

Effects of Computation Speed on the Stability of a Self-
Controlling Process

Nilgun Fescioglu-Unver Mieczyslaw M. Kokar
Northeastern University

{nunver, kokar}@coe.neu.edu

Abstract

In this paper we consider the impact of the speed of the
processor on the stability of the adaptation process. The
problem is investigated on a case study that involves a
real-time system for monitoring illuminations of multiple
emitters by one receiver mounted on a moving platform.
This is a self-controlling system whose goal is to schedule
the receiver so that the uncertainty about the times of
illuminations of radars in the direction of the platform is
minimized. The system has several controllers and a
scheduler which are using the same computer as the
computation resource. This paper demonstrates the
effects of computation time on a real time self-controlling
system and shows the changes in stability of the system
under high computation loads.

1. Introduction

The paradigm of self-controlling software [1,2] is
becoming recognized as a way of achieving both better
performance and robustness in the presence of unexpected
changes in the environment. Self-controlling software
changes its behavior in response to external feedback it
receives during operation which comes from human users
or external world that the software system operates in.
Some of the ways to change the behavior of the system
are adjusting some parameters or changing the structure.
We are pursuing a control theory based approach to self-
controlling software where the software is treated as a
plant. The plant is viewed as a dynamical system with
dynamics related to both the external environment and the
computing system.

Self-controlling software is also a part of autonomic
computing [3]. Autonomic computing deals with
computing systems that can manage themselves while
trying to acquire high level objectives of administrators.
Self-management of a system includes self-configuration,
self- optimization, self-healing and self-protection. For

dealing with changing run-time conditions, use of control
theoretic approaches has been suggested by various
authors, e.g., Kephard and Chess [3].

Self-control consumes two kinds of resource: time and
CPU. While we normally refer to the CPU resource as
“CPU time”, this resource is quite different from the
physical time resource. In order to analyze behaviors of
self-controlling software, such software must be
considered in the context of its operation. A
representation of such context that captures dependencies
between CPU time, physical time and other things is
shown in Figure 1.

Figure 1: Context and Dependencies for Self-
Controlling Software

This diagram shows (in UML notation) five concepts:
Physical Object, Time, Algorithm, CPU Time and CPU.
Physical Object is in this picture since we assume that
software interacts with the physical world. The behavior
(or state) of a Physical Object depends on both the
passage of time (we assume this is a dynamical system)
and the activations it receives from an external activator –
we represent it here as Algorithm. In this paper we assume
that the algorithm is a Self-Controlling System, i.e., it
both affects the Physical Object and controls itself. The

Algorithm depends on the CPU time, i.e., the speed of the
CPU multiplied by the time unit. Thus CPU Time
depends on Physical Time, too. For completeness, we
show CPU, which is a physical device. The parameter of
CPU Speed is associated with this object.

These dependencies imply that various elements in the
context of operation of a self-controlling system may have
conflicting demands for resources, in this case CPU Time
and Time. In a situation where the computer makes
decisions for a physical system, the time that the
computer is spending for the derivation of the decision
may affect the physical system, especially when the
decision is derived too late. Self-control decisions
consume CPU Time due to both algorithm selection
(another algorithm does that) and the execution of the
algorithm. (Both algorithms are modeled here as
Algorithm.) Since the adaptability of the system depends
on the timeliness of decisions for the Physical Object, the
delays in making control decisions, both self-control and
activation of the Physical Object, may affect the
adaptability metric.

In this paper we present some of the results of our
study of adaptability of a self-controlling system. Since,
as shown in Figure 1, CPU Time is one of the components
that may affect adaptability, we had to implement a
system in which this component is a first-class object, i.e.,
such an object that can have its own properties and that
can be manipulated by the simulation. Then the effects of
changes in this object can be measured. We used Ptolemy,
a tool with a component assembly framework, to achieve
this objective. In our implementation, we were able to
vary the speed of the CPU and then observe the impact of
such changes on the performance (adaptability) of the
system. The varying of the CPU speed simulates the
effect of using algorithms with higher time-complexity.
We were able to not only provide support for the claim
that CPU speed impacts the adaptability characteristic, but
also captured quantitative relationships between the CPU
speed and the adaptability.

2. Motivation

The physical object studied in this problem is a radar-

receiver system [4]. The goal of the system is to manage a
receiver whose goal is to monitor multiple radars
operating in the environment surrounding the receiver.
Each radar operates in a different frequency band. So the
receiver can “see” the radar only when it tunes to the
frequency of a given radar. The time when a receiver is
tuned to a particular radar’s frequency is called a dwell.
Radars illuminate the receiver once per rotation. For
instance, a typical radar has a rotation period of 4 seconds
and thus would illuminate the receiver roughly every 4
seconds. The length of the illumination time interval (of
the dwell) is rather short, typically 0.5% of the rotation

period. The goal of the system is then to schedule the
dwells in such a way that they coincide with the times of
illuminations by particular radars in the direction of the
platform.

