

ONTOLOGIES AND METAMODELING:

APPLICATIONS TO POLICY BASED RADIO CONTROL

Mieczyslaw M. Kokar

(Northeastern University, Boston, Massachusetts, USA; mkokar@ece.neu.edu)

ABSTRACT

This paper discusses concepts that serve the purpose of

handling complexity of the life cycle of engineering

systems in general and SDRs in particular: languages,

metalanguages, models, metamodels, ontologies and

architectures. The main objective of this paper is to shed

some light on the Commercial Technology WG effort to

develop a Metalanguage for Wireless Systems.

1. INTRODUCTION

Software defined radios in general, and cognitive radios in

particular, are very complex systems. The high

complexity of these systems is the result of the

sophistication of the requirements that these systems must

satisfy. The complexity is further increased by the fact

that these requirements can change during the operation of

the software radios and that the software radio systems

must be capable of adapting to such changes during the

operation. The adaptation may include not only

adjustments to some of the operational parameters, but

also modification of hardware (reconfigurability),

software (code), as well as design.

Various concepts have been developed to deal with the

high complexity engineering systems. One of the main

approaches to dealing with the complexity of such

systems is to use abstraction. Abstraction means using a

simpler (more abstract) representation of a system, i.e.,

hiding details. An appropriate abstraction, however, will

include all the important features and relevant

relationships among them, so that logical analysis of the

system can be done without getting into too much detail.

A number of abstract representations have been used to

deal with the issue of complexity of systems. Among

others, such concepts as architecture, reference model,

language and metalanguage, model, metamodel and

ontology have been used as intermediate representations

of engineering systems. This paper discusses such abstract

conceptual structures and analyzes some relations among

them. In particular, major differences and similarities

between particular structures are stated and analyzed.

The min goal of this analysis is to come up with some

suggestions on the potential usability of the particular

abstractions to the life-cycle of a software radio system. It

is the hope of the author that these suggestions might be

useful to the SDRF Commercial Technology Working

Group in the process of developing a Metalanguage for

Configurable Wireless Systems [1].

2. LANGUAGES AND MODELS

 First, let us discuss such concepts as “language”,

“metalanguage”, “model” and “metamodel”. It should be

noted that there is no common agreement on the meaning

of these terms among those who use them. Therefore, by

necessity, we need to pick some of the interpretations of

these terms while recognizing that others might have a

different opinion.

2.1. Models and Languages

The term “model” is used in various meanings in the

literature. Here is a quote from the Stanford Encyclopedia

of Philosophy [2]: “On the one hand, a model can be a

representation of a selected part of the world (the ‘target

system’). Depending on the nature of the target, such

models are either models of phenomena or models of data.

On the other hand, a model can represent a theory in the

sense that it interprets the laws and axioms of that theory.

These two notions are not mutually exclusive as scientific

models can be representations in both senses at the same

time.”

The spirit of this formulation is represented in

Figure 1. The figure shows a basic ontology relevant to

these concepts. It shows three classes of things – Model,

Language and Phenomenon/Data. These three classes are

related through three object properties (relations). First,

Language is related to Model by the property of

expresses; a model needs to be expressed in a language.

Second, a model represents a part of a domain, i.e., either

some data or a phenomenon. And finally, these two

properties combined derive another property, describes. In

other words, a language describes a phenomenon or data.

 Figure 1. Model vs. Language

The above quote stresses that a model can be understood

as either a representation of the world or a theory about

the world (the laws and axioms). Note, however, that in

either interpretation of this term, one needs to express the

world in a language. In this paper we take the position that

is closer to the model-as-theory view, i.e., a model is

viewed as a logical theory about a phenomenon or data.

To further clarify this issue, let us delve a bit into the

notion of language. Once we make a commitment to view

models as logical (scientific) theories, we must also view

language in formal terms, i.e., we will talk about formal

languages. In other words, we will view a language as a

component of a formal logical system.

A formal (first order) logical language [3] is usually

defined in terms of a number of primitive symbols and a

collection of rules (a grammar) that allow for combining

symbols into well-formed forms (wffs), or sentences. The

primitives include symbols for representing relations,

functions and constants (names of individuals in a

domain). Additionally, some non-logical symbols (like

parentheses and such) are included.

A language is made into a formal system by adding some

axioms and rules of inference. This gives a way for

introducing logical arguments, or proofs. A proof is a

sequence of wffs in which each wff is either an axiom or

the result of the application of an inference rule to some

of the previous wffs in the sequence. A logical system is

required to be sound, i.e., each proof leads to a sentence

that is true within the logical system. (It should be noted

here that the notion of truth would require a much more

involved discussion, which is well beyond the scope of

this paper.) The notion of proof gives us the ability to

derive which of the sentences are true and which are not.

