
Mapping an Application to a Control

Architecture: Specification of the Problem

Mieczyslaw M. Kokar1, Kevin M. Passino2, Kenneth Baclawski1

, and Jeffrey E. Smith3

1 Northeastern University, Boston, Massachusetts, USA
kokar@coe.neu.edu

kenb@ccs.neu.edu
2 Ohio State University, Columbus, Ohio, USA,

passino@ee.eng.ohio-state.edu
3 Sanders, A Lockheed Company, Nashua, New Hampshire, USA

jeffrey.e.smith@lmco.com

Abstract. This paper deals with self-adapting software that is struc-
tured according to a control theory architecture. Such software contains,
in addition to its main function, two components - a Controller and a
Quality-of-Service module. We show an example of an application and
analyze the mapping of this application onto various control theory-based
architectures. The application is a radar-based target tracking system.
We show how architectural constraints are propagated through the map-
ping. We also analyze various architectural solutions with respect to sta-
bility and time complexity.

1 Introduction

Recently, it has been recognized that change in requirements over the life time of
a piece of software is inevitable. This recognition has resulted in the emergence of
such research areas as software architectures, software development frameworks,
self-adapting software [2, 4, 7], and others. One of the directions in this research
(cf. [3]) has been to follow the control metaphor in software development, i.e., to
treat the basic software functionality as a plant and then add some redundancy to
control this plant. The redundant software is called the controller. The controller
is designed to monitor changes in requirements, determine when the software is
not meeting those requirements, and make changes to the software (plant) to
make sure that it is continually updated so that the requirements are met.

There are various architectures known in the control community. If one wants
to follow the control paradigm of engineering software, one needs to know how
to map a specific problem onto one of the control architectures. In this paper we
consider an example software system and analyze various control architecture
realizations of this functionality. In this process, we show how to rationalize some
of the architectural decisions.

2

2 System and Problem Specification

As a case study we have chosen software that implements a resource scheduler
for a multiple target tracking domain. The goal of the system is to track multi-
ple targets, i.e., estimate their states (e.g., position, velocity), with satisfactory
precision, given the resources (in this case it is one radar). The task must be
performed within given time bounds. This kind of a problem has been captured
as the following metaphor:

Make resource allocation such that it is good enough and it is made soon
enough (cf. Broad Agency Announcement on Autonomous Negotiating
Teams, BAA-99-05, DARPA, November 1998).

In order to perform its task, the system must allocate resources so that a
measure of accuracy of tracking is high (“good enough”). This accuracy depends
on the time when the resource (the radar) is given to a specific target (revisit
time) and the length of the time interval that the radar is measuring that target
(dwell time). The tracking and the radar allocation functions must be computed
within the time constraints dictated by the revisit time of the radar. Moreover,
the time for switching the radar among the targets imposes additional constraints
on the system. This constitutes the “soon enough” constraint.

According to the approach we are using to specify the architecture, first,
we need to view the system in the environment. This is represented in Figure
1. In this figure, the radar measures targets and sends measurements to the
tracker, which in turn, controls the radar. The tracker interacts with the (human)
operator.

Tracker

Radar

Operator

Fig. 1. The Tracking System

3

2.1 Target Environment Model

The target environment in Figure 1 has N mobile targets (i.e., we assume that
the number of targets in the environment is fixed). Suppose that the dynamics
of the ith target is given by

xi(k + 1) = f i(xi(k), ui(k)) + Γwi(k) (1)
yi(k + 1) = gi(xi(k + 1), ui(k + 1)) + vi(k + 1) (2)