The approach used in this paper is called the control
theory metaphor of software development [1]. In this
paradigm, the control goal (the controlled output variable)
must be represented by a quantitative metric. In control
literature it is called the set point. In this system the
objective is to minimize the uncertainty about particular
illuminations. This means that the system wants to know
at what times the radars are looking at the platform.
Knowing does not necessarily imply measuring. In other
words, the system has two choices – either tune in to a
specific radar’s frequency band or use estimation
(tracking). The uncertainty about a system is measured by
the entropy and the system’s controlled output variable
then is simply the entropy.

Another possible controlled output variable of the
system could be defined. This variable is often called the
Quality of Service (QoS). For instance, for the application
discussed in this paper, this variable would have to be
defined in such a way that when a radar is not being
observed, its controller level QoS would increase; when it
is observed, the QoS would decrease. In Autonomic
Systems utility functions provide the objective function
for self-optimization [5].

The problem addressed in this paper is an instance of
the so called non-preemptive scheduling problem, which
is known to be NP-complete [6]. One possible approach
to solve this problem is to develop the schedule off-line,
before the flight, i.e., before the mission of the platform.
For the application discussed in this paper, this approach
is referred to as Fixed Scan Scheduling [7]. This
technique guarantees detection of each illumination at low
loads, i.e., for a small number of radars. But when the
system load increases, it cannot adjust itself. A self-
optimization approach would make the system adaptable.
In the self-adapting case, instead of giving the same
importance to all emitters, the emitters that have not been
detected as successfully have higher priority as compared
to those emitters that are detected more frequently.

To study the problem described in this paper we
developed a simulation using Ptolemy II [8]. Ptolemy II
is a Java-based component assembly framework with a
graphical user interface, developed at UC Berkeley. The
Ptolemy project studies modeling, design and simulation
of concurrent, real time, and embedded systems. It is
published freely and is open source. For our simulations
we used the Ptolemy II Version 3.0.2. Ptolemy has
different modes of computation including Discrete Event,
Finite State Machine and Timed Multitasking models, and
different calculation models can be used in the same
system hierarchically.

In this paper we will demonstrate how the simulation
was used to show how the system tries to self-optimize
using the control architecture approach. The effects of
computation time on the system will be investigated and
the instability due to the delays in computation will be
demonstrated.

The remainder of the paper is organized as follows: In
Section 3, the detailed description of the system is
presented. In Section 4, the system implementation in
Ptolemy II is described. In Section 5, we present and
discuss the simulation results with low and high
computation times. Finally, in Section 6, the findings are
summarized and future research directions are discussed.

3. System Description

In this section we will describe the self controlling
system and its components.

3.1 System Components

The physical system is composed of a number of
emitters, a receiver and the platform. The computer
system includes emitter level controllers, a scheduler and
a computer. The computer system is a resource
management system, whose resource is the receiver
(physical) time. Since the computer system also controls
itself, one more resource is considered – Computer.

Figure 2. UML diagram of the resource
management system

Figure 2 represents the UML class diagram for the

whole system. Each Radar in the environment is
associated with the Receiver. Receiver tries to keep track
of all Radars. For each Radar, there is a Controller in the
system and all Controllers are associated with both the

Receiver and Scheduler. Finally Scheduler and
Controllers are associated with the Computer and use it as
the computation resource.

 In the simulation it was assumed that there are 10
Radars in the environment. Each of the Radars rotates
continuously. However, a Radar illuminates only in the
direction it is pointing to at a particular time. We model
radars as timed automata. Each Radar has a different
beam width. For instance, a Radar that has a beam width
of 2° can point in 180 different directions. It points in a
direction for the time interval dt then switches to the next
state. The state transition diagram for a Radar is shown in
Figure 3.

Figure 3. The behavior of the radars

The Receiver is controlled by the Scheduler. The

Scheduler generates scheduling events (sched-1,..., sched-
n). The Receiver, in response to an event sched-i switches
to the state PointingAtRadar-i for the duration of the
dwell time prescribed by the Scheduler. When pointing at
a particular Radar, the Receiver either detects the Radar
or not, depending on whether the Receiver is currently
located on the direction in which the Radar is illuminating
during this dwell time or not (see Figure 4). If the
Receiver is on that line, the Receiver generates an event
of detection, i.e., detect-i is set to 1. Otherwise detect-i is
set to 0. Since the Receiver is on a moving platform, the
line with respect to a particular Radar changes constantly.
Thus even if the Receiver is on the line of a particular
Radar at the beginning of this dwell, it may be outside of
the line at some point in the middle of the dwell.
Consequently if this happens, the Radar cannot be
detected. For this reason detect-i event is set to 1 only
when the Receiver is within the line of view of the Radar
for the whole dwell period.

Figure 4. The detection scenario
The Receiver is modeled as a timed automaton as in

Figure 5. Its continuous dynamics is given by the equation

where V(0)=V0. In other words, the receiver is moving
with a constant velocity V0.

