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ABSTRACT 

 

This paper discusses concepts that serve the purpose of 

handling complexity of the life cycle of engineering 

systems in general and SDRs in particular: languages, 

metalanguages, models, metamodels, ontologies and 

architectures. The main objective of this paper is to shed 

some light on the Commercial Technology WG effort to 

develop a Metalanguage for Wireless Systems. 

 

1. INTRODUCTION 

 

Software defined radios in general, and cognitive radios in 

particular, are very complex systems. The high 

complexity of these systems is the result of the 

sophistication of the requirements that these systems must 

satisfy. The complexity is further increased by the fact 

that these requirements can change during the operation of 

the software radios and that the software radio systems 

must be capable of adapting to such changes during the 

operation. The adaptation may include not only 

adjustments to some of the operational parameters, but 

also modification of hardware (reconfigurability), 

software (code), as well as design. 

 

Various concepts have been developed to deal with the 

high complexity engineering systems. One of the main 

approaches to dealing with the complexity of such 

systems is to use abstraction. Abstraction means using a 

simpler (more abstract) representation of a system, i.e., 

hiding details. An appropriate abstraction, however, will 

include all the important features and relevant 

relationships among them, so that logical analysis of the 

system can be done without getting into too much detail.  

 

A number of abstract representations have been used to 

deal with the issue of complexity of systems. Among 

others, such concepts as architecture, reference model, 

language and metalanguage, model, metamodel and 

ontology have been used as intermediate representations 

of engineering systems. This paper discusses such abstract 

conceptual structures and analyzes some relations among 

them. In particular, major differences and similarities 

between particular structures are stated and analyzed.  

 

The min goal of this analysis is to come up with some 

suggestions on the potential usability of the particular 

abstractions to the life-cycle of a software radio system. It 

is the hope of the author that these suggestions might be 

useful to the SDRF Commercial Technology Working 

Group in the process of developing a Metalanguage for 

Configurable Wireless Systems [1]. 

 

2. LANGUAGES AND MODELS 

 

 First, let us discuss such concepts as “language”, 

“metalanguage”, “model” and “metamodel”. It should be 

noted that there is no common agreement on the meaning 

of these terms among those who use them. Therefore, by 

necessity, we need to pick some of the interpretations of 

these terms while recognizing that others might have a 

different opinion. 

 

2.1. Models and Languages 

 

The term “model” is used in various meanings in the 

literature. Here is a quote from the Stanford Encyclopedia 

of Philosophy [2]: “On the one hand, a model can be a 

representation of a selected part of the world (the ‘target 

system’). Depending on the nature of the target, such 

models are either models of phenomena or models of data. 

On the other hand, a model can represent a theory in the 

sense that it interprets the laws and axioms of that theory. 

These two notions are not mutually exclusive as scientific 

models can be representations in both senses at the same 

time.” 

 

The spirit of this formulation is represented in           

Figure 1. The figure shows a basic ontology relevant to 

these concepts. It shows three classes of things – Model, 

Language and Phenomenon/Data. These three classes are 

related through three object properties (relations). First, 

Language is related to Model by the property of 

expresses; a model needs to be expressed in a language. 

Second, a model represents a part of a domain, i.e., either 

some data or a phenomenon. And finally, these two 

properties combined derive another property, describes. In 

other words, a language describes a phenomenon or data.  



 

 

 

 

 

 

 

 

 

 

          Figure 1. Model vs. Language 

 

The above quote stresses that a model can be understood 

as either a representation of the world or a theory about 

the world (the laws and axioms). Note, however, that in 

either interpretation of this term, one needs to express the 

world in a language. In this paper we take the position that 

is closer to the model-as-theory view, i.e., a model is 

viewed as a logical theory about a phenomenon or data. 

 

To further clarify this issue, let us delve a bit into the 

notion of language. Once we make a commitment to view 

models as logical (scientific) theories, we must also view 

language in formal terms, i.e., we will talk about formal 

languages. In other words, we will view a language as a 

component of a formal logical system. 

 

A formal (first order) logical language [3] is usually 

defined in terms of a number of primitive symbols and a 

collection of rules (a grammar) that allow for combining 

symbols into well-formed forms (wffs), or sentences. The 

primitives include symbols for representing relations, 

functions and constants (names of individuals in a 

domain). Additionally, some non-logical symbols (like 

parentheses and such) are included. 

