
Lung Sound Recognition Using Model-Theory BasedFeature Selection and FusionZbigniew Korona and Mieczyslaw M. KokarDepartment of Electrical and Computer EngineeringNortheastern University360 Huntington AvenueBoston, MA 02115AbstractIn this paper we describe the application of a new automatic signal recognitionmethodology to the recognition of lung sounds. Two main features of this method-ology are: the use of symbolic knowledge about the signal sources (in addition tosensory inputs), and fusion of multisensor information. We show steps involved inthe design of an automatic multisensor recognition algorithm that extracts sym-bolic features and utilizes symbolic knowledge for recognition. We also compare theperformance of the resulting algorithm with both a single-sensor system and witha system that selects features using an entropy-based criterion. To evaluate themethodology we used both normal lung sounds (bronchial and vesicular) as well asadventitious sounds (rhonchi, wheezes and crackles). Our experiments show thatthe recognition accuracy can be improved through the use of symbolic knowledgeabout the signals, and that our methodology is feasible for this type of application.Keywords: lung sounds, recognition, sensor fusion, formal methods, wavelets
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1 IntroductionA stethoscope is one of the simplest basic diagnostic tools of a physician for assessingthe health of a respiratory system [40]. Although not everyone agrees as to what extenta stethoscope should be used and relied upon, the sounds radiated by diseased lungs areregarded by most clinicians as information of important diagnostic value. While eventhe most accurate lung sound analysis and recognition system alone is not su�cient fora successful diagnosis of lung diseases, a stethoscope can be a major component of adiagnostic system.Although a stethoscope is convenient to use, it is subject to interference from exter-nal noise. The proper diagnosis also requires signi�cant training and experience of themedical personnel. Thus, the stethoscope may be unreliable in noisy environments suchas an ambulance, a busy emergency room, or a medical assistance airplane [32].Diagnosis of lung diseases based on lung sounds is a complex task. One of the reasonsis that many particular lung sounds (e.g. crackles, wheezes) occur in many types ofdiseases and some occur in both healthy and diseased lungs (e.g. bronchial). The otherreason is that many features of lung sounds depend on various characteristics of thepatient, such as weight, age, sex and physical condition, as well as on the environment,such as humidity, temperature, and time of day. The di�culty of correct diagnosisincreases with the increase in the level of noise. Therefore, it is important to develop anautomatic diagnostic system which would assist the physician in decision making. Sucha system would practically emulate a diagnostician who is relieved from stress, tiredness,and other harsh conditions.The automatic signal recognition process usually consists of acquiring signals origi-nating from a source through one or more sensors, and then classifying these signals basedupon some prior knowledge. The prior knowledge may include probabilities of occurrenceof particular classes of signals, features of signals, or relations among the features. Theclassi�cation decision rule can be implemented as a statistical classi�er, a decision tree,a neural network, or using some other classi�cation approach.It is not feasible to perform signal recognition based upon raw sensor signals. Instead,an abstraction of a sensor signal must be created �rst, and then classi�cation can be per-formed on the abstracted features. Some of the main questions of this abstraction processare: what are the \right" features, how to extract these features in a computationallye�cient way, and how to construct a recognition rule based upon these features?Robustness of an automatic recognition system can be improved by using more sen-sors that provide complementary or redundant information [22, 38]. In such a case,information from multiple sensors needs to be combined into one representation; thisprocess is called sensor data fusion. In recent years, sensor data fusion has been a veryactive research �eld (cf. [2, 16, 17, 25, 37].) In spite of many attempts reported in theliterature, there is still a lack of a uni�ed methodology for developing fusion systems [24].Our approach to fusion is presented in Sections 5.2 and 6.4.2



Both single and multisensor recognition algorithms could perform better if they wereable to incorporate more prior knowledge, and use it to select the right features. Inmost cases, the prior knowledge is either in the form of probabilities or heuristics. Inmany cases, symbolic knowledge about the sources and about the scenarios exists; thisknowledge could be incorporated into the recognition process and then used to reasonabout sources, their features and scenarios. To achieve this goal, symbolic features need tobe extracted from signals, and symbolic knowledge needs to be represented in a structurethat guarantees sound reasoning. Theorem provers (cf. [39, 35, 34]) guarantee soundreasoning; they could be used for recognition, at least in the design of recognition systems.Unfortunately, while there are many algorithms for extracting quantitative features, thereis a lack of a methodology for extracting symbolic features, as well as a lack of librariesof symbolic knowledge that could be used in such a reasoning process.In this paper we present a methodology for model-based feature selection and fusionfor multisensor recognition, and show the results of the application of this methodology tolung sound recognition. First, we describe our design of a lung sound recognition system.Then we compare the resulting system with both a single-sensor system and with asystem that selects features using an entropy-based feature selection method describedin [31].We begin with a brief overview of the lung sound recognition problem (Section 2). InSection 3 we describe the scenario for our study. Then, in Section 4, we give an outlineof the entropy-based feature selection method [31]. In Section 5 we briey describe ourmethodology and an Automatic Multisensor Feature-based Recognition System (AM-FRS). In Section 6 we describe the steps of our methodology as applied to the design ofan AMFRS for this speci�c scenario. In Section 7 we show the performance results ofour system and compare them to a single-sensor system and to a multisensor system thatuses an entropy-based measure for feature selection. Finally, in Section 8 we present ourconclusions and directions for future research.2 Lung Sound Recognition: Background2.1 Lung SoundsIn this section we show examples of lung sounds and common lung diseases in whichthese sounds are present.Lung sounds, that can be heard through a stethoscope, can be classi�ed into twogroups [6]: normal breathing sounds that occur when no respiratory problems exist andadventitious (abnormal) sounds when a problem exists. The normal breath sounds areboth inspiratory and expiratory. They occur when the air moves in and out of the chestduring a regular breathing cycle. The normal sounds are classi�ed according to thecharacter of the sound and the location where this sound is heard. The amplitude andfrequency of these sounds can vary from location to location and from person to person.3



