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On the Use of Q2 Abstractions to Lower the
Computational Cost of Derivation of Conflict
Resolution Advisories in Air Traffic Control

Mei Li and and Mieczyslaw M. Kokar, Senior Member, IEEE

Abstract—This paper addresses the problem of high compu-
tational complexity of generating multi-step conflict resolution
advisories in the domain of air traffic control. Since this problem
is known to be NP-hard, one cannot expect algorithms that will
solve every instance of the problem independently of its size.
Thus the goal is to develop more efficient algorithms that will be
able to analyze a wider space of possible resolution advisories,
for instance, horizontal maneuvers. This paper presents a study
of the use of abstraction to such a problem. However abstraction
can lead to wrong decisions, e.g., to maneuvers that result in
unsafe states. Such abstractions are referred to as inconsistent. To
avoid this kind of problems we use the so called Q2 abstractions,
which are derived from the specifications of a problem and
are guaranteed to be consistent. To assess the usability of the
Q2 approach to computing horizontal resolution advisories we
analyze the impact of such abstractions on the computational
cost of an exhaustive search algorithm as well as on the quality
of resolution advisories found. The results show that the use of
the Q2 approach lowers the conflict resolution computation time
without losing much of the quality of solutions.

I. INTRODUCTION

In the context of air traffic control, two or more aircraft
approaching each other within a close distance will create a
conflict alert situation. Traditionally, alerts are issued based
upon tracking and prediction of the aircraft positions, using
quantitative algorithms (cf. [1]). When an alert is issued, the
on-board Traffic-alert and Collision Avoidance System (called
TCAS [2], [3]) gives the pilot maneuver instructions, known
as resolution advisories (RA’s). In the TCAS systems currently
in use, RA’s concern maneuvers in the altitude direction, such
as to climb or to descend, and at what rate. Having horizontal
maneuvers as RA’s would provide more efficient usage of the
air space, and thus would allow for the accommodation of
more aircraft safely in the controlled air space. But horizontal
maneuvers are more time consuming to compute since there
are many more maneuver options in the horizontal direction
as compared to the vertical direction.

There are three major factors that complicate the compu-
tation of maneuvers. First, the rhythm of computing maneu-
vers is influenced by the frequency of measurement updates
(scans). Second, the algorithm of the “self” aircraft needs
to predict all possible situations, i.e., all possible maneuvers
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of the “intruder” aircraft in response to the maneuver of
the “self” aircraft (combinatorial explosion). And finally, the
computation must be based on the prediction of possible
maneuvers for a number of steps (scans) ahead (multi-step
prediction).

Although it is known that the problem of computing conflict
resolution advisories is NP-hard (cf. [4]) and thus one cannot
expect to find an algorithm that will solve every instance of
this problem independently of its size, the question is whether
the computation for limited size, practical problems of finding
vertical and horizontal resolution advisories is feasible. Let
us consider a scenario for an aircraft pair - the “self” and
the “intruder”. Let N denote the number of maneuver choices
(same for both aircraft) and let L represent the prediction time,
i.e., the number of look-ahead steps (measurement scans) to
be considered in the prediction. In the first step (L=1) after a
conflict has been detected there are N choices for a maneuver
for each aircraft. Thus the aircraft pair can be in N2 states at
the end of the first maneuver. In other words, the “self” aircraft
needs to compute N2 maneuvers. In the second step (L=2),
again we need to consider all possible maneuvers that both
aircraft could execute in each of the N2 states. The number of
maneuver choices for the pair in the second step is again N2.
However, each of the maneuver choices needs to be computed
for each of the N2 states. This will lead to N4 computations
of maneuvers. In the third step (L=3), the same analysis can be
repeated for all of the N4 states leading to N6 computations
of maneuvers. And finally, in the L− th step, there are N2L

maneuver computations. Thus the total number of choices for
all possibilities during the time duration of L steps is:

N2 +N4 +N6 + . . .+N2L =
N2(N2L − 1)

N2 − 1
(1)

To be close to a realistic scenario, the values of N and
L need to be chosen based upon the characteristics of the
typical sensor, i.e., on a typical scan duration, as well as on a
reasonable maneuver granularity in both the horizontal and the
vertical planes. These values are summarized in Table I. For
horizontal maneuvers, we choose seven turns in the increments
of 1◦/sec. The choices for the horizontal linear acceleration
are in the increments of 45knot/min, up to 270knot/min.
For comparison, in the vertical dimension, there are nine
choices for climbing up or descending in the range from 500
to 4, 500ft/min, in the increments of 500. The granularity
for each of these choices could be finer, which would result
in even larger N , and thus higher computational cost.
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TABLE I
POSSIBLE MANEUVER CHOICES.

Maneuver Name Dimension Unit Possible Values
turn left or right horizontal ◦/sec 1,2,3...7
speed up or down horizontal knot/min 45, 90, ..., 270
climb up or descend vertical ft/min 500, 1000, ..., 4500

According to this table, there are N = 27 possible horizon-
tal maneuvers: seven left turns, seven right turns, no maneuver,
six positive accelerations and six negative accelerations. Since
we are assuming only one maneuver at a time, the case of no
turn is the same as zero acceleration. Assuming L = 5 steps
for prediction, the number of horizontal maneuvers that need
to be computed is

272(2710 − 1)
272 − 1

= 2.06174 · 1014 (2)

Furthermore, assuming that each computation can be done
within 1ms, the computation time of an exhaustive analysis
of all possible advisories would be equal to 5.73 ·107 hours. It
is clear that the computation time for multiple-step prediction
is too high to be practically implementable. Therefore, there
is a need for lowering the cost of RA computation to make it
applicable to horizontal RAs.

One way to achieve this goal would be by using abstraction,
i.e., deriving a more coarse (abstract) representation of the
original (ground) problem and then carrying out computation
in the abstract space. An example of such an approach might
be to lower the granularity of the partitioning of the time
dimension by computing predictions and maneuvers for time
intervals larger than dictated by the measurement scans. Unfor-
tunately, this kind of simple abstraction may be too coarse and
thus might result in errors - generating RAs that would lead
to conflict. This kind of abstraction would be an inconsistent
abstraction [5]. To avoid this kind of problems, we use
the Q2 approach [6] which shows how to derive consistent
abstractions of general dynamical systems. In this approach,
the system space of a dynamical system is partitioned into
regions, symbols are assigned to particular regions and then
inference (computation) is carried out in the abstract space.
As will be shown later in this paper, the Q2 approach had to
be extended in order to be applicable to the problem of RA
computation.

The rest of this paper is organized as follows. Section
II contains an overview of the research that is pertinent to
the problem of air traffic conflict resolution. The problem
itself is formally defined in Section III. The Q2 approach is
overviewed in Section IV. Section V shows the Q2 represen-
tation of the RA generation problem. This is followed by a
description of the algorithm for computing of all possible RA’s
(Section VI) based upon the abstract symbolic representation
developed in Section V. Then, in Section VII the Q2 based
search for RAs is compared to the search in the original
solution space in terms of both computation time and quality
of the found solutions. And finally, Section VIII presents
conclusions and suggestions for future research in this area.

