
COMPOSITION, EQUIVALENCE AND INTEROPERABILITY: AN EXAMPLE

Leszek Lechowicz (Department of Electrical and Computer Engineering, Northeastern University,

Boston, MA; llechowi@ece.neu.edu); Mieczyslaw M. Kokar (Department of Electrical and Computer

Engineering, Northeastern University, Boston, MA; mkokar@ece.neu.edu)

ABSTRACT

This paper describes an ongoing effort to use formal

methods of software specification and refinement in order to

achieve interoperability of Cognitive Radios. In particular,

we are interested in the scenario in which two nodes

negotiate the composition of software functionality from

simpler components, including the ability to infer that the

composed module has the same functionality as requested.

We show examples of the use of the formal language

(Metaslang) to express composition, refinement and

abstraction. Moreover, we show that a formal reasoning

system can infer the equivalence of two structurally

different modules. We also discuss our current research

directions towards solving the goal of representation and

composition of behavioral (dynamical) models of radio

components.

1. INTRODUCTION

We consider a scenario in which two cognitive radios

negotiate the use of software components needed for (better)

communication. When one radio does not have the

component that the other radio asks for, it attempts to

achieve the requested functionality by composing it using

other components that it has in its software library. One of

the questions that the radios need to answer in such a case is

whether a specific type of composition results in a

functionality that is equivalent to the request.

In order to implement such a scenario, one needs to select a

language that is capable of expressing not only descriptions

of components, but also their functionality and composition.

In addition to this, the formal system built on this language

must provide means for inferring equivalences between

components. And on top of all this, the language must be

able to capture behavioral characteristics of components,

i.e., it needs to be able to describe dynamics of systems. It

turns out that a relatively powerful language and logic are

needed for such an application.

In our previous work [1] we proposed that an approach

based on constructivism [5, 6] could be used for achieving

dynamic interoperability between Cognitive Radio (CR)

nodes. We based our proposal on several key assumptions,

of which the most important one was the existence of a base

ontology, which is a set of basic concepts that is shared

among all cognitive radios. Since all more advanced

concepts can be expressed in terms of the base ontology,

Cognitive Radio nodes can always understand each other. A

CR node can add facts to its knowledge databases based on

its current status and also based on the data obtained from

other CRs. It can also use an inference engine to reason

about those facts and can generate composite software

components based on data gathered from other nodes.

During our further investigation it became apparent that the

previously proposed interoperability scenario has some

limitations.

• Equivalent software modules can have different internal

structure. For example a software module implementing

the equation f(a,b,c,d) = (a+b)(c+d) is functionally

equivalent to the module implementing the equation

f(x,y,v,u) = (xv + xu + yv +yu) but their respective

internal structures are different.

• The same functional modules operating on different

data types are seen as two different structures as the

structure-based approach does not allow for easy

separation of the abstract functionality from the

underlying data type.

• The lack of “understanding” of the functionality might

lead to implementation inefficiencies. For example, if a

CR node receives a description of the quadrature

modulator expressed in terms of the base ontology

elements (e.g., a composition of an adder, two

multipliers and a phase shifter together with the

appropriate connections among these sub-components),

the CR node might not be able to realize that there

might be an alternative, more efficient implementation.

In that particular example, if the CR node has hardware

support for the multiply-add operation (hardware MAC

unit), using a single MAC unit in place of an adder and

a multiplier would probably result in better overall

efficiency (see Fig. 1).

• There is no obvious way to express dynamics - time

dependencies and constraints. One of the possible

methods is the use of delay components in the

description of the composite software modules. That

might however additionally complicate the structure of

the module, especially when pipeline processing is

considered.

To address all these issues we followed the following

approach.

1. Use a more expressive language for describing

components. We chose Metaslang for this exercise.

Metaslang is a language that supports composition

using constructs of category theory, like morphism and

colimit. We investigate how to express the fact that two

(syntactically different) components are semantically

the same. Moreover, we use Metaslang to capture

common parts of different components.

2. Use a tool (Specware) that supports the use of

Metaslang, to define abstract specifications of radio

components and their further refinements through

morphisms and colimit operations.

3. Use a theorem prover that is easily integrated with

Specware. We used a theorem prover (Snark) to prove

conjectures on functional equivalences of components.

4. Use temporal logic to capture behavioral aspects of

components. We used temporal logic to capture such

issues as delays and pipelining.