Disease Description Lung soundsAtelectasis Collapse of lung tissue. Caused by bronchial,shallow breathing (avoiding pain). �ne cracklesPneumonia Inammation of the air cells. �ne cracklesSounds may be detected two days beforeX-ray detection.Upper airway Obstruction of larynx or trachea by stridorobstruction foreign body, or diseased upper airways.Chronic bronchitis Inammation of the bronchial tubes. rhonchi, coarsecracklesBronchial asthma Spasm and constriction of bronchial wheezespassages.Table 1: Examples of diseases and corresponding lung soundsThere are two important types of normal respiratory sounds: bronchial and vesicular.Abnormal sounds are those sounds that occur unexpectedly during a regular breath-ing cycle. They include normal sounds, when they appear at atypical locations, andadventitious sounds. For example, sounds of a bronchial or bronchovesicular nature areconsidered to be abnormal if they appear in locations where vesicular sounds should beheard. Considerable variability in the character of lung sounds among di�erent individu-als makes it sometimes di�cult to be sure of the \abnormality" of a sound. There are twomajor types of adventitious sounds: continuous and discontinuous. Among continuousadventitious sounds, the most well known are rhonchi, wheezes and stridor. Wheezesare continuous sounds, longer than 250msec, high pitched, with dominant frequency of400Hz or more (a hissing sound). Rhonchi are also longer than 250msec in duration, lowpitched, with dominant frequency of 200Hz or less (a snoring sound). Stridor is similarto wheezes. Both are high-pitched, but stridor can often be distinguished by its tendencyto be accentuated in inspiration.The most commondiscontinuous adventitious sounds are crackles and squawks. Crack-les are discrete, nonmusical sounds, usually shorter than 10msec. They are a sequence ofshort interrupted sounds with a wide spectrum of frequencies, between 200 and 2000 Hz.The characteristics, number and timing of crackles vary in di�erent diseases [21]. Finecrackles are characterized by the initial deection width of 0.9ms and two cycle durationof 6ms, while these characteristics for coarse crackles are 1.25ms and 9.5ms, respectively.Squawks are a combination of wheezes and crackles; they may start with �ne cracklesand then sound like short inspiratory wheezes.The sounds of diseased lungs are regarded by most of clinicians as having a relativelyhigh diagnostic value. In Table 1 we list a number of examples [26, 6] of acute and chroniclung diseases and associated lung sounds. 4



2.2 Lung Sound Analysis and Recognition MethodsOver past �fteen years, much research has been carried on microcomputer-based respira-tory and cardiac sound analysis systems. However, while cardiac sound analysis systemsare already commercially available and used in clinical practice to detect such anomaliesas malfunctioning heart valves [10], similar respiratory sound analysis systems are notwidely used. Lung sounds are highly nonstationary stochastic signals due to changing airow rate and lung volumes during a respiration cycle. This makes the analysis of lungsounds di�cult.There have been many di�erent attempts to analyze lung sounds in the frequency do-main and fewer to analyze them in the time domain. Frequency domain analysis has beenusually performed using the fast Fourier transform (FFT). However, no standard FFTroutine has been applied. The FFT's used have di�ered in sample frequency, the numberof FFT points and the window function [3, 27, 28, 30]. The simple spectrum-describingfeatures have been derived from the FFT analysis [12, 28]. Examples of such features are:the frequency of maximum power, the mean frequency of power spectrum, and the max-imum frequency of the signal. These features were tested using simple statistical testssuch as paired t-tests [27]. There were few attempts to use FFT components directly asfeatures. The principal component analysis was used to deal with a huge number of suchfeatures [3, 36]. Much research was also devoted to the autoregressive (AR) modeling oflung sounds [33]. The �rst such attempt is described in [6], where power spectral densityis estimated by means of linear prediction.Although most of the lung sound recognition research was performed in the frequencydomain, some work was also done in the time domain. In [4] asthmatic wheezing wascategorized by the time spent wheezing divided by respiratory cycle duration. In [18]time-domain analysis of tracheal sounds has been applied to apnoea detection.The standard frequency analysis, such as the FFT or autoregression spectral esti-mation techniques, do not provide insight into the timing of the appearance and disap-pearance of various frequency components [11]. For example, fast transient signals likecrackles, occurring either at �xed or random times in the breathing cycle, are not easilydetected in the frequency domain. On the other hand, by analyzing signals in the timedomain, important frequency information is lost. Therefore, there is a need for time-frequency tools which enable the analysis of lung signals both in the time and frequencydomains.In the last several years, the wavelet transform started to be used as a tool for time-frequency analysis and recognition of lung sounds [1, 13, 15]. The transient and randomnature of lung sounds [29] make them especially suitable for the wavelet processing.Decomposition of a nonstationary lung signal into several frequency channels allows toperform signal analysis on separate resolution levels. By doing this the amount of non-stationarity is reduced. In [1], the Malvar's wavelet transform is used to perform asegmentation of infant's lung sounds. In [13], a wavelet-based crackle detector is pro-posed. This detector applies nonlinear operators to the frequency channels carrying the5