for i = 1, 2, . . . , N , where k is the time index and we assume that there is a
sampling period of T (hence x(k) represents x(kT), the state at time t = kT).
Here, xi ∈ �n is the state vector of the ith mobile target (e.g., its elements
typically contain position and velocity), ui ∈ �p is its input (e.g., a steering
command), and yi ∈ �m is the output (e.g., the output of the radar that senses
the position of target i). The nonlinear dynamics are specified via f i and gi.
These could be developed using first principles of physics to form a continuous
time model that is transformed (e.g., using Euler’s approximation) to the above
discrete time representation. The term wi(k) in Equation 1 represents “process
noise” and Γ describes how this noise is distributed to the states. Typically,
wi(k) is assumed to be zero mean white Gaussian noise with a fixed variance.
The “output channel” is given in Equation 2 and there is a “measurement noise”
vi(k+1) given there that represents the lack of accuracy of our sensor (e.g., the
inaccuracy of a radar to measure the position of a target). Typically, it is assumed
that vi is zero mean white Gaussian noise with a fixed variance and that vi and
wi are independent noise sequences. We assume this here also.

The model tells us certain important facts about the environment that impact
our ability to track targets. First, note that the number of outputs (measure-
ments) m is typically less than n which represents that we cannot measure the
full state of the ith mobile target. Moreover, even if we can measure a com-
ponent of the state of the target (e.g., position) the measurement is corrupted
by the noise vi, and the problem of estimating the state of the mobile target
(which would tell us its position, velocity, and perhaps acceleration) is further
complicated by the process noise wi.

2.2 Tracker Methods and Model

The typical approach to solve the state estimation problem is to use (extended)
Kalman filters, one for each of the N targets. In such an approach, the radar is
focused on one target at a time so that only one of the N Kalman filters updates
its estimate using a measurement, while the others continue estimating the state
using only prediction based on the model of the mobile target1. It is important
to note that, even with the complications mentioned above, the estimate x̂i(k)
of xi(k) that the Kalman filters produce can typically be made to be reasonably
reliable. It is for this reason that in this paper we will assume that
1 Assuming the measurement-to-track association problem is solved

4

x̂i(k) ≈ xi(k), k = 0, 1, 2, . . .

for i = 1, 2, . . . , N so that we can reliably estimate the state of each of the N
targets so we know where they are at. We also make this assumption since our
focus is not on Kalman filter development, but on the management of the radar
to track multiple targets, and in particular on software architectures for how to
structure the system that manages the radar.

Besides producing estimates of the state of the mobile targets, the Kalman
filters (or other processing algorithms) can provide a characterization of the
uncertainty in the estimate (e.g., via the covariance matrix of the innovations
process of the Kalman filter). To maintain our focus on the management of the
radar, rather than Kalman filtering, we model the uncertainty in the estimate of
the state vector of the ith mobile target (when the radar is not focused on the
ith target) with

θi(t) = pit (3)

so that we assume that the uncertainty in the state grows linearly with time
t ≥ 0. In discrete time we have θi(k) = pikT . Later, we will allow pi to evolve
dynamically over time so that the uncertainty in the estimate may be state
dependent. For now, we assume that pi, i = 1, 2, . . . , N , are known constants.
We think of pi as being the rate of uncertainty increase in the information we
have about the ith target.

2.3 Scheduler

The task of the scheduler is to manage (point) the radar so as to maintain as
much certainty about the locations of the mobile targets as possible. In the above
framework it points the radar by picking which of the N Kalman filters in the
tracker will be able to use a measurement update to produce its estimate (again,
assuming the measurement-to-track association problem is solved). Hence, if it
directs the radar at the ith mobile target, it is then directing it so as to reduce
uncertainty θi(t) in the estimate for the ith target. Normally, there is a “dwell
time” for the radar and, as it is focused on a target for a longer time, it gets
more accurate information about that target; however, this is constrained since
obtaining perfect information is not possible due to process and sensor noise
(and other characteristics). For now, assume that when a radar is focused on
the ith target, it reduces the uncertainty about its state estimate at a rate of
ri, i = 1, 2, . . . , N . Hence, pointing the radar at a target for only a very brief
time does not result in immediate gain of all possible information (up to the
measurement and process noise). Later, we will consider the case where the ri

are not constants, but evolve according to some dynamics.
To summarize how the scheduler interacts with the tracker, note that the

model of our process is now given by

5

θ1(t) = p1t

θ2(t) = p2t

...
θi∗(t) = pi∗t− ri∗t (4)