5. Investigate ways of representing behavioral

components. We came to the conclusion that an

extension to Metaslang, like the Accord framework

recently developed at Kestrel institute, might be helpful

here.

This paper is organized as follows. In Section 2 we give

simple examples of using Metaslang and Specware and

show how composition can be expressed in Metaslang. In

Section 3 we show how to capture common parts of

different components. In Section 4 we continue the same

thread by showing how we were able to (automatically,

using a theorem prover) infer that two seemingly different

components have the same functionality. In Section 5 we

discuss the issue of expressing dynamic behaviors. And

finally in Section 6 we present our conclusions and

directions for future research.

2. COMPOSITION OF COMPONENTS

Specware is a framework created by Kestrel Institute that

implements some results of their research into the

application of category theory in formalized software

development. Specware supports systematic construction of

software from abstract specifications to executable code

through a series of refinements [2]. In Specware, the

software design process starts with an abstract specification,

which through category theory operations of morphism and

colimit can be refined up to the point where source code in

Lisp, Java or C can be generated. An automated theorem

prover (such as SRI’s SNARK [7]) can be used in each of

the refinement steps to prove their correctness. If this

process is followed rigorously, the resulting code is correct

(i.e. it strictly adheres to the axioms defined in the abstract

specifications).

The basis of Specware is a category of specifications and

specification morphisms [2]. Pavlovic and Smith [3] define

specification as a finite presentation of a theory. The

signature of a specification defines concepts for describing

objects, operations and properties in some domain. The

axioms included in the specification put constraints on the

meaning of the symbols.

Figure 1 Functionally equivalent composite software

modules.

The following code shows an example of two simple

specifications encoded in Metaslang – the language of

Specware.

BinRel = spec

 type E

 op le infixl 24 : E*E -> Boolean

endspec

PreOrder = spec

 import BinRel

 axiom reflexivity is

 fa(x) x le x = true

 axiom transitivity is

 fa(x,y,z)

 (x le y) && (y le z) => (x le z)

endspec

The first spec BinRel defines an abstract specification with

an undefined type E and a binary operation, le. The second

spec (PreOrder) refines the first one by adding two axioms

concerning the op le.

A specification morphism is a translation of the language of

one specification into the language of another such that all

theorems from the source specification are preserved in the

target specification.

Antisymmetry = spec

 type X

 op binOp : X*X -> Boolean

 axiom antisymmetry is fa(x,y)

 binOp(x,y) && binOp(y,x) => x = y

endspec

m_BinRel_Antisymmetry =

 morphism BinRel-> Antisymmetry

 { E +-> X, le+->binOp }

In the example above, there exists a morphism

(m_BinRel_Antisymmetry) from BinRel to Antisymmetry

such that all types and ops of the source specification are

mapped into appropriate types and ops of the target

specification. In this particular case, E is mapped to X and le

is mapped to binOp.

A specification diagram is a directed graph in which nodes

represent specifications and edges represent specification

morphisms. For the example specifications and morphism

given above we can create the following diagram.

BinRelDiag = diagram {

 n1 +-> BinRel,

 n2 +-> PreOrder,

 n3 +-> Antisymmetry,

 e1: n1->n2 +-> morphism BinRel -> PreOrder {},

 e2: n1->n3 +-> m_BinRel_Antisymmetry

}

The first three lines in the definition of the diagram define

its nodes (n1, n2, n3) and map them to appropriate specs.

The definitions of e1 and e2 describe the edges in the graph

and map them to morphisms. Note that since the PreOrder

specification imports BinRel (in other words, it is an

extension of BinRel) the morphism from BinRel to

PreOrder is trivial, i.e. all types and ops of BinRel map into

themselves.

Given the specification diagram, Specware can produce the

colimit of the specs in the diagram. The result of the colimit

operation is a spec that contains all the types, ops and

axioms of the specs in the diagram in which all types and

ops that are linked through morphisms are identified as the

same. The colimit of the above diagram can be produced by

adding the following statement to the MetaSlang file.

