delay element. The X operation is not a 

function as understood by functional languages because the 

result of it doesn’t depend only on the current value of the 

parameter. Instead, it actually returns the previous value of 

the parameter. In other words, the X operator uses a side 

effect – it returns the value remembered from the last time 

the function was called in the particular context. 

 

Since MetaSlang is a functional language it cannot 

implement the X operator. That limitation however does not 

prevent us from defining the X operator as an abstract 

operation with some axioms. We might not be able to refine 

specifications to the actual source code, but we could reason 

about the operator itself in an abstract way. 

 
LTL = spec 

  import Samples 

  op LTL.X: Sample -> Sample 

   

  axiom X_ax1 is 

    fa(a:Sample, b:Sample) 

      LTL.X( Sample.add( a,b ) ) =  

        Sample.add( LTL.X(a), LTL.X(b) ) 

  axiom X_ax2 is 

    fa(a:Sample, b:Sample) 

      LTL.X( Sample.multiply( a,b ) ) =  

        Sample.multiply( LTL.X(a), LTL.X(b) ) 

endspec 

 

Delay = spec 

  import LTL 

   

  op Delay.Func: Sample -> Sample 

  def Delay.Func(y) = LTL.X(y) 

endspec  

 

Adder_1Delay = spec 

  import Samples 

  import LTL 

 

  op Adder_1Delay.Func: Sample*Sample -> Sample 

  def Adder_1Delay.Func(x,y) =   

        LTL.X(Sample.add(x,y)) 

endspec 

 

Multiplier_1Delay = spec 

  import Samples 

  import LTL 

 

  op Multiplier_1Delay.Func: Sample*Sample-> 

Sample 

   

  def Multiplier_1Delay.Func(x,y) = 

        LTL.X(Sample.multiply(x,y)) 

endspec 

 

MAC_2Delay = spec 

  import Samples 

  import LTL 

   

  op MAC_2Delay.Func: Sample*Sample*Sample -> 

Sample 

   

  def MAC_2Delay.Func(x,y,z) = LTL.X( 

    Sample.add( LTL.X( Sample.multiply(x,y) ), 

                LTL.X( z ) ) ) 

endspec  

 

MAC_2X = spec 

  import Delay 

  import MAC_2Delay 

  import Multiplier_1Delay 

  import Adder_1Delay 

  import MAC_2Delay 

 

  op MAC_2X.Func: Sample*Sample*Sample -> Sample 

  def MAC_2X.Func(x,y,z) =  

    Adder_1Delay.Func( 

        Multiplier_1Delay.Func(x,y), 

      Delay.Func(z) ) 

 

  conjecture MAC_2X_conj is 

    fa(x,y,z)  

      MAC_2X.Func(x,y,z) = 

      MAC_2Delay.Func(x,y,z) 

endspec 

 

MAC_2X_p0 =  prove MAC_2X_conj in MAC_2X   

    options "(use-resolution t)  

      (use-paramodulation t)" 

 



In the above example MAC_2X – a specification of 

multiply-add unit that introduces a sample delay of two 

steps - is created from the available components 

Multiplier_1Delay, Adder_1Delay and Delay. This 

specification has been proven to be equivalent to 

MAC_2Delay expressed in terms of basic Sample operations 

and the X operator. 

 

6. CONCLUSIONS AND FUTURE WORK 

 

In this paper we described the results of some experiments 

in which we tried to apply certain elements of category 

theory to the problem of Cognitive Radio interoperability. 

We successfully demonstrated the feasibility of this 

approach as we were able to overcome some shortcomings 

of the structure-based approach we proposed previously. 

The practicality of this approach is still however debatable 

as it requires the use of a theorem prover, The available 

theorem prover SNARK is limited to first-order logic, which 

prevents the software specifications from using more 

expressive language constructs. The use of Isabelle – a 

higher order logic prover, experimentally introduced to the 

latest version of Specware - has not been evaluated at this 

point, but the experimental character of both Isabelle and its 

support in Specware lead us to believe that this option 

would probably also encounter significant problems. 

 

The fact that MetaSlang is a functional language limited our 

success with the application of temporal logic elements to 

software component specification. We were unable to 

produce source code for modules using the X operator. We 

were able however to use its abstract definition and axioms 

in proving the functional equivalence of module 

specifications. 

 

In our future work we plan to evaluate Accord, another 

formal software development framework from Kestrel 

Institute. Accord is an extension of Specware and it 

introduces a concept of evolving specifications (e-specs). 

Evolving specifications allow for the introduction of 

behavioral elements (like states and their transitions) into 

specifications of software modules. 
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