most information in order to increase the signal-to-noise ratio (SNR). Then, AR param-eters are extracted from each frequency channel and used to make a recognition decision.The AR modeling approach assumes that a system formed by lungs and the chest wallcan be modeled as an all-pole �lter. The limitations of the AR modeling are discussedin [20, 14]. In [14], higher-order statistics was used for autoregressive modeling of lungsounds. The main advantage of the higher-order statistics component was robustness tosymmetric noise. The use of the wavelet transform to the separation of discontinuousadventitious lung sounds from vesicular sounds was reported in [15]. The main thrustin [15] was to distinguish \explosive peaks" associated with crackles and squawks fromnoise, that can be associated with any signal.While in this paper we also use the wavelet transform, our approach is signi�cantlydi�erent from all the approaches discussed above. The main di�erence is that we assumethat we have some symbolic description of particular types of lung sounds. Consequently,our approach is both data and knowledge driven, while all the approaches discussed aboveare essentially data driven.3 Lung Sound Recognition ScenarioIn our lung sound recognition experiments, we used a tape recording of various lungsounds, from various patients, prepared and described by L. H. Murphy from PulmonaryService Lemuel Shattuck and Faulkner Hospitals [26]. The characteristics of the patients,such as sex, age, weight, or any special conditions, were not known.Since the goal was to evaluate our approach to the recognition of lung sounds, wecreated two types of data: one collection of sounds to serve as a reference data set(examples, or signatures) and another collection to serve as a test data set. Additionally,since one of our goals was to show an improvement in the robustness of recognition dueto fusion, we generated two data sets of signatures. The main idea of fusion is to combineinformation from multiple sensors. Fusion is needed even when the same sensor is usedmultiple times (e.g., in auscultation, the same stethoscope is used to acquire lung soundsat di�erent spots of the patient's chest). In our scenario, we simulated such a situation bycreating two data sets of signatures, DLr and DLi, by picking di�erent breathing cyclesfor the two data sets. We refer to these data sets as reference databases for Sensorr andSensori.DLr and DLi contained four types of lung sounds, one normal sound, bronchial, andthree adventitious sounds: �ne crackles, rhonchi and wheezes. Each signature coveredone breathing cycle. Figure 1 shows �ve examples of lung sound signatures for each ofthe four classes of lung sounds in DLr.Additionally, we created two test database, one for Sensorr and one for Sensori. Theywere generated by �rst picking speci�c signals (breathing cycles) from the tape and thenadding noise to the signals. For each class of signals we selected �ve signals (di�erentthan the signals selected for the reference databases) and then added zero-mean Gaussian6
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wheezesFigure 1: Five Signatures for Each of the Four Classes of Lung Sounds inDLr (normalizedamplitude vs. time [msec])noise on eleven levels of standard deviation (see Section 7).4 Entropy-Based Feature SelectionIn this section we describe entropy-based feature selection. We use this method to selectan initial set of features.A signal s(n) can be represented on various decomposition levels j = 1; 2; : : :, asdescribed below. For a given signal sj(n), at the decomposition level j, a lower resolutionlow frequency signal sj+1(n) and a lower resolution high frequency signal wj+1(n) arederived by using a lowpass �lter with an impulse response h(n), and a highpass �lterwith an impulse response g(n), respectively, and subsampling the output of the low pass�lter by two: sj+1(n) =Xm h(2n �m)sj(m); (1)wj+1(n) =Xm g(2n �m)sj(m): (2)If the �lters h(n) and g(n) meet the regularity and the orthonormality constraints [8], the7



original signal sj(n) can be reconstructed from the two lower resolution signals sj+1(n)and wj+1(n). In such a case, Eqs. 1 and 2 can be considered as a decomposition of thesignal onto an orthonormal basis fgm; hmg, m 2 Z, where particular elements of thesequences sj+1(n) and wj+1(n) are coe�cients associated with particular basis functions.The coe�cients wj(n) are called wavelet coe�cients. In the Discrete Wavelet PacketDecomposition (DWPD) scheme [7, 19], outputs of both �lters are further decomposedinto low and high frequency signals. Consider signals s(n) 2 RN , where N = 2J , J 2 Z.Such signals can be decomposed into decomposition levels j = 0; 1; : : : ; J . Denote theoriginal signal as w0b=0(n) 2 RN , where b indexes frequency bands. The discrete waveletpacket decomposition then can be represented by the following two equations:wj+12b (n) =Xm h(2n �m)wjb(m); (3)wj+12b+1(n) =Xm g(2n �m)wjb(m); (4)where b = 0; : : : ; 2j � 1 for every decomposition level j.Discrete Wavelet Packet Decomposition (DWPD) can be viewed as recursive decom-position of a vector space into two mutually orthogonal subspaces. Therefore, the originalsignal s(n) is represented by the coe�cients in the two subbases at level 1, in four sub-bases at level 2, and so on. The two subbases for the frequency bands 2b and 2b + 1 atlevel j + 1 represent the same vector subspace as one base in the frequency band b atlevel j. Therefore the related bases at consecutive levels are not independent. In thisway, the DWPD scheme generates a number of dependent subbases out of which a basefor the whole space can be chosen in many di�erent ways.Best Discriminant Basis Algorithm (BDBA) [7] selects a complete orthonormal basisthat is \best" for representing a signal with respect to some \information cost" measure,e.g., the Shannon entropy of the coordinate vector. To �nd a basis in which a class ofsignatures is best discriminated from all other classes of signatures in terms of \statisticaldistance" among classes, a measure based on the relative entropy can be used [31]. Forany two nonnegative sequences s1 and s2 with P s1(n) = P s2(n) = 1, such a measure isrepresented as: I(s1; s2) = NXn=1 s1(n) log(s1(n)=s2(n)); (5)where N is the number of elements in each sequence. The relative entropy measures howmuch the distributions of s1 and s2 di�er. For two equal sequences the relative entropy iszero, for di�erent sequences it is greater than zero. The symmetric version of the relativeentropy is de�ned as D(s1; s2) = I(s1; s2) + I(s2; s1): (6)In the case of multiple sequences j = 1; � � � ;K, the relative entropy is de�ned as the sumof all pairwise combinations of sequencesD(s1; : : : ; sK) = K�1Xm=1 KXn=m+1D(sm; sn): (7)8



In order to measure the discriminant power of a signature database, �rst a time-frequency energy map Ek(j; b; n) is computed for each class k of signatures in the database[31], Ek(j; b; n) = PNks=1 (Ws(j; b; n))2PNks=1 k Ws(:; :; :) k2 ; (8)k Ws(:; :; :) k= sXj Xb Xn (Ws(j; b; n))2 (9)where Ws(j; b; n) is a complete wavelet packet decomposition matrix of wavelet coe�-cients of a signature s, j is the decomposition level, b is the frequency band, and n is thesample number. The subsets (sequences) Ek(j; b; :) of this matrix are used for computingthe values of the relative entropy measure D(s1; : : : ; sK).The BDBA algorithm [31, 7] starts with the highest level of decomposition, i.e., withthe leaves of the tree. It then prunes the tree by replacing two frequency bands 2b and2b+ 1 at the level j + 1 with one frequency band b at level j, whenever this substitutiongives more discriminant power to the representation, as measured by the discriminantmeasure D, i.e., whenever D(E1(j; b; :); : : : ; ENk(j; b; :)) �D(E1(j + 1; 2b; :); : : : ; ENk(j + 1; 2b; :)) +D(E1(j + 1; 2b+ 1; :); : : : ; ENk (j + 1; 2b+ 1; :)): (10)The result of this algorithm is a complete orthonormal basis consisting of selectedsubbases (frequency bands) for each decomposition level j. The pairs ((j; b; n);Ws(j; b; n))constitute features (where the second elements are coe�cients of the signal in the bestbasis and �rst elements are their locations in the DWPD). The total number of componentfeatures is equal to the number N of samples of the signal. In order to reduce thecomputational cost, only kf < N features are used for recognition. In our approach, kfis the number of constants in a source theory (see Section 6.2). In the entropy-basedapproach (cf. [31]), the kf elements of the most discriminant basis that maximize thevalue of the relative entropy measure are used; they are called Most DiscriminantWaveletCoe�cients (MDWC).In this paper we compare the performance of an algorithm that uses MDWC as fea-tures versus our algorithm, which selects features out of the complete best basis usingsymbolic information (source theories). Our algorithm is described in the following sec-tion.
9