PartialOrder = colimit BinRelDiag

The result of that operation can be examined in the

Specware control shell:

showx test1#PartialOrder

As a result, the following listing will be displayed:

spec

type {X, E}

op {binOp, le} : X * X -> Boolean

import translate (BinRel) by { type E +-> {X, E,

E}, op le +-> le}

axiom reflexivity is fa(x : E) x le x = true

axiom transitivity is fa(x : E, y : E, z : E) x le

y && y le z => x le z

axiom antisymmetry is fa(x : X, y : X) binOp(x, y)

&& binOp(y, x) => x = y

endspec

3. ABSTRACTION AND COMMONALITY OF

COMPONENTS

In our current experiments we looked into how the category

theory ideas developed in Specware could help with solving

the interoperability problem. One of the problems with the

structure-based interoperability scenario was the difficulty

of separating the abstract functionality of the composite

software module from the underlying data type.

For example a multiply-add unit processing real samples

represented by floating point numbers will be composed

quite differently than a unit processing pairs of integers

representing complex samples. Nevertheless, both will have

some commonality. If we simply treat such two components

as totally different, we loose the ability to capture the

commonality. This will lead to some inefficiency since the

part that is common to both will be represented twice, while

in fact both components are “the same” at some level of

abstraction. The notion of abstract specification and its

refinement through morphism and colimit operation seem to

be very well suited for addressing this problem.

Samples = spec

 type Sample

 type NonZeroSample = (Sample | nonzero?)

 op Sample.zero: Sample

 op Sample.one: Sample

 op Sample.nonzero?: Sample->Boolean

 def Sample.nonzero?(x) = x ~= Sample.zero

 op Sample.multiply: Sample*Sample->Sample

 op Sample.add: Sample*Sample->Sample

 op Sample.minus: Sample->Sample

 op Sample.subtract: Sample*Sample->Sample

 def Sample.subtract(x,y) = add(x, minus(y))

 op Sample.next: Sample->Sample

 op Sample.prev: Sample->Sample

 axiom Sample_mul_ax is

 fa(a:Sample, b:Sample)

 Sample.multiply(a,b) = Sample.multiply(b,a)

 axiom Sample.add_ax is

 fa(a:Sample, b:Sample)

 Sample.add(a,b) = Sample.add(b,a)

 axiom Sample.mul_add_ax is

 fa(a:Sample, b:Sample, c:Sample)

 Sample.multiply(a, Sample.add(b,c)) =

 Sample.add(Sample.multiply(a,b),

 Sample.multiply(a,c))

endspec

IntSamples = spec

 import Samples

 type Sample = Integer

 def Sample.zero = 0

 def Sample.one = 1

 def Sample.multiply(x,y) = x*y

 def Sample.add(x,y) = x+y

 def Sample.minus(x) = -x

endspec

CplxIntSamples = spec

 import Samples

 type Sample = { re:Integer, im:Integer}

 def Sample.zero = { re=0, im=0 }

 def Sample.one = { re=1, im=0 }

 def Sample.multiply(x,y) =

 { re = (x.re*y.re - x.im*y.im),

 im = (x.re*y.im + x.im*y.re) }

def Sample.add(x,y) =

 { re = (x.re+y.re), im = (x.im+y.im) }

 def Sample.minus(x) = { re = -x.re, im = -x.im }

 op Sample.conj: Sample -> Sample

 def Sample.conj(x) = { re = x.re, im = -x.im }

endspec

In the MetaSlang code shown above an abstract

specification Samples is defined. Two concrete refinements

IntSamples and CplxIntSamples (for real and complex

samples, respectively) are also defined. If a software module

using Samples is defined, it can easily be refined into a

concrete software module specification using real samples

or a module using complex samples. It is generally

considered a good practice to introduce real data types at the

very end of the refinement process, just before the source

code is generated.

MorphInt =

morphism Samples -> IntSamples { }

MorphCplxInt =

 morphism Samples -> CplxIntSamples { }

Adder= spec

 import SampleSpec#Samples

 op Adder.Func: Sample*Sample -> Sample

 def Adder.Func(x,y) = Sample.add(x,y)

endspec

Adder_Int = Adder[MorphInt]

Adder_CplxInt = Adder[MorphCplxInt]

The example above shows the underlying data type

refinement. Specifications Adder_Int and Adder_CplxInt are

obtained by specification substitution, which is a simplified

form of colimit operation.

4. FUNCTIONAL EQUIVALENCE

The use of theorem provers makes it possible to prove that

two software modules are equivalent. For example the

following spec defines two ops Func1 and Func2.