II. RELATED LITERATURE

A number of approaches [4], [7]–[25] to the problem of de-
tection and resolution of traffic conflicts have been developed.

Most of them were classified by Kuchar and Yang in [26],
[27] (see also papers in the two-part special issue [28]), based
upon the way the response to conflicts is determined, in the
following three categories: 1) prescribed, 2) force field and 3)
optimized.

In the prescribed approach [21], [22], conflict resolution
maneuvers are determined in advance, based on a set of pro-
cedures. For example, the Ground Proximity Warning System
(GPWS) issues a standard “Pull Up” warning when a conflict
with the terrain exists. GPWS does not perform additional
computation to determine an optimal escape maneuver. The
shortcoming of the prescribed approach is that these models
can be complex and require a large number of rules to cover all
possible encounter situations. Additionally, it may be difficult
to certify that the system always operates as intended.

The force field approaches [4], [8], [13] model each aircraft
as a charged particle and use modified electrostatic equations
to determine conflict resolution maneuvers. The shortcoming
of the force field approaches is that in some cases the com-
puted maneuver path is difficult to realize in operation. For
example, a solution from a force field model may require that
an aircraft continually make a series of gradual turns and speed
changes. This would require a high level of guidance on the
flight deck and would increases the complexity of the solution
beyond issuing simple heading vectors. Additionally, some
solutions may include sharp-angle turns or other physically
infeasible trajectories that would have to be modified to be
used in operation.

An optimized conflict resolution approach [4], [7], [9]–
[12], [14]–[20], [23], [24] selects a decision by determining
which of the several avoidance options minimizes a given
cost function. The existing optimized methods differ in the
assumptions on the model of the dynamical system being
used. The main difference is in the method that the current
state is projected into the future. This dictates how conflicts
are managed. The nominal projection method is the most
straightforward method [7], [9]–[12], [14], [16]–[18]. It gives
a first order estimate of where and how conflicts will occur.
Nominal projections, however, do not account for the pos-
sibility that an aircraft does not behave as predicted by the
dynamical system model. This uncertainty is very important
in long-term conflict detection. The other extreme of the use of
dynamical system models is to use the worst-case projection
[20]. However worst-case maneuvers are highly unlikely and
using this model may greatly reduce the overall traffic capacity.
The probabilistic approach [15], [19], [24], [25], [29], [30]
appears to provide a reasonable balance between relying too
much on an aircraft following the dynamical system model
and relying too much on the assumption that an aircraft is
doing worst-case maneuvers. However, there is a trade-off
between the complexity of the probabilistic model and the
ability to estimate probabilities rapidly. Also, in some cases
the resolution maneuvers used to develop the alerting logic are
based on the immediate problem of avoiding a conflict and do
not consider the additional maneuvering required to return to
the original flight path. Thus the maneuver selection logic (c.f.
[24]) does not incorporate issues such as increased fuel burn
or flight time in the decision on an alert.
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III. FORMALIZATION OF THE PROBLEM

Based upon the literature review, we selected the optimized
approach to the problem of RA generation. As the first step
in this approach, we need to define the cost function and the
constraints that the solutions must satisfy.

A. Cost Function

Various aspects can be considered in the selection of the
cost function for the optimization problem. Some choices of
maneuvers are preferred by the pilots, the controllers and the
airlines. Moreover, it is usually desired to select the maneuvers
that cause the least deviation from the flight plan and result
in the shortest time delay. In our investigation, we define
the cost function as a measure of the deviation of the flight
trajectory from the original flight plan during the course of
the conflict avoiding maneuver. We limit this research to
horizontal maneuvers and ignore the vertical maneuvers.

Assuming the prediction time (number of steps) is l, the
cost of the maneuver can be expressed as:

g() =
tl∑

tk=t1

√
(xm(tk)− xc(tk))2 + (ym(tk)− yc(tk))2 (3)

where tk - time, (xm(tk), ym(tk)) - a point on the X,Y
trajectory of the maneuver at time tk, and (xc(tk), yc(tk)) - a
point on the trajectory of the planned flight path at time tk. The
function g() computes the discrepancy between the two paths
(planned and maneuver) during the maneuver interval [t1, tl].
The planned trajectory is assumed to be known. The maneuver
trajectory is computed by the RA determination algorithm.

Horizontal maneuvers typically include turns, ω, and accel-
erations, av . Normally one maneuver is carried out at a time,
i.e., no concurrent maneuvers [12] are executed. Therefore, a
maneuver that starts at tk and ends at tk + 1 can be expressed
as:

a(tk) =
{
av(tk), acceleration maneuver
ω(tk)/v(tk), turn maneuver (4)

The optimization problem is then to find a sequence of
maneuvers a(t1), a(t2), . . . , a(tl−1) that minimizes the cost
function (3).

Since this optimization includes the multi-step prediction,
the trajectories of the (“self”) aircraft are computed according
to the following motion equations:

xm(tk+1) = xm(tk) + vm
x (tk) ·∆T +

1
2
· ax · (∆T )2 (5)

ym(tk+1) = ym(tk) + vm
y (tk) ·∆T +

1
2
· ay · (∆T )2 (6)

xm(t0) = xc(t0) (7)
ym(t0) = yc(t0) (8)

where ax, ay, vx, vy are projections of a and v on the X and
Y coordinates, respectively. The trajectory of the “intruder”
aircraft is computed using the same equations using zero
acceleration.

The optimization is subject to the satisfaction of three
constraints. These constraints are described below.

B. PROCON, LINCON and MANCON Alerts

The cost function should be minimized under the condition
that every maneuver results in a sufficient separation between
two aircraft. The satisfaction of any of such danger conditions
would result in the generation of a conflict alert. In ATC,
these alerts are commonly known as PROCON, LINCON and
MANCON [31].

The PROCON alert is declared if the distance, d, between
two aircraft is smaller than a threshold, dproxim1, or if the
distance is smaller than a larger threshold, dproxim2, and the
two aircraft are approaching each other at a rate R larger than
a speed threshold Rproxim:

(d < dproxim1) ∨ (d < dproxim2 ∧R > Rproxim) (9)

The LINCON condition is satisfied if, by linear prediction,
the impact time, LAT1, of the aircraft pair is below the look-
ahead time, Tlook−ahead (usually 40sec). Since in this case we
are considering only horizontal maneuvers, we can assume that
LAT1 is equal to the Time of Lateral Violation (TOLV ) [31]
and get the following constraint:

(TOLV < Tlookahead) ∧ (TOLV > 0) (10)

The predicted value of TOLV is computed from the following
equation [31]:

TOLV =
1

4ẋ2 +4ẏ2
(−(4x · 4ẋ+4y · 4ẏ) (11)

−[LATQ2(4ẋ2 +4ẏ2)− (4x · 4ẏ +4y · 4ẋ)2]1/2)

where LATQ is a system parameter (e.g., 2.0nmi), 4x, 4y
are relative positions, and 4ẋ, 4ẏ are relative velocities in
the X,Y directions, respectively.