...
θN (t) = pN t

for the case where the radar is focused on target i∗ so that it is reducing the
uncertainty associated with the estimate of that target’s location. It is the task
of the scheduler to select i∗ at each time instant. Inspecting Equation 4 it is
clear that the task of the scheduler is to try to maintain bounded values for the
θi, i.e., it wants

N∑

i=1

|θi(t)| ≤ B (5)

for all i = 1, 2, . . . , N for as small of a value of the bound B as possible
(since low values of B provide a characterization of high certainty about the
information about the entire target environment).

The scheduling problem is complicated by the fact that the radar can only
be switched from focusing on one target to another in a finite time so that there
is a “delay” δi,j in switching from the ith target to the jth target. Clearly, during
this delay time the radar is useless and the uncertainties for all the targets goes
up. Hence, if the policy for the scheduler switches too often, then it wastes all
its time performing the switching. However, if it does not switch often enough,
some uncertainty will rise too high. In such a case, during the period of time
δi,j , for all i

θi(t) = pit (6)

There are certain properties of the underlying scheduling problem that are
independent of how we specify the scheduler. For instance, there is the concept
of the “capacity” of the radar resource. Mathematically, we will not be able to
achieve boundedness for Equation 4 if we do not have

N∑

i=1

pi

ri
< 1 (7)

Additionally, the radar cannot be pointing to more than one direction (tar-
get) at a time. Also, the amount of time the radar is pointing to the various
targets cannot exceed the time period of one radar sweep, Tr. To express this
constraint we need to introduce the variables describing the dwell times for par-
ticular targets, τi. The constraint then is

6

N∑

i=1

τi ≤ Tr (8)

We will refer to these two inequalities as the “capacity conditions” for the
radar resource. It characterizes a necessary condition to be able to achieve bound-
edness, no matter what scheduling policy we choose.

3 Architectures

This problem can be mapped to various architectures:

1. Centralized One-Module architecture (where one function collects inputs
about all the targets and makes radar scheduling decisions as well as com-
putes estimates),

2. Centralized Two-Module (where there are two functions, one for tracking
and one for radar scheduling),

3. Decentralized (n functions are allocated to track targets - one function per
target - based on the radar measurements, and one function is allocated to
schedule the radar)

4. Others, e.g., Decentralized Negotiation (where each of the targets is repre-
sented by an agent whose responsibility is to negotiate (with the radar agent)
for the radar resource).

The criteria that can guide the architecture selection process are:

1. Overall performance of the system (in this case the level of uncertainty about
the states of the targets),

2. Computational complexity (time performance of the system),
3. Controllability (is the goal of the system achievable given the decomposition

of the functionality?)
4. Observability (is the state of the system computable given a finite sequence

of outputs?)
5. Stability (can the system be organized so that orderly behavior will result?)
6. Scalability (can the system be easily adapted to handle larger amounts of

input?)
7. Versatility (includes modularity; relevant for adaptability, i.e., for the abil-

ity to adjust to changing situations, e.g., changing number of targets, or
changing target dynamics)

In this paper we are focusing only on the issues of stability and computational
complexity.

7

3.1 Stability

A system (e.g., Equation 4) is said to be “stable in the sense of Lagrange” [6]
if for every initial condition (e.g., in Equation 4 the θi(0)) such that the initial
condition lies within a certain bound (e.g.,

∑N
i=1 θi(0) ≤ α) there exists a bound

B such that Equation 5 is satisfied (note that B may depend on α). Clearly,
stability in the sense of Lagrange is simply a type of boundedness property.
Typically, in practical applications, we would like B to be as small as possible.