This gives a great economy or representation since not all

of the true statements need to be stated explicitly. Once a

collection of axioms has been selected, other true

sentences can be derived through the use of inference

rules.

A logical system is just a system that guarantees sound

reasoning. But it does not describe any part of the world.

In order to make a connection to the world, an ontology

needs to be introduced into the logical system. This notion

will be discussed in a bit more detail later in the paper.

For now we just assume that an ontology includes a

vocabulary of terms relevant to a given domain of interest

(phenomenon or data). Having an ontology, we can now

use the power of proof to derive sentences that are true

about a given phenomenon or data.

2.2. Metalanguage and Metamodel

Now the question is – what is the language that defines a

given language? The answer is – it’s the metalanguage.

We can thus distinguish between a defined language and a

defining language. In logic, the defined language is called

the object language and the defining language is called

the metalanguage. In other words, a metalanguage is a

language about a language.

Now the next question is – what is expressed in terms of a

metalanguage? And the answer is – metamodels. In other

words, a metalanguage is used to express terms that are

needed to represent models. Thus now we have a two-

tiered structure – one layer that includes Model and

Language and another layer that includes Metamodel and

Metalanguage, as shown in Figure 2.

Figure 2. Metamodel and Metalanguage

While the object language is a formal language, logic uses

natural languages (like the English language) to play the

role of a metalanguage. Thus a metalanguage in logic is

an informal language.

One could formalize the metalanguage, similarly as the

object language. This is what has been practiced in

computer science and software engineering. Perhaps one

of the most known metamodeling architectures is the

MOF Meta-data Architecture [4]. This version of MOF

allows for any number of layers of models and languages.

Phenomenon/Data

Metalanguage

Language

describes

defines

Metamodel
expresses

Model

represents

expresses

defines

Phenomenon/Data

Model

represents

Language

describes

expresses

An earlier version of MOF, 1.4 , [5] included only four

layers as described below (see Figure 3). Judging by the

actual use of the MOF architecture in various

specifications, it seems that four layers is sufficient for

most domains. Obviously, the lowest number is two,

similarly as in logic.

• M0: Information Layer. This layer includes user

objects, also referred to as concrete “data”. To give

an analogy, we can use the Java language as an

example. If Java were defined in terms of MOF, Java

objects would be represented at this layer. An

example of a Java object could be a bit string, e.g.,

‘1001’.

• M1: Model Layer. This layer includes metadata that

describes the data at the level below. For instance, in

case of Java, the Java class, BitString, would reside at

this layer. The class would include some attributes,

e.g., length, and methods, e.g., get().

• M2: Metamodel Layer. This layer would include

meta-data about models, i.e., metamodels. An

example of meta-data at this layer could be a

description of a Java class Class. The notion of Class

is used in all Java models. Similarly, descriptions of

concepts from other languages, like the UML, would

be here, for instance, the notion of the UML class

Class.

• M3: Metametamodel Layer. This layer comprises a

language for defining concepts in other languages,

like UML, IDL and other modeling languages. In

other words, this is the language for defining different

types of meta-data. In order to “close” this

metalanguage/metamodel stack, this top layer uses a

subset of concepts from the lower layer as its

language. This is similar to the approach used in

natural language. It is normal in natural language to

define natural language terms in the same natural

language. In order to make the structure more rigid

and more rigorous, the MOF uses a subset of UML as

its defining language. This it is a structured language

and not just a natural language.

3. ONTOLOGIES

Now we return for a moment to the issue of the role of

ontologies, mentioned in the previous section. First of all,

it seems useful to say a few words about the term

‘ontology’. While this term became a buzzword in the

past few years, it is important to recognize that various

references to this term often have different intended

meanings.

Figure 3. MOF 1.4.1 Metamodeling Architecture

The term ‘ontology’ originated in philosophy to represent

“the science of being”. In other words, ontology is a

science that deals with the issue of what things do exist. A

good discussion of this topic can be found in [6]:

1. “A science or study of being: specifically, a branch of

metaphysics relating to the nature and relations of being; a

particular system according to which problems of the

nature of being are investigated; first philosophy.

 2. A theory concerning the kinds of entities and

specifically the kinds of abstract entities that are to be

admitted to a language system.”

The first definition captures the classical notion of

ontology, i.e., ontology as a science. The goal of this

science is to identify universals, things that exist.

Examples of issues in this science include the study of

such notions as class, object, part-whole relations, time,

space. Since these concepts are the result of a science,

they are termed “formal”. This does not imply that they

are described in a formal logic-based language. The next

step after this is the process of “formalization”, i.e., the

representation of these concepts in a formal language with

formal semantics. This then makes it possible to apply the

power of proof, discussed earlier in this paper. Moreover,

it also allows us to use various proof-supporting tools,

called inference engines. The problem with this whole

process is that the approach here is strictly top-down, i.e.,

the science of ontology deals with the very basic concepts

first, with the expectation that more specific concepts

would be introduced as a continuation of this process.