The MANCON conditions are tested when the turn rate
(“self”), ω, is larger than a threshold, ωthresh. The MANCON
conditions are satisfied if one aircraft is turning into the other
aircraft and will cause a conflict situation under the “turning
model” prediction [31]:

ω > ωthresh∧[(s1 < 0)∨(s2 > 0)∨(s3 > 0)∨(s4 > 0)] (12)

s1 = 4x · 4ẋ+4y · 4ẏ (13)

s2 = ẋ1 · ẋ2 + ẏ1 · ẏ2 (14)

s3 = 4x · ẋ1 +4y · ẏ1 (15)

s4 = −(4x · ẋ2 +4y · ẏ2) (16)

where xi, yi, ẋi, ẏi are positions and velocities of the aircraft
i (i = 1, 2), 4x, 4y are relative positions and 4ẋ, 4ẏ are
relative velocities in the X,Y directions.

IV. INTRODUCTION TO THE Q2 APPROACH

As stated earlier, in our work we used the Q2 approach to
represent and reason about a dynamical system - an aircraft
pair. In this section we give a brief overview of the Q2

approach; a full description is presented in [6]. The main
idea of this approach is to develop a qualitative model of
a quantitative dynamical system and then use the qualitative
model to analyze the behavior of the dynamical system. While
the results of such analysis will be qualitative in nature,
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since intervals and regions will be used instead of points,
the qualitative conclusions still should be correct. Abstractions
that satisfy such a requirement are called consistent.

For a simple example, consider the physical abstraction
of “boiling temperature”. While it is customary to say that
the boiling temperature of water is 100 C, this is not quite
true, since whether water is boiling or not also depends on
the surrounding environmental pressure. If the pressure is
higher than one atmosphere then boiling will not occur at
100 C. Obviously, a more precise statement is that the boiling
point for water is 100 C under the pressure of 1 atmosphere.
However, while adding one more variable (pressure) makes
the definition of the abstraction more precise, it still does not
solve the problem because it does not tell us what happens
to water when it is in a vacuum or when the surrounding
atmospheric pressure is two atmospheres. If we consider the
Cartesian product of two variables, temperature and pressure,
and a point in this space <100 C, 1 atmosphere>, then two
straight lines through this point, perpendicular to the axes,
would divide this space into four regions, corresponding to
temperatures below/above 100 C and pressures below/above 1
atmosphere. This kind of abstraction would not be consistent
since within the same region water could be boiling or not.
A consistent abstraction would take into consideration the
relationship between the temperature and the pressure. Such a
relationship could be captured by a line in such a 2D space,
which would define two regions - one for “boiling” and one for
“not boiling”.1 For a higher-dimension space, the line would
be replaced by a hypersurface.

An example of reasoning with abstractions about a dynami-
cal system is: “Given the system input is within a given range
of inputs and the initial state is within a given region of states
and the input is applied over a time that is within a given time
interval, then the next state will be within a given region of
states and the output will be within a given range of outputs.”
This reasoning is correct if the predicted states and outputs
always fall within the specified ranges or regions.

The Q2 framework for reasoning with abstractions about
a general dynamical system (c.f. [32]) is shown in Figure
1. In this figure, the lower row shows the (quantitative)
general dynamical system (GDS), the top row represents the
qualitative dynamical system (QDS) and the middle shows
the qualitative abstraction functions, χ, that map the GDS to
the QDS.

The model of the GDS can be represented by differential
(or difference) equations:

q̇ = f(q(t), x(t), t) (17)

w = g(q(t), t) (18)

where q is the state, w is the output, x is the control input
of the system, f is the state transition function and g is the
output function. In the control literature [32]–[34], this set of
equations is generally referred to as the plant model, where
the function f determines how the system state q varies in

1A physicist would carry this kind of reasoning further by adding more
variables, but we will stop here since our goal here is to just give an idea of
what the difference between consistent and inconsistent abstractions is.

Fig. 1. Q2: Quantitative-qualitative representation of a dynamical system.

response to the input (control signals), g determines how the
output signal is generated as a function of state. The Cartesian
products of the input, state and output variables are referred
to as the input space X, state space Q and output space W,
respectively. Additionally, time is represented by an ordered
set T.

Formally, an abstraction is a mapping from a real system to
an abstract system which maintains certain desirable properties
and throws away details [5], [35]. A mapping from a set S to
a finite set I is called a qualitative abstraction function if it
is total and many to one.

In the Q2 approach, a qualitative abstraction consists of
three abstraction functions. The first one operates on the
Cartesian product of time T, initial state Q0 and input X.
This Cartesian product is represented as TQX. The other two
abstract current state and output. Thus formally, the qualitative
abstraction function, χ, is defined as:

χ = (χTQX, χQ, χW) (19)

consisting of three qualitative abstraction functions:

χTQX : T ×Q×X→ Λ (20)
χQ : Q→ Θ (21)
χW : W→ Ω (22)

The sets Λ,Θ,Ω are called the qualitative input events, qual-
itative states and qualitative outputs, respectively. The two
functions shown in the top row of Figure 1 are called the
qualitative state transition function

φ : Θ× Λ→ Θ (23)

and the qualitative output function

γ : Θ→ Ω (24)

As shown in [6], a Q2 abstraction χ is consistent if the
following two conditions hold:

γ(χQ(q)) = χW(g(q)) (25)

φ(χQ(q0), χTQX(t, q0, x)) = χQ(f(t, q0, x)) (26)

Assuming that the spaces TQX, Q and W of a dynamical
system are given, the question is how to derive the sets Λ,
Θ and Ω of the QDS? The answer depends on what else is
known. In [6] it was assumed that the partition of the output
space W by critical hypersurfaces in that space was known.
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In that case the critical hypersurfaces that partition the state
space Q can be obtained as an image of the output space hy-
persurfaces through g−1. Similarly, the critical hypersurfaces
in the TQX space can be obtained through the inverse of the
state transition function f . These hypersurfaces then delineate
regions in W, Q and TQX, respectively. Each region is then
assigned a symbol representing elements of the sets Λ, Θ and
Ω, respectively.

Finally, the function φ can determined by selecting any point
(t, q0, x) in a given region in TQX, represented by the symbol
λ ∈ Λ, and a region in Q corresponding to q0, represented
by the symbol θ ∈ Θ, and assigning to these two symbols
the symbol θ′, such that q′ = f(t, q0, x) is in the region
represented by the symbol θ′. A similar procedure can be used
to derive the qualitative output function, γ.

V. Q2 REPRESENTATION OF THE CONFLICT ALERT
RESOLUTION PROBLEM

Now we apply the Q2 approach to the problem of conflict
alert resolution. First we consider two aircraft and refer to
them as an aircraft pair. We represent two aircraft as one
sampled-data dynamical system. The variables and the model
of this dynamical system are as follows.