Funcs = spec

 import Adder

 import Multiplier

 op Funcs.Func1: Sample*Sample*Sample -> Sample

 def Funcs.Func1(a,b,c) =

 Multiplier.Func(a, Adder.Func(b,c))

 op Funcs.Func2: Sample*Sample*Sample -> Sample

def Funcs.Func2(a,b,c) =

 Adder.Func(Multiplier.Func(a,b),

 Multiplier.Func(a,c))

 conjecture Funcs_eq_conj is

 fa(a:Sample, b:Sample, c:Sample)

 Func1(a,b,c) = Func2(a,b,c)

endspec

The evaluation of the conjecture Funcs_eq_conj is done by

the theorem prover invocation:

p0 = prove Funcs_eq_conj in Funcs options

 "(use-resolution t) (use-paramodulation t)"

In the above example, SNARK [7] is able to prove that

Func1 and Func2 are the same, even though they are defined

in a different way. It has to be emphasized though that

SNARK is not able to deal with any knowledge

representations that require higher order logic.

Although Specware itself cannot optimize the

implementation of a specific software module, at least it can

recognize that an implementation is equivalent to the given

specification even though it might be constructed using

composite software modules rather than simple components

from the base ontology. In the following example

specification QuadratureMod is expressed with elements

from base ontology. The receiving CR node composes

specification Quad2, which uses a composite module MAC

not present in the base ontology. The reasoner is able to

prove that the specification used by the receiving CR node

is equivalent to the original specification.

QuadratureMod = spec

 import CplxIntSamples

 op QuadratureMod.Func: Sample*Sample*Sample ->

Sample

def QuadratureMod.Func(I,Q,C) =

 Sample.add(Sample.multiply(I, C),

 Sample.multiply(Sample.conj(C), Q

))

endspec

MAC = spec

 import CplxIntSamples

 import Adder_CplxInt

 import Multiplier_CplxInt

 op MAC.Func: Sample*Sample*Sample -> Sample

def MAC.Func(m1,m2,a) =

 Adder.Func(Multiplier.Func(m1,m2),a)

endspec

Quad2 = spec

 import CplxIntSamples

 import Adder_CplxInt

 import Multiplier_CplxInt

 import PhShifter90Deg

 import MAC

 import QuadratureMod

 op Quad2.Func: Sample*Sample*Sample -> Sample

def Quad2.Func(I,Q,C) =

 MAC.Func(I, C, Multiplier.Func(

 PhShifter90Deg.Func(C), Q))

 conjecture Quad2_conj is

 fa(I:Sample, Q:Sample, C:Sample)

 Quad2.Func(I,Q,C) = QuadratureMod.Func(I,Q,C)

endspec

Quad2_p0 = prove Quad2_conj in Quad2

 options "(use-resolution t) (use-

paramodulation t)"

5. TEMPORAL LOGIC ELEMENTS IN

COMPOSITE SOFTWARE MODULE

SPECIFICATIONS

Practical implementations of Cognitive Radio algorithms

require that timing constraints are considered when

composite modules are constructed from simpler entities. It

is especially important when hardware components are used

as the algorithms have to adjust to delays introduced by

pipelining, which is a technique regularly used to improve

the speed of hardware implementations.

There are many temporal logics aimed at tackling different

aspects of time in complex systems without introducing

time explicitly. In our limited experimentation we borrowed

a simple concept from Linear Temporal Logic – the operator

X (next).

In discrete time systems (as all sample-based systems are)

the operator X is a delay element. The X operation is not a

function as understood by functional languages because the

result of it doesn’t depend only on the current value of the

parameter. Instead, it actually returns the previous value of

the parameter. In other words, the X operator uses a side

effect – it returns the value remembered from the last time

the function was called in the particular context.

Since MetaSlang is a functional language it cannot

implement the X operator. That limitation however does not

prevent us from defining the X operator as an abstract

operation with some axioms. We might not be able to refine

specifications to the actual source code, but we could reason

about the operator itself in an abstract way.