Lagrange stability only says that there exists a bound for the uncertainty tra-
jectories. A slightly stronger stability condition is that of uniform ultimate bound-
edness (UUB), where for every initial condition the trajectories are bounded, and
as time goes to infinity, they will all approach a B-neighborhood of the origin
where we know the bound B (e.g., it typically depends on the parameters of the
problem - in this case the rates pi and ri.

Note that if the scheduler has chosen a specific i∗ for a long enough time it
may be possible to reduce θi∗ to near zero. When this happens it normally does
not make sense to keep the radar focused on that target (however, if it is a very
high priority target then we may want to maintain as much information about
it as possible). It is clear that to be able to achieve boundedness, the scheduler
cannot ignore any one target for too long (i.e., the “revisit time” for any one
target cannot be too long) or its corresponding uncertainty will rise to a high
value.

3.2 Complexity

While there are many concepts of computational complexity, the focus of this
paper is on time complexity as a function of the number N of targets during
a single sampling period. This corresponds to the “soon enough” requirement
discussed in Section 2.

In the rest of the paper, we first describe what we mean by “architecture.”
Then we outline the mapping of our problem to a number of control-based
architectures. Finally, we discuss the issues of complexity and stability associated
with some of these architectures.

4 What is “architecture”?

The term “architecture” is often used to represent various meanings - from the
specification of a structure of the system to be built, through the design of
the system, to the global properties of a system. We follow the definition used
by the IEEE Working Group on the IEEE P1471 standard [1, 5]. According to
this conceptualization, architecture is defined by an architectural description.
An architectural description must conform to a number of requirements, e.g., it
must identify the stakeholders and their concerns. An architectural description
consists of a number of views developed according to viewpoints. The IEEE P1471
does not specify any specific views, leaving it up to the architect. But it requires

8

that if there are multiple views, they must identify inter-view consistency, i.e., it
has to identify consistency constraints and, possibly, any inconsistencies, if they
exist. Concerns are specified in models. Models can use various representation
languages.

In this paper we focus on two views: user’s view and structural view. The
user’s view captures the requirements on the external interactions between the
system under development and its environment. Among others, it captures the
user’s concern, which in this particular case is the accuracy (“good enough”)
and the timeliness (“soon enough”) of the tracking function. The structural
view should include at least three parts: components, relations and consistency
constraints. Accordingly, to map a specific solution to a control architecture, we
need to define these three parts.

4.1 System Architecture

First, we specify the architecture of a tracking system without a control loop.
Such a system does not have any built-in mechanisms for compensating for
disturbances.

We specify this architecture as consisting of three components - the tracker,
the radar and the operator, with relations as shown in Figure 1. The constraint
is that the tracker knows the states of the targets “good enough”, as specified
by Equation 5. To specify that the tracker knows the states of the targets “soon
enough”, we must introduce one more variable, Tc, representing the computation
time of the algorithm (i.e., the time needed to perform both the computation
of the state estimates and the schedule) and the time to switch the radar from
one target to another. In the rest of the paper we do not take into consideration
the radar switch time, i.e., we assume that δi,j = 0. The constraint is then
represented by the inequality

Tc < Tr (9)

It states that the length of the computation is bounded by the radar sweep
period Tr. Note that this constraint makes a direct connection to the complexity
of the computation. Two more constraints that participate in the specification
of this architecture are given by Equations 7 and 8.

4.2 Feedback Based Control Architecture

The Closed Loop (Feedback) Model presented in [3] is shown in Figure 2. We
present this architecture here simply to show that, in the following subsections,
we will be using this structure as a recurring pattern for various architectural
solutions.