A. System Model
The joint state vector q for an aircraft pair in the X − Y

plane is given by Equation 27 below. The joint input vector x
for the pair is given by Equation 28. And the state transition
function f is given by Equation 29.

q(k) = [x1(k), y1(k), ẋ1(k), ẏ1(k), x2(k), y2(k), ẋ2(k), ẏ2(k)]T

(27)

x(k) = [ax1(k), ay1(k), ax2(k), ay2(k)]T (28)

q(k) = f(q(k − 1), x(k − 1), k) =
[

A 0(4, 4)
0(4, 4) A

]
· q(k − 1) +

[
B 0(4, 2)

0(4, 2) B

]
· x(k − 1) (29)

where 0(4,4) is a 4 by 4 matrix of zeroes, 0(4,2) is a 4 by
2 matrix of zeroes and A, B are matrices defined below in
which T represents the sampling period.

A =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , B =


T 2/2 0

0 T 2/2
T 0
0 T

 (30)

The output vector w of the system is given by Equation (31).

w(k) = [x1(k)− x2(k), y1(k)− y2(k),
ẋ1(k)− ẋ2(k), ẏ1(k)− ẋ2(k)]T (31)

The output function is given by Equation (32).

w(k) =


1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

 · q(k) (32)

B. Qualitative Partitions

The space of inputs X of this system is four dimensional.
It consists of vectors x of accelerations, as shown in Equation
28. The output space W of this system is four-dimensional. It
consists of vectors w shown in Equation 31. The state space
Q is eight-dimensional. It consists of state vectors q of the
type shown in Equation 27. The TQX space is the Cartesian
product of T × Q × X, where T represents time. It is a 13-
dimensional space of vectors as shown in Equation 33 below.

[x1(k), y1(k), ẋ1(k), ẏ1(k), x2(k), y2(k), ẋ2(k), ẏ2(k),
ax1(k + 1), ay1(k + 1), ax2(k + 1), ay2(k + 1), T ]T (33)

Note that according to the Q2 approach presented in [6],
the Q subspace of TQX represents “initial states”, i.e., for any
time k, we have a vector q(k) ∈ Q, as well as a vector q(k−1)
in the Q-subspace of TQX. Thus this model includes two
separate spaces for state vectors. Time T shown in Equation
33 represents the length of the time interval between the time
instant k − 1 and k.

The qualitative abstraction functions can be presented in
at least two ways. In [6] it was proposed to use critical
hypersurfaces to capture partitions of the system spaces.
This approach is especially appropriate for continuous time
systems. In the work presented in this paper, we deal with
a sampled-data system and thus we are able to represent the
abstraction functions as explicit maps from appropriate subsets
of the system spaces to the qualitative sets.

In the Q2 approach presented in [6], it was assumed that
the qualitative partition of the output space W was given
and then the qualitative abstractions of the state space Q
and of the qualitative input space TQX were derived from
the hypersurfaces partitioning the output space through the
inverses of the output function g and state transition function
f , respectively. Then an automaton was constructed in such a
way that qualitative inputs would drive the automaton from one
qualitative state to another, while the output function would
provide qualitative labels (symbols) characterizing system
behavior, i.e., qualitative outputs.

In the application of the Q2 approach to the situation of con-
flict alert generation discussed in this paper we are interested
in the qualitative abstractions corresponding to the specific
alerts described in Section III-B, i.e., PROCON, LINCON and
MANCON. In order to cover all possible situations, we need
to add the SAFE state to this list, i.e., the state in which none
of the three alerts is generated.

The analysis of these alerts reveals that two of them -
PROCON and LINCON - are defined in terms of the output
variables. PROCON is defined by Equation 9. As we can see,
this alert is defined purely in terms of the position variables, all
of which are included in the output vector defined in Equation
31. Therefore a region in the output space - a qualitative output
- corresponds to the PROCON status.

LINCON is defined in Equations 10 and 12. Again, these
equations make use of only relative positions and relative
velocities, which can be computed from the output variables.
However, LINCON is also based on the assumption that
the acceleration is zero (linear prediction means constant
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velocity is assumed for each aircraft). Since the acceleration
variable belongs in the input space, the question is whether
the definition of LINCON should involve the input variables.
The answer to this question has to be addressed before we
can continue with partitioning the system spaces and the Q2

approach.
From the point of view of air traffic control, even though the

linear prediction in LINCON is based upon the assumption that
the acceleration is zero, the actual acceleration of the aircraft
is not measured or computed to support this assumption.
Neither is the aircraft controlled by the pilot to fly at zero
acceleration. When the aircraft is flying at varying speed,
LINCON conditions are still checked and LINCON alerts are
generated whenever the LINCON conditions are satisfied. It is
understood that when the actual flight has a discrepancy with
the constant velocity assumption, the track prediction would
be somewhat inaccurate. So LINCON can be fully specified
in the output space.

A similar question involves MANCON. MANCON is de-
fined by equations 12 through 16. As we can see from these
equations, the MANCON condition depends on the relative po-
sitions and relative velocities of an aircraft pair. It also depends
on the individual (“self” aircraft) position and velocity, plus
it depends on the turn rate (or cross track deviation). But the
MANCON conditions specified by the equations listed above
are tested only when a maneuver is detected. Thus, unlike
in the LINCON case, there is no constant velocity assumed
and thus accelerations need to be considered. Due to this fact
and taking into consideration that the turn rate depends on
the previous state (see [31] for turn rate computation), the
conclusion is that the definition of MANCON must involve
the input variables (see Equation 28). Or in other words, the
MANCON condition must be defined in the TQX space.

In summary, to derive qualitative abstractions and define a
QDS, we need to extend the approach described in [6]. More
specifically, we need to develop an approach to define a QDS
when some of the qualitative abstractions are defined in the
output space W, while some others in the TQX space.

One might try to start with partitioning the TQX space and
then partition the state space by mapping the partitioning of
the TQX space through the state transition function. However,
in that case the result might not be a partition, since the images
of the TQX partitions in the state space could overlap. This
problem occurs when the state transition function is not one-
to-one. Our approach to developing a QDS for the conflict
alert generation problem, in which some of the qualitative
abstractions need to be defined in the TQX space, is presented
in the next section.

C. Multi-step Partitioning Algorithm

To solve the problem of developing a QDS for a dynamical
system for which qualitative abstractions are defined in both
output and TQX spaces, we propose a multistep approach.
First, we develop an automaton that models PROCON and
LINCON. This automaton is a Moore machine [36] in which
outputs (alerts) are associated with qualitative states. Then we
sub-partition the TQX space using the MANCON condition.

−15 −10 −5 0 5 10 15
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1
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2
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x 1′(k
) 

−
 x

2′(k
)

Fig. 2. Partitioning of the output space. Red dots represent ω1 (PROCON),
purple - ω2 (LINCON), blue - ω34 (OTHER).

This results in a Mealy machine [36] in which alerts are
associated with qualitative inputs. However, since this rep-
resentation is not desirable, we convert it into an equivalent
Moore machine [36]. This concludes the QDS construction
process. All the steps in this process are described below.