 

A language is made into a formal system by adding some 

axioms and rules of inference. This gives a way for 

introducing logical arguments, or proofs. A proof is a 

sequence of wffs in which each wff is either an axiom or 

the result of the application of an inference rule to some 

of the previous wffs in the sequence. A logical system is 

required to be sound, i.e., each proof leads to a sentence 

that is true within the logical system. (It should be noted 

here that the notion of truth would require a much more 

involved discussion, which is well beyond the scope of 

this paper.) The notion of proof gives us the ability to 

derive which of the sentences are true and which are not. 

This gives a great economy or representation since not all 

of the true statements need to be stated explicitly. Once a 

collection of axioms has been selected, other true 

sentences can be derived through the use of inference 

rules. 

 

A logical system is just a system that guarantees sound 

reasoning. But it does not describe any part of the world. 

In order to make a connection to the world, an ontology 

needs to be introduced into the logical system. This notion 

will be discussed in a bit more detail later in the paper. 

For now we just assume that an ontology includes a 

vocabulary of terms relevant to a given domain of interest 

(phenomenon or data). Having an ontology, we can now 

use the power of proof to derive sentences that are true 

about a given phenomenon or data.  

 

2.2. Metalanguage and Metamodel 

 

Now the question is – what is the language that defines a 

given language? The answer is – it’s the metalanguage. 

We can thus distinguish between a defined language and a 

defining language. In logic, the defined language is called 

the object language and the defining language is called 

the metalanguage. In other words, a metalanguage is a 

language about a language.  

 

Now the next question is – what is expressed in terms of a 

metalanguage? And the answer is – metamodels. In other 

words, a metalanguage is used to express terms that are 

needed to represent models. Thus now we have a two-

tiered structure – one layer that includes Model and 

Language and another layer that includes Metamodel and 

Metalanguage, as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Metamodel and Metalanguage 

 

While the object language is a formal language, logic uses 

natural languages (like the English language) to play the 

role of a metalanguage. Thus a metalanguage in logic is 

an informal language. 

 

One could formalize the metalanguage, similarly as the 

object language. This is what has been practiced in 

computer science and software engineering. Perhaps one 

of the most known metamodeling architectures is the 

MOF Meta-data Architecture [4]. This version of MOF 

allows for any number of layers of models and languages. 
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An earlier version of MOF, 1.4 , [5] included only four 

layers as described below (see Figure 3). Judging by the 

actual use of the MOF architecture in various 

specifications, it seems that four layers is sufficient for 

most domains. Obviously, the lowest number is two, 

similarly as in logic. 

 

• M0: Information Layer. This layer includes user 

objects, also referred to as concrete “data”.  To give 

an analogy, we can use the Java language as an 

example. If Java were defined in terms of MOF, Java 

objects would be represented at this layer. An 

example of a Java object could be a bit string, e.g., 

‘1001’. 

• M1: Model Layer. This layer includes metadata that 

describes the data at the level below.  For instance, in 

case of Java, the Java class, BitString, would reside at 

this layer. The class would include some attributes, 

e.g., length, and methods, e.g., get(). 

• M2: Metamodel Layer. This layer would include 

meta-data about models, i.e., metamodels. An 

example of meta-data at this layer could be a 

description of a Java class Class. The notion of Class 

is used in all Java models. Similarly, descriptions of 

concepts from other languages, like the UML, would 

be here, for instance, the notion of the UML class 

Class. 

• M3: Metametamodel Layer. This layer comprises a 

language for defining concepts in other languages, 

like UML, IDL and other modeling languages. In 

other words, this is the language for defining different 

types of meta-data. In order to “close” this 

metalanguage/metamodel stack, this top layer uses a 

subset of concepts from the lower layer as its 

language. This is similar to the approach used in 

natural language. It is normal in natural language to 

define natural language terms in the same natural 

language. In order to make the structure more rigid 

and more rigorous, the MOF uses a subset of UML as 

its defining language. This it is a structured language 

and not just a natural language. 

 

3. ONTOLOGIES 

 

Now we return for a moment to the issue of the role of 

ontologies, mentioned in the previous section. First of all, 

it seems useful to say a few words about the term 

‘ontology’. While this term became a buzzword in the 

past few years, it is important to recognize that various 

references to this term often have different intended 

meanings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. MOF 1.4.1 Metamodeling Architecture 

 

The term ‘ontology’ originated in philosophy to represent 

“the science of being”. In other words, ontology is a 

science that deals with the issue of what things do exist. A 

good discussion of this topic can be found in [6]: 

 

1. “A science or study of being: specifically, a branch of 

metaphysics relating to the nature and relations of being; a 

particular system according to which problems of the 

nature of being are investigated; first philosophy. 