9

Controller Plant QoS
QoS

Goal

Inputs from Environment

Fig. 2. Conventional Feedback Control Architecture

5 Mapping to Feedback Control Architectures

5.1 One-Module Feedback Based Control Architecture for Tracker

The resulting control-based architecture would include the plant, consisting of
two main functions (track and schedule), the QoS module, the controller and
the feedback loop, as shown in Figure 3. We have already discussed the track,
schedule and QoS functions. The controller for this system would be useful when
the parameters pi, ri are unknown and thus need to be estimated. Using the
control paradigm we would then estimate these parameters incrementally with
the amount of increment in each iteration controlled by the controller module.

The Goal (also called set point in the control literature) is expressed here as
a value of the constant B (see Equation 5). The constraints are:

QoS = Θ ≤ B (10)

Tc =
3∑

s=1

Ts ≤ Tr (11)

where s enumerates computational modules. Equation 11 states the “soon
enough” constraint, i.e., that the computation time for all the three modules
does not add up to more than the allowed time bound Tr.

5.2 Two-Module Architecture

The basic system architecture, as specified above, involves two functions, track
and schedule, both being part of the same plant. This mapping is not natural

10

Controller
Track

Schedule QoS
QoS

Goal

Radar

Fig. 3. One-Module Tracker Control Architecture

from the point of view of control theory. In control theory, the plant is considered
as a black box that takes inputs and generates outputs. In other words, the plant
should be represented by only one function. In order to satisfy this requirement,
the plant would need to be split into two, one for track and one for schedule, as
shown if Figure 4.

The control-based architecture would add two controllers, one for each of the
two modules, as shown in Figure 5. In general, it also might add two Goals and
two QoS modules. In other words, the overall goal might need to be decomposed.
However, for this particular case, we use the same goal, i.e., the goal is still
to reduce the uncertainty of the state of the tracked objects. Consequently,
we also use the same QoS as feedback. The “good enough” constraint would
need to bound the computation of all five modules by the allowed time Tc. The
constraints are:

QoS = Θ ≤ B (12)

Tc =
5∑

s=1

Ts ≤ Tr (13)

Equation 12 represents the “good enough” constraint and 13 represents the
“soon enough” constraint.

5.3 Decentralized Architecture

Instead of having one function to track all the targets, we can have a copy of the
tracking function instantiated for each target. The system architecture is shown

11

Radar

Track Schedule

Fig. 4. First Decomposition of Tracker

Schedule

Radar

Track

Schedule
Controller

Track
Controller

Track
QoS

Track
Goal

Fig. 5. Control Architecture for the First Decomposition

12

in Figure 6. This architecture can be mapped onto the control architecture by
adding a controller, a QoS module and a feedback loop for each of the trackers
and for the scheduler. Additionally, we would need to define Goal for both the
schedule controller and for each of the tracker’s controllers. One possibility is to
define bounds Bi on the QoS of each tracker and use them as goals. The goal of
the scheduler though must account for all targets. We can use the global bound
B in Equation 5 for this purpose. This means that we would need a QoS module
to implement this equation. We do not show a drawing of such an architecture
since such a figure would be too complicated.

Schedule

Radar

Trackn

Track1

Fig. 6. Decentralized System Architecture

The constraints for this architecture are stated below.

QoSi = Θi ≤ Bi, i = 1, . . . , n (14)

Tc =
3(n+1)∑

s=1

Ts ≤ Tr (15)

Additionally, Equation 5 defines the global constraint on the QoS of the
scheduler.

13

6 Comparing Various Architectures

6.1 Stability

Stability is a binary concept; a system can be either stable or not. Typically, we
are interested in designs of systems that guarantee stability. Moreover, we may
design a system in such a way that it operates in a region that is bounded by a
“safety zone” from an unstable behavior. We made such an assumption in the
problem specification (see Equation 5). Moreover, we assumed that the problem
specification constraints should be preserved in the target control theory based
architectures. This assumption is represented as a mapping rule

refined constraints =⇒ problem constraints (16)

Following this rule, we performed the mapping of the problem onto various
control theory based architectures so that the resulting architectures guarantee
stability.