1) Partitioning of the Output Space and Qualitative Outputs
: In this step we partition the output space W into three
regions, two of which correspond to the PROCON and LIN-
CON alerts as defined in Section III-B, with the rest of the
space assigned to the “OTHER” region, corresponding to the
situations where none of the two alerts are issued. To formalize
the problem we introduce the following symbols to label the
regions of the output space (qualitative outputs):

Ω = {ω1, ω2, ω34}

where ω1 includes those points in the output space for which
the PROCON alert is issued (defined by Equation 9), ω2

corresponds to the points in which PROCON alert is not issued
but LINCON alert is issued (defined by Equations 10 and 12),
ω34 includes the “OTHER” points. These OTHER points may
include MANCON and “SAFE” which are not separable at
this time. The result is the abstraction function:

χW : W→ Ω (34)

An example of a projection of the output space partitioning
onto 2D is shown in Figure 2. The horizontal axis in this figure
represents x1(k) − x2(k) while the vertical axis represents
ẋ1(k)− ẋ2(k).

2) Partitioning of the State Space and Qualitative States :
The goal of partitioning of the state space Q is to obtain the
qualitative state abstraction function χQ:

χQ : Q→ Θ (35)

where Θ represents the set of qualitative states. This goal can
be achieved in the following steps:

1) For each state q ∈ Q compute the output associated with
it by the output function g.
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Fig. 3. Partitioning of the state space. Red is θ1 (PROCON; not visible in
this figure), purple is θ2 (LINCON), blue is θ34 (OTHER).

2) Find the qualitative output corresponding to this output
by the qualitative output function χW .

3) Find the qualitative state θ ∈ Θ that is mapped to this
qualitative output by the qualitative output function γ.
Assign this qualitative state to q.

This algorithm can be captured by the following equation:

χQ(q) = γ−1(χW (g(q))) (36)

The completion of this process requires the knowledge of
the qualitative states and of the qualitative output function γ.
In this case, we define the qualitative state set as consisting
of three qualitative states, each corresponding to a qualitative
output:

Θ = {θ1, θ2, θ34} (37)

The qualitative output function γ is defined in such a way that
θ1 corresponds to ω1 (or PROCON), θ2 corresponds to ω2 (or
LINCON), and θ34 corresponds to ω34 (or OTHER). We can
represent this as an explicit listing of the assignments:

γ = {< θ1, ω1 >,< θ2, ω2 >,< θ34, ω34 >} (38)

An example of a projection of the state space partitions onto
2D is shown in Figure 3. The horizontal axis in this figure
represents ẋ1(k) while the vertical axis represents ẏ1(k).

3) Partitioning of the Input Space and Qualitative Inputs :
The qualitative input abstraction function χTQX is obtained in
a similar way as the abstraction function for the states. Since
at this time we are not taking into account the MANCON
alerts, we denote the qualitative abstraction function as χΛ1 .
We define the qualitative input set Λ1 as consisting of three
qualitative inputs corresponding to PROCON, LINCON and
OTHER, respectively:

Λ1 = {λ1, λ2, λ34} (39)

The meaning of these qualitative inputs is that λ1 causes
transition to θ1, λ2 causes transition to θ2 and λ34 causes
transition to θ34. This defines the qualitative state transition
function Φ. It is represented as an automaton as shown in

/LINCON/OTHER/PROCON

λ1

λ2
λ34λ1

λ2

λ34

λ34

Fig. 4. Moore Machine. Qualitative state transitions without considering
MANCON (level 1).
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Fig. 5. Partitioning of the input space. Red is λ1 (PROCON), purple is λ2

(LINCON), blue is λ34 (OTHER).

Figure 4. This is a Moore machine in which outputs are
associated with states. From this automaton, we can see that
when the aircraft pair is in a conflict state, say PROCON,
it can transition to OTHER by applying the input λ34. λ34

defines a class of maneuvers, each of which takes the aircraft
pair from either the PROCON or the LINCON conflict state
to the OTHER state.

The qualitative input abstraction function χΛ1 is defined by
the following expression:

χΛ1(q0, x, T ) = Φ−1(χQ(q0), χQ(f(q0, x, T ))) (40)

An example of a projection of the input space partitions
onto 2D is shown in Figure 5. The horizontal axis in this
figure represents time, while the vertical axis represents the
initial Y position, y1(0), of the first aircraft in the pair.

As a result, we obtain three regions in the TQX space
corresponding to the three qualitative inputs. The regions are
not necessarily connected. For instance, as can be observed in
Figure 5, the region corresponding to λ34 is disconnected and
consists of two subregions: one for T = 5 and 10, and another
for T = 55.

4) Partitioning of TQX with MANCON: Now we expand
the qualitative representation of this dynamical system to
account for MANCON. Since MANCON is defined in terms
of the variables from the input space, we need to refine the
abstraction χΛ1 so that it identifies regions in the TQX space
that correspond to MANCON. In other words, we need to
sub-partition TQX into regions corresponding to MANCON
and non-MANCON, resulting in the qualitative input set Λ2

consisting of two qualitative inputs:

Λ2 = {λm, λs} (41)

where λm corresponds to MANCON and λs corresponds to
non-MANCON. Then the two partitions (corresponding to



8

/MANCON

/MANCON

/MANCON

/SAFE

/LINCON
/LINCON

/PROCON
/PROCON

Fig. 6. Mealy Machine. Qualitative state transitions with MANCON included.

Λ1 and Λ2) need to be combined. In a general case, this
might result into sub-partitioning of each of the partitions
corresponding to PROCON, LINCON and OTHER, i.e., in
a Cartesian product of the two qualitative input sets

Λ1 × Λ2 = {< λ1, λ
m >,< λ2, λ

m >,< λ34, λ
m >,

< λ1, λ
s >,< λ2, λ

s >,< λ34, λ
s >} (42)

However, in this particular example, the MANCON alert is
issued only if no PROCON or LINCON is issued. Thus the
pairs < λ1, λ

m >,< λ2, λ
m > in the above Cartesian product

are not needed since they do not correspond to any regions in
the TQX space. This also implies that < λ1, λ

s >,< λ2, λ
s >

correspond to the same regions as λ1 and λ2, respectively.
In the new representation, we label these regions as λs

1, λ
s
2.

Finally, only the OTHER partition (represented by λ34) needs
to be subpartitioned by the MANCON conditions. We use
the following notation for the remaining two pairs: λm

34 =<
λ34, λ

m > and λs
34 =< λ34, λ

s >. In summary, we have the
qualitative inputs Λ:

Λ = {λs
1, λ

s
2, λ

m
34, λ

s
34} (43)

where λs
1 corresponds to PROCON, λs

2 to LINCON, λm
34 to

MANCON and λs
34 to SAFE.