Unfortunately, this is not an easy task. For instance, it is

rather difficult for engineers to start with such elementary

concepts like time, space and being and refine them to the

much more detailed level needed for practical

applications. It can be observed that engineers and

computer scientist tend to work in the opposite direction,

i.e., bottom-up, from more specific to more general. This

approach is closer aligned with the second part of the

definition of ontology.

One of the definitions of ontology in AI is [7]:

“Definitions that associate the names of entities in the

universe of discourse (e.g. classes, relations, functions, or

other objects) with human-readable text describing what

the names mean, and formal axioms that constrain the

interpretation and well-formed use of these terms.”

Comparing these definitions to the descriptions of models

and metamodels, it appears that ontologies are in the same

class as models. At the lowest level (information level),

ontological representations are called “annotations”, or

“markups”. The Model level of the MOF captures domain

specific classes. This is exactly what domain ontologies

capture, too. It is a normal practice to have higher, more

abstract levels of ontologies. For instance, in OWL Full

[8], one of the ontology representation languages, a class

can contain other classes as instances. This is an exact

analogy to the UML, where the metamodel includes

classes whose instances are UML classes.

4. A NOTE ON ARCHITECTURE

Shaw and Garlan [9] proposed a definition of an

architectural style for software-intensive systems: “An

architectural style determines the vocabulary of

components and connectors that can be used in instances

of that style, together with a set of constraints on how

they can be combined.” This definition has then be largely

incorporated in the IEEE standard 1471 [10]. As can be

seen from these documents, architecture imposes

constraints, most typically on the connections between

components. Note that this is different than an ontology,

which focuses on providing descriptions rather than

constraints. In other words, systems that can use

ontologies for interoperability purposes will be able to

interchange information about their structure, if needed.

But they will also be able to request of other systems to

implement architectural constraints, if this is necessary or

advantageous for the interoperability or other reasons, like

optimization. The point we are trying to stress here is that

ontological descriptions normally are less restrictive than

architectural requirements.

5. CONCLUSION

This paper discussed various conceptual structures that

are used by engineers as a means of handling complexity

inherent in the life cycle of complex systems in general,

software defined radios being one example of such

systems. The main objective was to shed some light on

what is needed in terms of the development of the

Metalanguage for Configurable Wireless Systems. It is

rather clear from this analysis that in order to achieve the

goal set by the Commercial Technology WG of the SDRF

two things are needed: 1). An ontology for the domain of

SDR. The ontology needs to be a de-facto standard, i.e., it

needs to be acceptable to the most of the SDR community

2). A language for expressing such ontologies. To achieve

this goal, either a new language could be developed, or

one of the existing ontology description languages can be

selected.

Once such an ontology is developed, SDR systems that

understand the ontology will be able to use the language

and the particular concepts from the SDR ontology to

exchange various types of information in an efficient way

and to control own and piers behaviors using the policy

based control [11].

REFERENCES

[1] P. A. Subrahmanyam and M. Cummings, “Perspective

on a Metalanguage for Configurable Wireless Systems,”

Software Defined Radio Forum, SDRF-05-I-0003-V0.00,

17 January, 2005.

[2] Stanford Encyclopedia of Philosophy. Avaialable at:

http://plato.stanford.edu/entries/

[3] C. C. Chang and H. J. Keisler. Model Theory. North-

Holland, Amsterdam, 1992.

[4] Meta-Object Facility Core Specification. Version 2.0.

OMG, formal/06-01-01. Available at:

http://www.omg.org/technology/documents/formal/MOF_

Core.htm, January 2006.

[5] Meta-Object Facility (MOF) Specification, Version

1.4.1. OMG, formal/05-05-05, July 2005.

[6] R. Corazzon, “Ontology: A Resource Guide for

Philosophers”. Available at http://www.formalontology.it/

[7] T. Gruber. “What is an Ontology?”. Available at:

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

[8] W3C. Web Ontology Language Reference, OWL.

Available at: http://www.w3.org/2004/OWL/

[9] Shaw, M. and Garlan, D., An Introduction to Software

Architecture. In Advances in Software Engineering

and Knowledge Engineering, V. Ambriola and G. Tortora

(eds.), River Edge, NJ: World Scientific Publishing

Company, 1993.

[10] IEEE Standard 1471. “IEEE Recommended Practice

for Architectural Description of Software-Intensive

Systems.”

[11] P. Marshall, “Spectrum Awareness”. In Cognitive

Radio Technology, B. Fette (Ed.), 2006.