5 Model-Theory Based Feature Selection and Fusion5.1 System OverviewOur system, called Automatic Multisensor Feature-based Recognition System (AMFRS),consists of four main processing blocks: DWPD, Feature Selection, Feature Fusion andClassi�cation. The DWPD transforms signals into the wavelet domain according to thealgorithm described in Section 4. The output of this algorithm is a set (matrix) ofwavelet coe�cients associated with particular locations in the input signal. Feature Se-lection picks kf of the wavelet coe�cients, which are then used as symbolic features. Inthis process the interpretation function (see Section 6.2) associates particular constantsin source theories with these selected features. Feature Fusion combines features fromboth sensors into one set of fused features; they become elements of a fused model. Hereagain, the interpretation function associates constants of the fused theory with the par-ticular features from both sensors. The fused theory and model are constructed duringthe design phase of the AMFRS (see Section 5.2). Finally, Classi�cation (a backpropa-gation neural network) implements soft model checking, i.e., checking whether the modelrelations among the features, as de�ned by the corresponding theories (see Section 6.2),are preserved. Speci�cally, this block decides whether the features extracted from thesignal ful�ll one of the relations de�ned in the source theory.5.2 System DesignThe design process of an AMFRS consists of four steps: DWPD/BDBA, Model Con-struction, Model Fusion and System Implementation. The inputs to the design processare two reference databases of signatures, DLr and DLi, described in Section 3, and twosource theories. First, the DWPD is used to transform the database signatures fromthe time domain into the time/frequency (wavelet) domain. Then the Best DiscriminantBasis Algorithm (BDBA) is applied to select the most discriminant basis (features) foreach reference database. In the Model Construction step, the designer constructs mod-els for the given source theories (see Section 6.2). In this step, each constant, functionand relation symbol of the theories are assigned values in the domain; this assignmentconstitutes an interpretation function. Constants are assigned locations in the DWPD.Function and relation symbols are assigned procedural interpretation (how to �nd thevalue of a function and how to check relations among the objects of the domain). Inour case we had only one function for each sensor (fr and fi); they were assigned thefunctions Wsr and Wsi, respectively, i.e., the functions that compute wavelet coe�cients(see Section 4) for particular sensors. Pairs of interpretations of constants and the valuesof the function on them are interpretations of symbolic features.The Model Fusion operation combines two source theories and their models into onefused theory and its model [23]. In this operation, constants, functions and relations from10



the two theories are combined into one theory. And so are their interpretations. Fusionis a formal system operator that has multiple models and theories as inputs and a singletheory and its model as output [23]. This process involves three operators: expansion,reduction and union, as described below [5]. Since there is no known theory that embedsthese two theories (no physical law is known for fusing data from these two sensors),the designer, using the operators described below, constructs a fusion operator based onsymbolic knowledge about the domain and the relation between the symbolic knowledgeand the interpretable features.Reduction Operator: A language Lr is a reduction of the language L if the languageL can be written as L = Lr [X; (11)where X is the set of symbols not included in Lr. A theory (subtheory) T r for thelanguage Lr is formed as a reduction of the theory T for the language L by removingformulas from the theory T which are not legal sentences of the language Lr (i.e., thosesentences that contain symbols of X). A model M r for the language Lr is formed as areduction of the modelM =< A; I > for the language L by restricting the interpretationfunction I = Ir [ Ix on L = Lr [X to IrM r =< A; Ir > : (12)The reduction operator preserves the theorems of the original formal system, providedthat they are not reduced by the operator.Expansion Operator: A language Le is an expansion of the language L if the languageL can be written as Le = L [X; (13)where X is the set of symbols not included in L. A theory T e for the language Le isformed as an expansion of the theory T for the language L by adding a set of new axiomsof the language Le to the theory T . A model M e for the language Le = L[X is formedas an expansion of the model M =< A; I > for the language L by giving appropriateinterpretation Ix to symbols in XM e =< A; I [ Ix > : (14)The expansion operator preserves all the theorems of the original theory in the ex-panded formal system. The expansion operator is not unique. In our application weused a special form of this operator in which we utilize some special properties of ourrecognition problem. Since our intent was to replace some of the constants, functions andrelations with new ones, we used the expansion operator to introduce new symbols intothe original language. These new symbols were interpreted using the interpretation of theoriginal symbols, and then the original symbols were removed by the (following this step)reduction operator. We used the following two operations for deriving interpretations fornew symbols. 11