As a consequence of this assumption, the stability constraint is not a discrim-
inant characteristic that could be used for comparing the architectures. However,
when performing this mapping, we realized that we can satisfy the stability con-
straint in many different ways. In other words, we could use different types of
constraints (Equations 10 through 15), all of which would satisfy the rule given
by Equation 16.

The architectural constraints, however, induce a different classification. Note
that they constrain the algorithms with respect to both the accuracy of track-
ing and the time of computation. For instance, in the one-module architecture
(where there is no explicit partition between tracking and scheduling), the system
designer has a lot of flexibility in how to satisfy the “soon enough” architectural
constraint. The designer is (theoretically) free to choose either a shorter compu-
tation for tracking or for scheduling, as long as their sum does not exceed Tr. Or
the designer may choose an algorithm that would make a decision on where to
spend more time (in tracking or scheduling) at run time, as long as the overall
computation time is within the required limits. In the two-module architecture,
on the other hand, since the architectural constraints are fixed for each of the
modules by the architect, the designer is more constrained in the design choices.

Similarly, for the “good enough” constraint, the one-module control based
architecture requires the satisfaction of the accuracy constraint by one module.
In the two-module architecture, on the other hand, both tracking subsystem
and the scheduling subsystem must satisfy the same constraint, and thus the
designer has less flexibility in the solution space. The distributed architecture
imposes n constraints, i.e., one for each target. This architecture is thus even less
flexible from this point of view. Trade-offs between time spent on computation
for particular targets must be made under any architecture, however in the one-
module architecture the trade-off may be made at the design or the run time,
while in the distributed architecture (at least in the approach described in this
paper) the trade-off is made at the architecture design time.

14

6.2 Complexity

The computational tasks involve tracking, scheduling, QoS and control. The
complexity of the computation depends on many parameters, such as the precise
algorithms used for control and tracking. In this discussion, we focus on the how
the complexity increases as the number of targets (N) increases, i.e., how he
system scales up.

Consider first the simplest control architecture in which there is just one QoS
module and one control module. The QoS and control functions are performed
independently for each target, so the time complexity of these tasks are both
O(N). Furthermore, this independence property implies that one can perform
these two computational tasks on a distributed system. In particular, if there
are Ω(N) processors available, then the time complexity of these two tasks can
be reduced to O(1).

The tracking function uses a processing algorithm such as a Kalman filter, as
noted in Section 2.2, for each target. Unlike the QoS and control functions, the
targets are not necessarily independent. When two targets visually coincide or
nearly coincide, it is necessary to disambiguate the two signals. Except for this
situation, the time complexity of tracking is O(N). If n targets nearly coincide
with one another, the time complexity of disambiguation is O(n2) for these n
targets. Under mild assumptions, such as no more than

√
N targets may come

close to coinciding, the time complexity of tracking remains O(N). As with the
QoS and control functions, the basic tracking computation may be distributed.
In addition, groups of nearly coincident targets need to be disambiguated, which
can also be distributed as long as different groups are not too close.

The last function to consider is the scheduling function. This function is re-
sponsible for allocating the radar resource to the targets. Scheduling involves
interactions between targets so it cannot be done for each target in parallel. Al-
though resource allocation problems are typically NP-complete, the assumptions
embodied in Equation 4 and the assumption that δi,j are all equal to 0 imply
that this particular resource allocation problem is tractable.

The simplest scheduling algorithm is the one that simply chooses the target
with the largest uncertainty, with the dwell time equal to the maximum period
of time during which it is possible to reduce the uncertainty for this target.
This function can be performed by computing a maximum. The time complex-
ity for this computation is O(N). Unlike the other functions, this computation
cannot be performed in time O(1) on a distributed system. By decomposing
the computation hierarchically, it can be performed in time O(log(N)) by Ω(N)
processors.