 

 2. A theory concerning the kinds of entities and 

specifically the kinds of abstract entities that are to be 

admitted to a language system.” 

 

The first definition captures the classical notion of 

ontology, i.e., ontology as a science. The goal of this 

science is to identify universals, things that exist. 

Examples of issues in this science include the study of 

such notions as class, object, part-whole relations, time, 

space. Since these concepts are the result of a science, 

they are termed “formal”. This does not imply that they 

are described in a formal logic-based language. The next 

step after this is the process of “formalization”, i.e., the 

representation of these concepts in a formal language with 

formal semantics. This then makes it possible to apply the 

power of proof, discussed earlier in this paper. Moreover, 

it also allows us to use various proof-supporting tools, 

called inference engines. The problem with this whole 

process is that the approach here is strictly top-down, i.e., 

the science of ontology deals with the very basic concepts 

first, with the expectation that more specific concepts 

would be introduced as a continuation of this process.  

 

Unfortunately, this is not an easy task. For instance, it is 

rather difficult for engineers to start with such elementary 

concepts like time, space and being and refine them to the 

much more detailed level needed for practical 

applications. It can be observed that engineers and 

computer scientist tend to work in the opposite direction, 

i.e., bottom-up, from more specific to more general. This 



approach is closer aligned with the second part of the 

definition of ontology.   

 

One of the definitions of ontology in AI is [7]: 

“Definitions that associate the names of entities in the 

universe of discourse (e.g. classes, relations, functions, or 

other objects) with human-readable text describing what 

the names mean, and formal axioms that constrain the 

interpretation and well-formed use of these terms.” 

 

Comparing these definitions to the descriptions of models 

and metamodels, it appears that ontologies are in the same 

class as models. At the lowest level (information level), 

ontological representations are called “annotations”, or 

“markups”. The Model level of the MOF captures domain 

specific classes. This is exactly what domain ontologies 

capture, too. It is a normal practice to have higher, more 

abstract levels of ontologies. For instance, in OWL Full 

[8], one of the ontology representation languages, a class 

can contain other classes as instances. This is an exact 

analogy to the UML, where the metamodel includes 

classes whose instances are UML classes.  

 

4. A NOTE ON ARCHITECTURE 

 

Shaw and Garlan [9] proposed a definition of an 

architectural style for software-intensive systems: “An 

architectural style determines the vocabulary of 

components and connectors that can be used in instances 

of that style, together with a set of constraints on how 

they can be combined.” This definition has then be largely 

incorporated in the IEEE standard 1471 [10]. As can be 

seen from these documents, architecture imposes 

constraints, most typically on the connections between 

components. Note that this is different than an ontology, 

which focuses on providing descriptions rather than 

constraints. In other words, systems that can use 

ontologies for interoperability purposes will be able to 

interchange information about their structure, if needed. 

But they will also be able to request of other systems to 

implement architectural constraints, if this is necessary or 

advantageous for the interoperability or other reasons, like 

optimization. The point we are trying to stress here is that 

ontological descriptions normally are less restrictive than 

architectural requirements. 

 

5. CONCLUSION 

 

This paper discussed various conceptual structures that 

are used by engineers as a means of handling complexity 

inherent in the life cycle of complex systems in general, 

software defined radios being one example of such 

systems. The main objective was to shed some light on 

what is needed in terms of the development of the 

Metalanguage for Configurable Wireless Systems. It is 

rather clear from this analysis that in order to achieve the 

goal set by the Commercial Technology WG of the SDRF 

two things are needed: 1). An ontology for the domain of 

SDR. The ontology needs to be a de-facto standard, i.e., it 

needs to be acceptable to the most of the SDR community 

2). A language for expressing such ontologies. To achieve 

this goal, either a new language could be developed, or 

one of the existing ontology description languages can be 

selected. 

 

Once such an ontology is developed, SDR systems that 

understand the ontology will be able to use the language 

and the particular concepts from the SDR ontology to 

exchange various types of information in an efficient way 

and to control own and piers behaviors using the policy 

based control [11]. 
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