LTL = spec

 import Samples

 op LTL.X: Sample -> Sample

 axiom X_ax1 is

 fa(a:Sample, b:Sample)

 LTL.X(Sample.add(a,b)) =

 Sample.add(LTL.X(a), LTL.X(b))

 axiom X_ax2 is

 fa(a:Sample, b:Sample)

 LTL.X(Sample.multiply(a,b)) =

 Sample.multiply(LTL.X(a), LTL.X(b))

endspec

Delay = spec

 import LTL

 op Delay.Func: Sample -> Sample

 def Delay.Func(y) = LTL.X(y)

endspec

Adder_1Delay = spec

 import Samples

 import LTL

 op Adder_1Delay.Func: Sample*Sample -> Sample

 def Adder_1Delay.Func(x,y) =

 LTL.X(Sample.add(x,y))

endspec

Multiplier_1Delay = spec

 import Samples

 import LTL

 op Multiplier_1Delay.Func: Sample*Sample->

Sample

 def Multiplier_1Delay.Func(x,y) =

 LTL.X(Sample.multiply(x,y))

endspec

MAC_2Delay = spec

 import Samples

 import LTL

 op MAC_2Delay.Func: Sample*Sample*Sample ->

Sample

 def MAC_2Delay.Func(x,y,z) = LTL.X(

 Sample.add(LTL.X(Sample.multiply(x,y)),

 LTL.X(z)))

endspec

MAC_2X = spec

 import Delay

 import MAC_2Delay

 import Multiplier_1Delay

 import Adder_1Delay

 import MAC_2Delay

 op MAC_2X.Func: Sample*Sample*Sample -> Sample

 def MAC_2X.Func(x,y,z) =

 Adder_1Delay.Func(

 Multiplier_1Delay.Func(x,y),

 Delay.Func(z))

 conjecture MAC_2X_conj is

 fa(x,y,z)

 MAC_2X.Func(x,y,z) =

 MAC_2Delay.Func(x,y,z)

endspec

MAC_2X_p0 = prove MAC_2X_conj in MAC_2X

 options "(use-resolution t)

 (use-paramodulation t)"

In the above example MAC_2X – a specification of

multiply-add unit that introduces a sample delay of two

steps - is created from the available components

Multiplier_1Delay, Adder_1Delay and Delay. This

specification has been proven to be equivalent to

MAC_2Delay expressed in terms of basic Sample operations

and the X operator.

6. CONCLUSIONS AND FUTURE WORK

In this paper we described the results of some experiments

in which we tried to apply certain elements of category

theory to the problem of Cognitive Radio interoperability.

We successfully demonstrated the feasibility of this

approach as we were able to overcome some shortcomings

of the structure-based approach we proposed previously.

The practicality of this approach is still however debatable

as it requires the use of a theorem prover, The available

theorem prover SNARK is limited to first-order logic, which

prevents the software specifications from using more

expressive language constructs. The use of Isabelle – a

higher order logic prover, experimentally introduced to the

latest version of Specware - has not been evaluated at this

point, but the experimental character of both Isabelle and its

support in Specware lead us to believe that this option

would probably also encounter significant problems.

The fact that MetaSlang is a functional language limited our

success with the application of temporal logic elements to

software component specification. We were unable to

produce source code for modules using the X operator. We

were able however to use its abstract definition and axioms

in proving the functional equivalence of module

specifications.

In our future work we plan to evaluate Accord, another

formal software development framework from Kestrel

Institute. Accord is an extension of Specware and it

introduces a concept of evolving specifications (e-specs).

Evolving specifications allow for the introduction of

behavioral elements (like states and their transitions) into

specifications of software modules.

7. REFERENCES

[1] L. Lechowicz, M. Kokar. Achieving Dynamic

Interoperability of Communication: Transfer of Ontology

and Rules Between Nodes. In Proceedings of the Software

Defined Radio Technical Conference SDR’06, 2006.

[2] Y. V. Srinivas, R. Jullig. SPECWARE: Formal Support

for Composing Software. Tech. Rep. KES.U.95.5, The

Kestrel Institute, Palo Alto, CA, 1995.

[3] D. Pavlovic, D. R. Smith. Software Development by

Refinement. In UNU/IIST 10th Anniversary Colloqium,

Formal Methods at the Crossroads: From Panaea to

Foundational Support. Springer-Verlag, 2003.

[4] Specware 4.2 Language Manual, Kestrel Development

Corporation, 2007

[5] Ference Marton and Shirley Booth. Learning &

Awareness. Hillsdale, N.J.: Lawrence Erlbaum Associates,

1997.

[6] CSCL (Computer Supported Collaborative Learning),

Pedagogical Information Science at the University of

Bergen, Norway. Avaialble at:

http://www.uib.no/People/sinia/CSCL/web_struktur-4.htm

[7] M.E.Stickel, R.J.Waldinger and V.K.Chaudhri. A Guide

to SNARK. www.ai.sri.com/snark/tutorial/tutorial.htm.