1. (Relation restriction) Given an n-placed relation R � An in the model M , we canexpand this model with a ne-placed (ne < n) relation Re � (A0)ne, where A0 � A.Re is called a restriction of R and is denoted as Re = R j(A0)ne . This operation is acombination of projecting the relation R onto selected axes Ane and, at the sametime, restricting its domain to the subset A0 � A.2. (Product of relations) Given a n1-placed relation R1(x1; � � � ; xn1) and a n2-placedrelation R2(y1; � � � ; yn2) in the model M , we can expand this model with a newn-placed relation Re(z1; � � � ; zn); where n = n1 + n2, derived as a Cartesian prod-uct of the relations R1(x1; � � � ; xn1) and R2(y1; � � � ; yn2). Hence, Re(z1; � � � ; zn) =Re(x1; � � � ; xn1; y1; � � � ; yn2) = R1(x1; � � � ; xn1)�R2(y1; � � � ; yn2).In the same manner, we construct a new function in the expanded model M e usingthe following two procedures:1. (Function domain restriction) Given a function f : A ! A in the model M , wecan expand this model with a function f e : A0 ! A, (A0 � A), where f e = f jA0is a function whose domain has been restricted from A to A0 � A. The functionf e : A0 ! A is called a restriction of f ;2. (Union of functions) Given a function f1 : A0 ! A, (A0 � A), and a (comple-mentary) function f2 : (A\A0) ! A in the model M , we can expand this modelwith a new function f e : A! A derived as the union of the functions f1 and f2.Therefore, f e = f1 [ f2.Union Operator: This operator generates a language L as a union of the languages L1and L2 L = L1 [ L2 (15)and a theory T for the language L, as the union of the theory T1 for the language L1 andthe theory T2 for the language L2 T = T1 [ T2: (16)To de�ne a union of two models we expand our notation by including explicitly con-stants, relations and functions. The union M =< A;R; f;X; I > of two models M1 =<A1;R1; f1;X1; I1 > and M2 =< A2;R2; f2; x2; I2 > is de�ned asM = M1 [M2 =< A1 [A2;R1 [R2; f1 [ f2;X1 [X2; I1 [ I2 > : (17)This operator does not guarantee that the resulting structure is a model of the unionof two theories; this property is a proof obligation and needs to be checked with eachspeci�c case of the application of this operator.The three models developed in this design process are then used to build the AMFRSin the System Implementation step. In this step, among others, a neural-network basedclassi�er is built using the knowledge of the fused model, and trained using the referencedatabases. 12



6 AMFRS Design for Lung Sound Recognition6.1 Entropy-Based FeaturesThe �rst step in our feature selection methodology is to transform each of the lung soundsignatures in the DLr and DLi reference databases into the wavelet domain by utiliz-ing the DWPD. For this, we use the Daubechies 6 compactly supported wavelets withextreme phase and highest number of vanishing moments compatible with their supportwidth [9]. Figure 2 shows the result of the DWPD for four signatures corresponding tofour classes of lung sounds. This �gure shows wavelet coe�cients for four decompositionlevels. For each decomposition level, a number of frequency bands are shown: one bandfor level zero (top), two for one, four for two and eight bands for three (bottom).
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equal to 128, i.e., it is equal to the number of samples in the signature. Figure 3 shows thediscriminant value (as determined by the relative entropy measure) of each componentin the MDB for the DLr reference database. In this case the MDB consists of eightsubbases on the third level of the DWPD decomposition. Notice that many elements inthe MDB have the discriminant value equal to zero. In a similar manner, we developedan MDB for the reference database DLi associated with Sensori.
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Normalized FrequencyFigure 3: Most Discriminant Basis (MDB) for the DLr Reference Database6.2 Symbolic FeaturesIn the following steps, according to our design methodology, we use the symbolic knowl-edge (source theories, which are presumed to be known at the design time) to selectfeatures out of the MDB. Below, we describe the languages, the theories and the modelsthat were used in our experiments. An explanation of the meaning of the features isgiven in Section 6.3.The languages Lr, Li for Sensorr and Sensori, respectively, are:Lr = fbronr; cracr; rhonr; wheezr; fr;+; 0; 1; 2; 3; 4; 6; Cr0 ; ; : : : ; Cr9g; (18)Li = fbroni; craci; rhoni; wheezi; fi;+; 0; 1; 2; 5; 7; Ci0 ; : : : ; Ci9g; (19)with the intended interpretation 14



� bronr; cracr; rhonr; wheezr, broni; craci; rhoni; wheezi are 10-placed relation sym-bols (classes of lung sounds to be recognized using the Sensorr and Sensori data,respectively),� fr, fi are 1-placed function symbols (functions that map feature indices in theDWPD of the Sensorr and Sensori data, respectively, into feature values),� + is a 2-placed function symbol,� 0; 1; 2; 3; 4; 5; 6; 7 are constant symbols,� Cr0 ; : : : ; Cr9, Ci0; : : : ; Ci9 are constant symbols (feature indices).The theories Tr, Ti for Sensorr and Sensori, respectively, consist of the followingformulas.Theory Tr bronr(Cr0; : : : ; Cr9)()f(Cr0) � f(Cr2) � f(Cr1) ^ f(Cr0) + 2 � f(Cr1) ^f(Cr3) = f(Cr4) = f(Cr5) = f(Cr6) = f(Cr7) = f(Cr8) = f(Cr9) = 0; (20)cracr(Cr0; : : : ; Cr9)()f(Cr2) � f(Cr1) � f(Cr0) ^ f(Cr2) + 1 � f(Cr0) � f(Cr2) + 2 ^f(Cr5) � f(Cr3) � f(Cr4) � f(Cr6) ^ f(Cr5) + 2 � f(Cr6) � f(Cr5) + 4 ^f(Cr9) � f(Cr8) � f(Cr7) ^ f(Cr9) + 3 � f(Cr7); (21)rhonr(Cr0; : : : ; Cr9)()f(Cr1) � f(Cr2) � f(Cr0) ^ f(Cr1) + 6 � f(Cr0) ^f(Cr3) � f(Cr6) � f(Cr5) � f(Cr4) ^f(Cr4) � f(Cr3) + 2 ^ f(Cr7) = f(Cr8) = f(Cr9) = 0; (22)wheezr(Cr0; : : : ; Cr9)()f(Cr0) = f(Cr1) = f(Cr2) = 0 ^ f(Cr6) � f(Cr4) � f(Cr3) � f(Cr5) ^f(Cr6) + 6 � f(Cr5) ^ f(Cr9) � f(Cr8) � f(Cr7) ^ f(Cr7) � f(Cr9) + 2; (23)Cr0 � Cr1 � Cr2 � Cr3 � Cr4 � Cr5 � Cr6 � Cr7 � Cr8 � Cr9: (24)Theory Ti broni(Ci0; : : : ; Ci9)()f(Ci0) � f(Ci2) � f(Ci3) � f(Ci1) ^ f(Ci0) + 5 � f(Ci1) ^f(Ci4) = f(Ci5) = 0 � f(Ci6) ^ f(Ci6) � f(Ci4) + 1 ^f(Ci7) = f(Ci8) = f(Ci9) = 0; (25)15