Our next goal is to construct an automaton that captures
the qualitative behavior of this dynamical system. Since λm

34

and λs
34 represent the split of λ34 into two qualitative inputs,

we could just re-draw the automaton of Figure 4 replacing the
transition labeled by λ34 with two transitions labeled by λm

34

and λs
34, and replacing the symbols λ1, λ2 with the symbols λs

1

and λs
2, respectively. While this would capture the behavior of

the system with respect to states and transitions, this would not
capture the outputs. Since outputs are associated with states,
such an automaton would not capture the output corresponding
to the MANCON alert and to the SAFE condition. The outputs
of MANCON and SAFE are still associated with the inputs.
So in order to represent the outputs faithfully we need to use a
Mealy machine representation in which outputs are associated
with transitions (i.e., states and inputs), rather than with states.
Towards this end, we use the Moore machine of Figure 4
as a start, but move all the outputs from the states to the
transitions to the particular states. Moreover, we add the two
new transitions caused by λm

34 and λs
34. The resulting Mealy

machine is shown in Figure 6.
5) Converting the Mealy Machine to a Moore Machine

: While the Mealy machine of Figure 6 captures all three
alerts, it is not very convenient to use for tracking system
behaviors. For instance, F. Wagner [37] makes the following
statement: “ If the specified state machine is to be coded the

/LINCON/MANCON/PROCON

/SAFE

Fig. 7. Complete Moore Machine. Qualitative state transitions, with MAN-
CON included.

model used has enormous influence on the program quality.
A Moore model is very easy to code, the transition may be
often implemented just by constants as initialized tables. The
Mealy model opens the Pandora box: the program becomes so
complex that we lose the state machine in the confusing code.”
However, a Mealy machine can be converted to an equivalent
Moore machine, and vice verse [38]. So in the next step we
convert the previously obtained Mealy machine (Figure 6)
to a Moore machine. For this purpose, we use the standard
procedure known in the literature (e.g., [39]).

1) For each transition, move the output associated with the
transition “forward” into the next state, i.e., associate the
output with the state.

2) If this results in a state with two different outputs, then
“split” that state into as many states as there are different
outputs.

3) The “next” states for the created states are the same next
states as for the original state (i.e., same as for the state
that was split in the previous step).

In formal terms, the conversion can be represented as a
function, β, from state-input pairs of a Mealy machine to states
of a Moore machine (these states are sometimes called abstract
states). Let θi denote a state of the original Mealy machine, λj

denote an input and ξk denote a state in the Moore machine.
The Mealy-Moore conversion procedure can then be defined
as:

ξk = β(θi, λj) (44)

The Moore machine representation of our conflict alert
resolution problem is shown in Figure 7. As we can see, an
additional state has been created as a result of splitting the
θ34 qualitative state. So now there are no multiple transitions
between two states. This Moore machine includes four abstract
states: ξ1, ξ2, ξ3, ξ4. Each of these states is now associated with
a single alert: ξ1 - PROCON, ξ2 - LINCON, ξ3 - MANCON
and ξ4 - SAFE. The mapping from the states of the Mealy
machine to the states of the Moore machine is described below.

ξ1 = β(θ1, .) (45)
ξ2 = β(θ2, .) (46)

ξ3 = β(θ34, λ
m
34) (47)



9

ξ4 = β(θ34, λ
s
34) (48)

The Moore machine representation is very convenient for
the sake of comprehension. It is easy to understand how to
search for desired plans of control actions - one just needs
to find a sequence of qualitative inputs such that they drive
the state machine from the current state to another (desired)
state. However, this representation adds some complexity to
the approach described in [6]. This complexity is due to the
fact that the newly created states are abstract, i.e., they don’t
have constraints associated with them directly. This means that
an algorithm for state identification needs to be developed.

For instance, in the representation we had first developed for
our alert resolution problem the two qualitative states - θ1 and
θ2 (corresponding to PROCON and LINCON, respectively) -
had a simple interpretation through the constraints that define
these qualitative states (Equation 36). The state corresponding
to OTHER, on the other hand, did not represent a clear
physical status of the aircraft pair; it just represented some
region that is neither associated with PROCON nor with
LINCON. However, by following the two-step procedure of
the derivation of the final Moore machine, i.e., first deter-
mining the concrete qualitative states defined by Equation 36
and then applying the transformation to the Moore machine
procedure defined by Equations 45 through 48, we obtain a
state machine representation in which all of the states have
direct interpretations. Note that the Mealy machine of Figure
6 shows that two different qualitative events lead to the same
qualitative state (θ34). Those two qualitative events cause two
different outputs. Consequently, state θ34 had to be split into
two different qualitative states ξ3 and ξ4.

VI. SYMBOLIC REASONING FOR CONFLICT RESOLUTION
IN THE X-Y PLANE

Now we describe the steps in the procedure of inferring
conflict resolution advisories based upon the Q2 approach
presented in this paper.

1) Determine the current qualitative state.
2) Determine the desired next qualitative state.
3) Determine the sequence of qualitative inputs that results

in the transition to the next qualitative state determined
in step 2.

4) Select a (quantitative) value for the input vector from
among the values within the region associated with the
qualitative input determined in step 3.

A. Determining the Current Qualitative State

The current qualitative state is computed as follows:
1) Compute the current qualitative output using the quali-

tative output abstraction χW (Equation 34).
2) Determine the current concrete qualitative state using the

qualitative state abstraction χQ defined by Equation 36.
3) Determine the current qualitative input using the quali-

tative input abstraction χΛ1 defined by Equation 40.
4) Determine the current qualitative state of the Moore

machine using the Mealy-Moore conversion function
defined in Equations 45 through 48.

B. Determining the Desired Next Abstract State

The next task for Q2 reasoning is to determine the quali-
tative abstract state that the aircraft pair should be in at the
next scan. This can be done by looking up the automaton
map shown in Figure 7. If the aircraft pair is in a conflict
state, a new state should be selected such that it is no
more emergent than the current state. The emergency levels
from low to high are: ξ4=SAFE, ξ3=MANCON, ξ2=LINCON,
ξ1=PROCON (most urgent). This results in the following
precedence ordering of the states (from the most desirable to
the least desirable):

ξ1 � ξ2 � ξ3 � ξ4 (49)

The most preferred state ξ1 may not be reachable from all
the states and thus the next best state needs to be selected.
The selection decision should be made by analyzing possible
transitions.

C. Determining the Qualitative Input

The third task for Q2 reasoning is to find the qualitative
input that will result in a transition to the selected desired state.
This can be achieved by selecting a qualitative input that leads
to a less emergent state during each step. The automaton map
provides the choices from {λs

1, λ
s
2, λ

m
34, λ

s
34}. The qualitative

input (actually, a series of single step inputs) that leads to the
desired state is selected. This gives a coarse solution to the
maneuver advisory.

D. Determining the Quantitative Input

Once the qualitative input is selected, the values of the input
variables (Equation 28) need to be selected such that the input
vector falls within the given qualitative input. Any set of values
in this region would move the system to the desired state.
However the best one will minimize the cost function defined
in Equation 3. Since the search is only within a subregion of
the input space, it is less time consuming than a full-space
search would be. Also, the search is in the subregion that
guarantees the desired existence of a solution.

VII. EVALUATION OF USABILITY OF Q2 ABSTRACTIONS

To assess the potential utility of Q2 abstractions in con-
flict alert resolution, we have implemented (in Matlab) the
search algorithms for both the original search space and for a
combination of the original and abstract spaces. To be able
to run simulations within reasonable amounts of time we
implemented a simplified version of the problem by making
an assumption that the “intruder” aircraft does not perform
any maneuvers, except just following the trajectory that it was
running when a conflict was detected. This assumption results
in a significant reduction of the number of maneuvers that
need to be analyzed by the algorithms.