Taken together, the total time complexity is O(N) on a single processor, and
the total time complexity is O(log(N)) on Ω(N) processors. This is the time
complexity to compute a single dwell on a single target. For this to be “soon
enough”, it must not exceed the current dwell time.

More complex scheduling algorithms perform some amount of advance plan-
ning to improve performance. This is especially important when the δi,j are not
zero. The simple scheduling algorithm above will still work when δi,j is nonzero,

15

and one can bound its performance. However, the simple scheduling algorithm is
not optimal. In fact, computing the optimum is equivalent to the traveling sales-
man problem, so it is an NP-complete problem. Nevertheless, small amounts of
planning can improve performance without requiring exponential time complex-
ity.

Advance planning takes place during a longer period of time than a single
dwell, and it can be as large as the radar sweep time, Tr. In this case, the total
complexity Tc must not exceed Tr (Equation 9). Using the simple scheduling
algorithm above, the time complexity of scheduling for a radar sweep is O(N2)
on a single processor, and O(N log(N)) when distributed on Ω(N) processors.
Therefore, the “soon enough” constraint for this algorithm is that the time com-
plexity not exceed Tr.

7 Conclusions

In this paper we discussed the problem of mapping an application to a control
theory-based architecture. The mapping process consisted of two main steps -
first, developing a basic architecture of the system without any control loop,
and then mapping such an architecture to a control-based architecture. The
mapping involves adding a controller and a QoS module to each component of
the basic architecture, specification of control goals for each of the controllers,
and specification of constraints.

As our case study we have chosen one kind of control theory-based architec-
ture – the feedback control architecture. We considered three basic architectures:
one-module, two-module, and distributed (n+ 1-module).

Often the selection of an architecture is considered as a selection of the struc-
ture of the system, i.e., showing a data flow diagram of the system. Clearly, as
is shown in this paper, this is not sufficient. The mapping must also include the
propagation of the constraints from the basic system to the control theory-based
system. This step may be achieved in many different ways. The requirement
that we followed in our process was that the satisfaction of the constraints in
the control-based system must imply the satisfaction of the system level ar-
chitectural constraints. It seems natural that the architect should try not to
overconstrain the system since such a system would have a narrower domain
of applicability (less versatility). Also, the selection of the constraints impacts
the complexity of the algorithms that need to be used to implement a given
architecture. It is the architect’s job to define the constraints wisely so that the
impacts are balanced.

In this paper we focused only on two kinds of criteria by which one can
compare various architectural solutions: stability and complexity. We formulated
constraints in such a way as to guarantee the stability of each of the systems.
Therefore, the comparison of architectures by the stability measure does not
classify the systems into stable and unstable, since all of them are stable, but
into more constrained and less constrained.

16

Acknowledgments

This research was partially supported by a grant from the Defense Advanced
Research Projects Agency.

References

1. R. Hilliard. Using UML for architectural description. Lecture Notes in Computer
Science: Proceedings of UML’99, pages –, 1999.

2. G. Karsai and J. Sztipanovits. A model-based approch to self-adaptive software.
IEEE Intelligent Systems, May/June 1999:46–53, 1999.

3. M. M. Kokar, K. Baclawski, and Y. Eracar. Control theory-based foundations of
self-controlling software. IEEE Intelligent Systems, May/June 1999:37–45, 1999.

4. R. Laddaga. Creating robust software through self-adaptation. IEEE Intelligent
Systems, May/June 1999:26–29, 1999.

5. Institute of Electrical and Electronics Engineers. Draft recommended practice for
architectural description: Ieee p1471/d5.2. Piscataway, NJ, December 1999.

6. K. M. Passino and K. L. Burgess. Stability Analysis of Discrete Event Systems.
John Wiley, 1998.

7. P. Robertson and J. M. Brady. Adaptive image analysis for aerial surveillance. IEEE
Intelligent Systems, May/June 1999:30–36, 1999.