craci(Ci0; : : : ; Ci9)()f(Ci0) = f(Ci1) � f(Ci2) = f(Ci3) ^ f(Ci3) � f(Ci0) + 2 ^f(Ci5) � f(Ci4) = f(Ci6) ^ f(Ci5) � f(Ci4) + 2 ^f(Ci9) � f(Ci7) � f(Ci8) ^ f(Ci9) + 2 � f(Ci8); (26)rhoni(Ci0; : : : ; Ci9)()f(Ci3) � f(Ci2) � f(Ci0) � f(Ci1) ^ f(Ci3) + 7 � f(Ci1) ^f(Ci4) � f(Ci5) � f(Ci6) ^ f(Ci4) + 7 � f(Ci6) ^f(Ci7) = f(Ci8) = f(Ci9) = 0; (27)wheezi(Ci0; : : : ; Ci9)()f(Ci1) � f(Ci2) � f(Ci0) � f(Ci3) ^ f(Ci3) � f(Ci1) + 2 ^f(Ci6) � f(Ci5) � f(Ci4) ^ f(Ci4) � f(Ci6) + 2 ^f(Ci7) � f(Ci9) � f(Ci8) ^ f(Ci7) + 2 � f(Ci8); (28)Ci0 � Ci1 � Ci2 � Ci3 � Ci4 � Ci5 � Ci6 � Ci7 � Ci8 � Ci9 : (29)As we can see, the theories state that all the constants are ordered (Eqs. 24,29), andthey de�ne four relations (see also Section 6.3). The recognition problem is to decidewhether and which one of these relations is ful�lled in the world. For this purpose weneed to connect the theories to the world, i.e., construct models for the languages Lr andLi. The models Mr and Mi of the languages Lr and Li, respectively, are de�ned as:Mr =< A; bronr; cracr; rhonr; wheezr;Wsr;+; 0; 1; : : : ; 9; Ir >; (30)Mi =< A; broni; craci; rhoni; wheezi;Wsi;+; 0; 1; : : : ; 9; Ii >; (31)where A = f0; : : : ; 9g is a universe of the models (in our case, these numbers are indicesof the nine wavelet coe�cients selected out of the complete DWPD of a given signal),and Ir, Ii are interpretation functions that map symbols of the languages Lr, Li toappropriate relations, functions and constants in the universeA. Ir and Ii assign relationsbronr; cracr; rhonr; wheezr, broni; craci; rhoni; wheezi � A10 to the symbols (we use thesame symbols to represent relations) in the languages Lr; Li. Similarly, they assignfunctions Wsr;Wsi : A ! A, in the model to the symbols fr; fi in the languages Lr; Li,respectively (they represent the values of the ten wavelet coe�cients). For simplicity,the function Ws was normalized to the same range as the indices of the features, androunded so that its values are within the interval of integers from 0 to 9. And �nally, theinterpretation functions assign constants 0; : : : ; 9 in the models to the constant symbolsCr0 ; : : : ; Cr9; Ci0; : : : ; Ci9 in the languages. The special constants 0; : : : ; 7 in the modelsare assigned (the same) symbols in the languages.6.3 Theory ConstructionAlthough the construction of source theories is not addressed in this paper, we give anintuitive explanation on how we constructed these theories and what is the meaning ofparticular features. 16
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Figure 4: Features Selected From the MDB for the DLr Database Using the DomainTheoryThe �rst step in selecting these features was to visually analyze the Most DiscriminantWavelet Coe�cients (MDWC) and to identify the patterns in the DWPD of the lungsounds by which particular classes of sounds can be discriminated. Since particularpatterns are localized in time, we were able to focus on each pattern and review all thesignatures in the database with the intent of �nding such discriminating patterns. Basedon this inspection, we selected ten features concentrated in three MDB areas (see Figure4). The �rst three neighboring features are in the fourth subbasis (frequency channel) atthe third level of the DWPD, the next four neighboring features are in the sixth subbasisat the third level of the DWPD, and the last three neighboring features are in the seventhsubbasis at the third level of the DWPD. In Figure 5) we show the areas of concentrationof features (for Sensorr) with vertical bars.All ten features, depending on their value, carry information about the type of sym-bolic lung sound features in the signal. In particular, the values of the �rst three features(the second vertical solid line in Figure 5) indicate the existence of the shape of main tran-sients characteristic for bronchial, crackles, rhonchi or wheezes. The values of the lastseven features (the �rst vertical solid line in Figure 5) indicate the existence of the shapeof main transients characteristic for crackles or wheezes, or the existence of a transitionbetween inspiration and expiration cycle characteristic for bronchial or rhonchi.In the next step we identi�ed relationships among particular features. In our case,we used binary equality and inequality relations. These relations are captured by the17
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wheezesFigure 5: Areas of Concentration of Selected Symbolic Features for DLr (normalizedamplitude vs. time [msec])formulas of theories, and then used by the model checker to decide whether a particularsignal is an element of a particular class. Note, that the values of single features are notused for recognition.For comparison, in Figure 6, we show which of the features were selected by theentropy-based measure as Most Discriminant Wavelet Coe�cients (MDWC), assumingthat kf = 10. We can clearly see that the main di�erence is that our features are selectedin groups (neighbors), while MDWC features happened to be rather far apart.6.4 Model FusionLung sound recognition based upon checking models may generate di�erent decisions foreach sensor. In order to arrive with only one decision, we need to have a one combinedmodel that would incorporate the features from each of the sensors. We develop such amodel in the step of Model Construction; we call it the fused model. In the process ofModel Construction we combine the languages Lr, Li into one fused language Lf , thetheories Tr, Ti into one fused theory Tf , and the models Mr, Mi into one fused modelMf consistently, so that Mf is a model for Tf . Since we do not have a theory that18
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Normalized FrequencyFigure 6: Most Discriminant Wavelet Coe�cients (MDWC features) Selected from theMDB for the DLr Databasewould embed both Tr and Ti, we need to develop a fusion operator that accomplishes theabove described result. In this process we use the operators of reduction, expansion andunion described in Section 5.2. Below, we describe how we arrived with the resultingfused language, fused theory, and fused model for the lung sound recognition problemdescribed in this paper.The strategy for constructing a fused system is based upon the understanding thatas a net result we want to have a language that is roughly of the same complexity as theinitial languages Lr and Li. To achieve this we need to remove some of the constants(preferably the least signi�cant for recognition) from each of the languages. Anotherelement of the strategy is the fact that the ultimate step in the fusion process will bethe application of the union operator to the languages, models and theories. To avoidinconsistency problems with the union of functions, we want to restrict the domains ofthe initial functions so that after this operation the sets on which the two functions (i.e.,the restricted fr and the restricted fi) are de�ned are disjoint.In this particular case, we �rst remove the constants Cr3; : : : ; Cr7 and Ci3; : : : ; Ci7from the languages Lr and Li. This results in new (restricted) relations and functions.We need new names for these relations and functions:Xr = fbron0r; crac0r; rhon0r; wheez0r; f 0rg; (32)19