Theoretically, we could use just the first three steps of the
algorithm described in Sections VI-A through VI-C and then
randomly select a maneuver from the qualitative input region
developed in step VI-C. Any maneuver from the selected
qualitative input set could be chosen and each such selection
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would lead to a safe state. However, such a selection might not
be desirable with respect to the cost function. For this reason,
we proposed to use the step described in Section VI-D in
which a quantitative algorithm selects an optimal sequence of
maneuvers from the qualitative partitions selected by the Q2

algorithm.
The first steps described in Sections VI-A through VI-C

are computationally easy. The step of exhaustive search of a
qualitative partition, described in Section VI-D is the most
time consuming operation since it is essentially the search in
the original space that was analyzed is Section I. But still the
advantage of this combined approach is that in this case the
search space is significantly smaller. However, it is not possible
to say precisely what the size of the space is. Roughly, since
the whole space in the case discussed in this paper has been
partitioned into four partitions, the expected size of the space
is one quarter of the original size. The exact reduction, though,
depends on how many of the points in the inputs fall into a
given qualitative input region. In our simulations we saw, for
instance, that 4, 6, 9, 11 and 15 out of total of 27 maneuvers
were applicable to a single state.

To assess both the computation time and the cost function
of the two approaches, we developed simulations of a number
of scenarios in which aircraft pairs were moving so that they
would come into a conflict and thus RA’s had to be generated
such that, if followed by the pilot, would move the “self”
aircraft out of the danger zone. The simulated data were fed
into both the Q2 algorithm described in this paper and into
an algorithm that was searching the original search space. The
results then were compared in terms of both the computation
times and the quality of the maneuvers generated by the two
approaches.

In this section we first describe the scenarios used in the
simulations. The most common encounter possibilities are
included. Then the computation costs of these scenarios for
both methods are compared. And finally, the maneuver quality
metrics of the two methods are compared.

A. Scenarios

We simulated twenty scenarios of pairs of aircraft trajecto-
ries. Each simulation covered 30 scans. The duration of each
scan was 4.6 sec. This assumption was based on the frequency
of a typical scan of the radar. For each scenario, the simulated
aircraft pairs were in a conflict situation at 15 scans; we call
it the approach time. The simulated aircraft included a “self”
aircraft, i.e., the aircraft from whose point of view the alerts
were computed, and the “intruder” - the aircraft whose state
and possible maneuvers were estimated.

The scenarios can be classified in the four types, depending
on two aspects: 1. whether the planned flight path of the “self”
aircraft is linear or turning, and 2. whether the velocity of the
“intruder” aircraft is constant or accelerating. Table II shows
parameters of four scenarios which are representative of the
four scenario types. The turn rates, accelerations, starts and
ends of the turns and the approach angles are all shown in
Table II. Examples of simulated paths are shown Figure 8.

TABLE II
EXAMPLES OF SIMULATED SCENARIOS.

Self (A) Intruder (B)
ω Turn start Turn end a Approach

Scen [◦/sec] [scan #] [scan #] [g] angle [◦]
1 0 - - 0 45
2 1 5 16 0 90
3 1 2 16 0.05 90
4 0 - - 0.1 80
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Y

Fig. 8. An example of simulated tracks (“Self” - red circles, “Intruder” -
blue dots).

B. Computed Maneuvers

Both algorithms computed conflict conditions and in case a
conflict was detected, generated maneuvers that would take the
“self” aircraft out of a conflict situation. In this computation,
a number of look-ahead scans were considered. I.e., for each
of the feasible maneuvers, all the feasible maneuvers of the
“self” aircraft were considered, and so on until a predefined
number L of the look-ahead steps.

Examples of maneuver sequences computed by the Q2

algorithm for four scenarios are summarized in Table III. The
first column in this table identifies the scenarios summarized
in Table II. The maneuvers are labeled m1 through m5 for
the look-ahead levels L = 1 through 5, respectively. For
each scenario, Table III shows the steps in the maneuver
sequence in terms of turns and accelerations. Moreover, for
each step the number of feasible maneuvers at each L is
shown. Computation of maneuvers is also shown graphically
in Figures 9 and 10. Figure 9 shows maneuvers considered by
the Q2 algorithm of the “self” aircraft. Figure 10 shows the
maneuvers selected by the Q2 algorithm out of the possible
maneuvers at each of the look-ahead steps.

C. Computation Time

The simulations were implemented in Matlab and thus the
computation times for both algorithms were appropriately
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Fig. 9. Maneuvers considered by the Q2 algorithm for Scenario 2.
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TABLE III
EXAMPLES OF MANEUVERS.

Scen m1 m2 m3 m4 m5

1 ω [◦] 2 2 2 2 2
a [knots/min] 0 0 0 0 0
No. of choices 5 42 354 3,010 25,973

2 ω [◦] -5 0 0 0 0
a [knots/min] 0 135 135 90 90
No. of choices 3 34 411 5,280 72,176

3 ω [◦] -4 0 0 0 0
a [knots/min] 0 0 -45 0 90
No. of choices 1 6 75 1,154 18,242

4 ω [◦] 6 2 2 2 1
a [knots/min] 0 0 0 0 0
No. of choices 3 33 186 824 7,123
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Fig. 10. Maneuvers computed for Scenario 3 by the Q2 algorithm.

higher than if these algorithms were implemented in, say, C.
However, the Matlab implementation was intended to show the
relative differences in the computation times of search using
the original space and the abstractions. The computer used for
this task was Dell Pentium R 4, CPU 3.20GHz, 1.00GB of
RAM. The PC version of the MATLAB software was version
6.5.1.

During each run of a scenario in Matlab, the computation
time in seconds was recorded. The times that are needed to
generate the maneuvers by the Q2 algorithm are included in
Table IV. From the table it is seen that the computation time
is scenario-dependent - some scenarios cost more float point
operations than others. Overall, the average cost for a 5-step
computation was about 854 seconds.

The computation times of search in the original space are
given in Table V. As can be seen from this table, it takes
about fifteen and a half hours to compute the 5-step prediction
for Scenario 4 and more than 30 hours to compute a 5-step
prediction for the other three scenarios. Since scenarios 1,
2 and 3 have not finished within 30 hours, we abandoned
these simulations. Comparing Tables IV and V, we can see
that the search in the original space takes roughly two orders
of magnitude more time than the search that uses the Q2

approach. It is reasonable to expect that for the number of
look-ahead levels more than five, the difference would be even

TABLE IV
TIME IN SECONDS OF GENERATING MANEUVERS FOR LOOK-AHEAD UP TO

5 USING THE Q2 METHOD.

Scen L = 1 L = 2 L = 3 L = 4 L = 5 Q2 total
1 0.110 0.422 2.390 24.6 507.9 535.4
2 0.078 0.156 2.016 31.4 2585.4 2619.3
3 0.047 0.094 0.437 6.4 191.5 198.5
4 0.095 0.233 1.094 6.5 57.4 65.3

TABLE V
COMPUTATION TIME TO GENERATE MANEUVERS FOR 5 LOOK-AHEAD

STEPS USING SEARCH IN THE ORIGINAL SPACE.