Xi = fbron0i; crac0i; rhon0i; wheez0i; f 0ig: (33)First, we apply the expansion operator (see Section 5.2), then the reduction operator.The result is two new languagesLerr = fbron0r; crac0r; rhon0r; wheez0r; f 0r;+; 0; 1; 2; 6; Cr0 ; Cr1; Cr2; Cr8; Cr9g: (34)Leri = fbron0i; crac0i; rhon0i; wheez0i; f 0i ;+; 0; 2; 5; Ci0 ; Ci1; Ci2; Ci8; Ci9g: (35)The new symbols are interpreted as restrictions of the relations and of the function,e.g., bron10r = bronr \ (A \ f0; 1; 2; 8; 9g)3;f 0r = fr jA\f0;1;2;8;9g : (36)(Note that (36) interprets f 0r in terms of Wsr, since it uses fr, which was interpretedin terms of Wsr in (30).) In parallel to this operation on the language, we restrict thetheories Tr and Ti by removing from their formulas the six constants and terms thatdepend on these constants; we denote the resulting theories as T 0r; T 0i .Our next goal in this strategy is to combine these two languages so that as the �nalresult we have one symbol for each class and one function symbol. The formulas ofthe theory should be derived as a combination of the formulas from appropriate initialtheories T 0r; T 0i . Similarly, the interpretation should be derived from the interpretationsof these theories. We achieve this goal in three steps. First, we apply the union operatorto the two languages, theories and their models. Then we apply the expansion operator.And �nally, we apply the reduction operator.The union operator is just an intermediate step that collects the pairs of languages,theories and models in three separate collections, corresponding to a new language, theoryand model. The model domain remains the same, i.e., A. The expansion operator addsnew symbols: bron; crac; rhon;wheez;C0; : : : ; C9: By applying the product of relationsoperator, these new symbols are interpreted in the following way.C0 = Cr0; C1 = Cr1 ; C2 = Cr2; C6 = Cr8; C7 = Cr9;C3 = Ci0; C4 = Ci1; C5 = Ci2; C8 = Ci8; C9 = Ci9 (37)f = fr [ f 0i ; f : A! A;bron = bronr � bron0i; crac = cracr � crac0i;rhon = rhonr � rhon0i; wheez = wheezr � wheez0i;bron; crac; rhon;wheez � A10: (38)20



And �nally, the reduction operator removes all the unnecessary elements from the union.As a result we end up with the following fused language Lf .Lf = fbron; crac; rhon;wheez; f;+; 0; 1; 5; 6; C0; : : : ; C9g: (39)The feature-level fused theory Tf consists of the following �ve formulas.bron(C0; : : : ; C9)()f(C0) � f(C2) � f(C1) ^ f(C0) + 2 � f(C1) ^ f(C3) � f(C5) � f(C4) ^f(C3) + 5 � f(C4) ^ f(C6) = f(C7) = f(C8) = f(C9) = 0; (40)crac(C0; : : : ; C9)()f(C2) � f(C1) � f(C0) ^ f(C2) + 1 � f(C0) � f(C2) + 2 ^f(C3) = f(C4) � f(C5) ^ f(C5) � f(C3) + 2 ^f(C7) � f(C6) ^ f(C9) + 2 � f(C8); (41)rhon(C0; : : : ; C9)()f(C1) � f(C2) � f(C0) ^ f(C1) + 6 � f(C0) ^ f(C5) � f(C3) � f(C4) ^f(C6) = f(C7) = f(C8) = f(C9) = 0; (42)wheez(C0; : : : ; C9)()f(C0) = f(C1) = f(C2) = 0 ^ f(C4) � f(C5) � f(C3) ^ f(C7) � f(C6) ^f(C7) � f(C6) ^ f(C9) � f(C8); (43)C0 � C1 � C2 � C3 � C4 � C5 � C6 � C7 � C8 � C9: (44)The feature-level fused model Mf of the theory Tf is de�ned asMf =< A; bron; crac; rhon;wheez;Wsf ;+; 0; 1; 2; 5; 6; If >; (45)where If is an interpretation function that maps symbols of the language Lf to appropri-ate relations, functions and constants in the universe A, as described above. The fusedmodel Mf contains ten features created as a result of fusion of the �ve features from theDLr database and the �ve features from the DLi database. In particular, the �rst threefeatures of this fused feature vector are the same as the �rst three features selected fromDLr ; the next three fused features are the same as the �rst three features selected fromDLi; the next two fused features are the same as the last two features selected fromDLr;the last two fused features are the same as the last two features selected from DLi. Wsfis the interpretation of the function symbol f . Since this function is a union of (subsets)of functions fr and fi, its values are determined by the values of these two functions.7 Results of ExperimentsTo evaluate our approach to lung sound recognition, we present below the results oftests on the lung sound recognition scenario described in Section 3. The results of our21



experiments are summarized in Figures 7 and 8. The �gures show misclassi�cation ratesfor various levels of noise.To evaluate our approach, we implemented three recognition systems: one unisensorand one multisensor, built according to our methodology, and additionally, a system thatselects features using solely an entropy-based decision procedure (BDBA).Since our main goal was to assess the quality of features selected according to ourmethodology, we decided to compare our features versus the BDBA selected features,due to the fact that the BDBA features are optimal with respect to the entropy-basedclassi�cation measure, which is considered a good measure to evaluate the discriminativepower of recognition systems. To make the comparison of features as fair as possible,we used the same signal classi�cation algorithms as used by Saito [31], for both ourfeatures and the BDBA selected features. Also the number of features used was thesame for both cases. Both the BDBA features and our model-theory based features wereevaluated using the same test databases.To evaluate the robustness of the system to noise, we added zero-mean Gaussian noisewith standard deviation varied at 11 levels (with step 2.5) within the deviation rangeof 0 through 25, to each signal in the test databases. Each signal in the test databaseswas classi�ed by the three recognition systems. The quality of recognition was measuredin terms of the misclassi�cation rate. The result was a misclassi�cation, if the decisiondid not assign the correct class label to the signal. One data point in each of the �gureswas obtained by averaging the number of misclassi�cations over all the classi�cationexperiments for a given level of noise.Figure 7 shows the resulting misclassi�cation rates for the unisensor system basedon our methodology (AUFRS) for di�erent levels of noise. This �gure also shows themisclassi�cation rates of the recognition system using Most Discriminant Wavelet Coef-�cients (MDWC) as features. The misclassi�cation results show that the AUFRS has abetter recognition accuracy than the MDWC-based system.Figure 8 shows the resulting misclassi�cation rates for di�erent levels of noise forthe multisensor system (AMFRS). This �gure also shows the misclassi�cation rates of amultisensor recognition system using Most Discriminant Wavelet Coe�cients (MDWC)as features, and of the two unisensor systems. The misclassi�cation results show that forthe lung sound recognition problem the AMFRS has a better recognition accuracy thanthe MDWC-based recognition system.8 ConclusionsThe main goal of this paper was to show a formal systematic approach to incorporatingsymbolic knowledge into recognition systems and to show that a system based on thismethodology can be used for lung sound recognition. We addressed several problemsrelated to the design of recognition systems that utilize multiple sensors and symbolic22
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Figure 7: Misclassi�cation Rates for the Unisensor Lung Sound Recognition Systems: Us-ing Model Theory for Feature Selection (AUFRS) and Using Most Discriminant WaveletCoe�cients as Features (MDWC)knowledge. Our main focus was to show how to select features out of sensor signals,given a collection of theories about signal sources. We assumed that such theories areknown to the system designer. We used wavelets and entropy-based measures for featureextraction. Then we used feature selection guided by the models of particular sourcetheories. Since we deal with multiple sensors, we also showed how, using source theoriesand their models, to combine features from di�erent sensors.Obstacles to incorporating symbolic knowledge into signal recognition systems includethe lack of methods for extracting symbolic features from sensor signals and the lack oflibraries of symbolic knowledge that could be used in the process of signal recognition.Additionally, there is a lack of a methodology for designing sensor fusion systems thatincorporate both quantitative and symbolic knowledge. In this paper we showed the stepsinvolved in the design of a multisensor recognition system that extracts symbolic featuresand utilizes symbolic knowledge for recognition. We also compared the performance ofthe resulting system with both a single-sensor system and with a system that selectsfeatures using an entropy-based feature selection method.Our experiments showed that the entropy-based recognition system adapted well tothe training set of signatures, but it did not have enough generalization power to performequally well with the test data. The reason for that was that the features selected bythe entropy-based criteria were too far apart within the time/frequency domain (see23
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Figure 8: Misclassi�cation Rates for the Multisensor Lung Sound Recognition Systems:Using Model Theory for Feature Selection and Fusion (AMFRS) and Using Most Dis-criminant Wavelet Coe�cients as Features (MDWC)Figure 6). Our system, on the other hand, due to selecting features that are grouped intwo groups in the time/frequency domain, has a better generalization power and thusperforms better on noisy signals.The complexity of the algorithms was addressed in several ways. First, some of thealgorithms are used o�-line, i.e., they are used in the process of design rather than in thesystem operation. Second, the run-time recognition system uses only a small subset (kf )features for recognition. The complexity of the DWPD algorithm, which is used on-line,is on the order O(n), where n is the number of samples. And �nally, the neural networkclassi�er can be easily mapped to a parallel implementation.This research can be extended in several directions. One of the questions that canbe investigated is what is the sensitivity of the lung sound recognition process to theselection of di�erent sets of features? In this paper we showed the impact of featureselection for two sets of features: one selected using an entropy-based criterion, and oneselected using a theory of the signal source. Other selections, including random, couldbe analyzed.We constructed theories manually, by observing relations among various features forall of the signals in the signature database. This process could be supported by the useof machine learning techniques. Also, a formal method tool (a theorem prover) could be24



used to help with checking the consistency of the derived theories.Another direction for this research is to investigate domain-speci�c aspects, i.e., vari-ous features and theories characterizing lung sounds. The features of lung sounds dependon various characteristics of the patient, like weight, age, sex and the physical condition,as well as on the environment, like humidity, temperature, and time of day. Theoriescapturing these dependencies can be built. Once created, they can be easily utilizedby our system. Also, the di�culty of recognition of di�erent types of lung sounds mayvary, and thus the dependence of misclassi�cation rate on the type of the sound could beinvestigated separately for each sound type. Another aspect related to the lung soundrecognition domain is the need to separate lung sounds from heart sounds and othersignals that are acquired through a stethoscope in the process of auscultation. Althoughour data included, for instance heart sounds, the ability of this approach to deal withvarious kinds of noise (not only Gaussian) could be investigated further.AcknowledgementsThis research was partially sponsored by the Defense Advanced Research Projects Agencyunder Grant F49620-93-1-0490 and by University Research Engineers and Associates.The authors wish to thank Tom Callahan for his support and encouragement. Theauthors are grateful for many questions and suggestions received from the anonymousreviewers.References[1] E. Ademovic, G. Charbonneau, and J. C. Pesquel. Segmentation of infant respiratorysounds with Malvar's wavelets. In Proc. 16th Int'l Conf. IEEE Engin. in Medicineand Biology Society, pages 20a{21a, 1994.[2] J. K. Aggarwal. Multisensor Fusion for Computer Vision. Springer-Verlag, 1993.[3] S. W. Banham, R. B. Urquhart, J. E. S. Macleod, and F. Moran. Alteration in thelow-frequency lung sounds in respiratory disorders associated with crackles. Eur. J.Respirat. Dis., 65:58{63, 1984.[4] R. P. Baughman and R. G. Louden. Quantization of wheezing in acute asthma.Chest, 5:718{722, 1984.[5] C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, NewYork, Oxford, Tokyo, 1992.[6] A. Cohen and D. Landsberg. Analysis and automatic classi�cation of breath sounds.IEEE Tran. Biomed. Engin., BME-31, no. 9, 1984.25
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