Scen L=1 L=2 L=3 L=4 L=5
1 0.219 2.157 44.235 13383 > 30 hours
2 0.125 1.969 57.719 13426 > 30 hours
3 0.344 2.688 54.532 13433 > 30 hours
4 0.266 2.438 74.344 11293.7 15.5 hours

greater. However, we were not able to run the full-space search
algorithm for more than five levels.

D. Quality of Resolution Advisories

In this investigation we defined the function g(), shown in
Equation 3, as a measure of the quality of a sequence of
maneuvers generated by a system in response to a conflict
alert. A maneuver is better than another when it is less
destructive to the flight plan, i.e., the derived path is closer
to the flight plan than that of the other maneuver. In other
words, the maneuver is better when the delay caused by the
maneuver(s) is shorter, i.e., the integral of the discrepancy
between the original path and the derived path over time is
smaller than that for another maneuver. Therefore, the smaller
the cost function, the better the performance, as long as all
the constraints are satisfied.

The values of the cost function g() averaged over all the
maneuver steps for the four scenarios are shown in Table
VI. These values represent the average deviation from the
planned trajectory, in nautical miles. The second column shows
the values for the Q2 method, while column three shows the
results for the full-space search. The last column shows the
difference between the two methods.

As can be seen in the table, the values of the cost function
for the Q2 approach are somewhat higher. This was expected,
since the Q2 method does not analyze all of the possible
maneuvers and thus the solutions provided by this method are
not optimal. Note that, as described in Section VI-B, the Q2

algorithm always picks a new qualitative input based upon the
heuristic represented by the ordering function (see Equation
49). This heuristic implements a greedy policy, i.e., the next
maneuver must be closer to the final (safe) state. Such a
heuristic is not always optimal. For instance, in control theory
the control input is not necessarily a monotonic function of
time, but instead, the control signal is an overshot and then it
is diminished when the system gets closer to the desired state.

However, the price for the increased speed of the computa-
tion is not that high. On the average, for the Q2 approach, the
average deviation from the planned path in each step is about
0.2 to 0.4 nautical miles, while the “best possible maneuvers”
(using the full-space search method) are, on average, 0.15
nautical miles away from the flight plan. It is worth noting
that the radar measurement noise is equivalent to 0.05 nautical
miles, i.e., the position readings are within ±0.05 nautical
miles. The differences between the two methods are not within
the error margin but still are relatively small.
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TABLE VI
VALUES OF THE AVERAGE COST FUNCTION g/L (IN NAUTICAL MILES).

Scen Q2 method Full-space Search Difference
method

1 0.2178 0.1584 0.0594
2 0.4264 0.1155 0.3109
3 0.3414 0.0816 0.2898
4 0.4412 0.1422 0.2990

VIII. CONCLUSIONS

First, it was shown that the problem of generating horizontal
conflict resolution advisories has a prohibitively high compu-
tational cost. Three reasons for this were identified - a large
size of the original solution search space, a need to analyze
all possible maneuvers of the “intruder” aircraft in response to
each maneuver of the “self” aircraft and a need for multi-step
prediction of potential maneuvers by the aircraft. To ameliorate
this problem, the use of qualitative abstractions based on the
Q2 method was proposed. In this approach, the system’s output
space is partitioned by hypersurfaces derived from the problem
specification. Then qualitative partitions of the state and input
spaces are derived by inverse mappings of the output space
partitions through the output and state transition functions,
respectively. Then an automaton is constructed to represent the
dynamic behavior of the system. The derivation of maneuver
decisions is then based on the analysis of the automaton
by searching possible sequences of qualitative inputs to the
automaton.

In the selected air traffic control scenario, the specification
of the problem is provided by the definitions of the four
alerts: PROCON, LINCON, MANCON and SAFE. In our
approach we used these specifications for defining the seman-
tics of qualitative states (a different semantics was used for
a similar idea in [40]). Following the Q2 approach, first a
model of the dynamical system was provided and the problem
was formulated as an optimization problem. Then qualitative
partitions of the system space were analyzed. The conclusion
was that PROCON and LINCON can be fully defined by
qualitative partitions of the output space of the dynamical
system. However, MANCON can be represented only in the
Cartesian product of input, state and time. Thus the Q2

approach had to be extended to cover the case when not all
the partitions are defined fully within the output space.

To address this problem, a multi-step approach was pro-
posed. In the first step an automaton (a Moore machine)
modeling PROCON, LINCON and OTHER (that includes
both SAFE and MANCON) is derived following the Q2

approach. Then the input space (Cartesian product of input,
state and time) is partitioned into qualitative inputs and another
automaton is constructed. It is a Mealy machine, having
outputs associated with transitions. In the next step, the Mealy
machine is converted to an equivalent Moore machine, which
is subsequently used for reasoning about sequences of conflict
resolution advisories. The reasoning algorithm proposed in
this paper is rather straight-forward, however all of the steps
are intimately linked to the representation construction steps.
First, the current qualitative state needs to be determined,
then the desired final state (SAFE) is selected and a sequence
of qualitative inputs is searched for such that satisfies some

quality conditions. Finally, quantitative inputs are selected
from the selected regions of the inputs.

To assess the impact of using Q2 abstractions, a number
of conflict scenarios involving two aircraft were simulated
in Matlab and used for assessing the computation cost of
exhaustive search with and without the use of the abstractions
(to extend our approach to more aircraft one might resort
to the method of decomposing the problem into pair-wise
configurations proposed in [41]). Moreover, the utility of the
proposed abstractions was assessed in terms of a quality
metric. The conclusion was that the maneuver computation
time with the use of Q2 abstractions is orders of magnitude
smaller than for the search in the original solution space.
Although it was still too long for a CPU of the assumed
computational speed of one millisecond per one analysis, it
would be easy to satisfy by using a faster CPU.

In terms of quality of solutions found, as expected, the
full-space search provided conflict resolution advisories that
resulted in paths that were closer to the planned path and
thus were somewhat better than the ones produced by the
Q2 approach. However, the difference between the solutions
provided by the two algorithms seems to be small enough to
justify the use of the Q2 approach due to its computational
feasibility.

In summary, this paper provided a novel, systematic ap-
proach to the use of abstraction to speed up the computation of
multi-step conflict resolution advisories. This approach could
be incorporated into practical algorithms for computing con-
flict resolution advisories that include horizontal maneuvers.
Obviously, to make such an important decision would require
further studies and more experimentation. To achieve this
objective, we had to expand the Q2 approach in significant
ways. The method is generic since it is expressed in terms of
general dynamical systems and automata. Thus this method
could be relatively easy to apply to any scenario where
problem specifications can be interpreted in terms of different
qualitative partitions of output, state and input spaces of a
dynamical system.
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