Figure 5. The behavior of the receiver

The detection event is passed to an appropriate
Controller. In this system there is one Controller for each
Radar. In response to a detection (or non-detection) event
the Controller needs to update the uncertainty information
of the Radar by calculating its entropy. Controller keeps
track of the probability distribution for the beam direction
the Radar is currently emitting at. The probability
distribution is updated at a detection, no-detection or no-
observation event (if the Radar is not looked at for a
specified period). Entropy of the Radar is calculated by
using this probability distribution. After the Controller
updates the entropy information, it needs to compute the
time at which the Receiver should be pointed again at that
Radar. To perform these calculations the Controller needs
the Computer. For a calculation, Controller sends a
calculation request to the Computer and waits for the
answer Computer returns. The time of the return of the
result to the Controller depends on the CPU speed of the
Computer and awaiting computation requests in the
Computer’s queue. After Controller receives the result of
the next dwell time, it sends the control description word
(CDW) together with the entropy information to the
scheduler. The CDW specifies when and how long the
receiver should look at a specific radar.

After the Scheduler receives the dwell-i event, which
indicates that the receiver is idle and is waiting for a new
schedule, it re-computes its schedule. Scheduler has a
queue of received CDWs from the Controllers. Each
CDW contains information about the radar id, the start
time and the duration of the dwell. In addition to the
CDW, Controllers send information about detection
probability and entropy of the emitter to the Scheduler.

Scheduler selects the CDW taking into consideration this
dwell’s probability of detection and entropy of the radar.
To add an incoming CDW to its queue and to compute the
schedule, the Scheduler needs the Computer. After the
schedule is computed, the CDW information is sent to the
Receiver.

The last system component is the Computer. The
Computer is the single computation resource of the
system and can answer a single computation request at a
time. It receives calculation requests from all Controllers
and the Scheduler. It services the requests with higher
priority given to the Scheduler, and in a first-come first-
served mode among the Controller requests. The
Computer is modeled as a separate entity to investigate
the impact of the speed of the processor on the stability of
the adaptation process.

3.2. Self-Control of the System

The Controllers are the major elements in the
adaptation process. In this experiment we used a simple
version of Controller, i.e., a P (or proportional) control
law. Each Controller keeps track of the related Radar’s
detections – non-detections and the uncertainty,
represented by the entropy. The control based sensor
management architecture can be seen in Figure 6.

Figure 6. Control based sensor management
architecture

The responsibility of the Controller is to generate the

CDWs. The start of the next dwell is a component of a
CDW that needs to be re-computed for each dwell. If the
illuminations of the Radars were perfectly periodic, if the
Receiver was stationary and if the distance between the
emitter and the platform were known, then it would be
possible to predict the exact time of the next dwell. The
next dwell time would be last dwell time (tds) plus the
revisit time (τrv). In our case, in order to compensate for
the phase shift, τrv is adjusted such that:

where Teip is the illumination period of the radar,

Controller

Scheduler

Controller

CDW

CDW

Receiver

Environment

Scheduled
CDW

Entropyref

Entropyref

where Teit is the illumination time (duration of a single
illumination) and

where K(i) is the proportional controller parameter and

ε = Entropyref (i) – Entropy(i)
ε is the difference between the reference input, which is
the maximum entropy of the Radar and the entropy
computed by the Controller.

The effect of the above Controller can be summarized
as follows. If a CDW is not scheduled, the uncertainty,
hence the entropy of the Radar, gets higher. When
entropy gets higher, the difference between the maximum
entropy and current entropy (ε) gets smaller, which results
in a smaller δ. When δ gets smaller, the revisit time gets
smaller, which means more CDWs will be generated and
the probability of detection of an illumination will
increase. If a dwell on an emitter results in detection, the
entropy gets smaller, the difference between maximum
entropy and current entropy (ε) gets larger and so δ gets
larger. When δ gets larger, the revisit time gets larger and
fewer CDWs are generated.

Each Controller calculates a CDW and sends the
request to the Computer. Detection of a Radar decreases
its entropy whereas no-observation of it (when a specified
amount of time passes without the radar is looked at)
increases the entropy. A detection event decreases the
entropy to its minimum value since in such a case we
know for certain that the Radar is illuminating at the
Receiver. No-observation of the radar increases the
entropy because as time passes if the radar is not
observed, the uncertainty about it increases.

 CDWs generated by the Controllers have an
expiration time associated with them. As the key element
of the CDW is the time of next dwell, if the CDW is not
scheduled until the calculated tds , it expires and a new
CDW needs to be calculated for the Radar. Expiration of
the CDWs increases the need for a Computer with a fast
processor. Computer’s speed affects the expiration
frequency of the CDWs if the expirations are due to the
delays in computation. Our aim is to simulate the system
with fast and slow processor Computers and investigate
the behavior and the stability of the system.

4. Implementation of the System Using
Ptolemy II

Ptolemy II is a modeling and simulation environment
that supports heterogeneous, concurrent modeling and

design. It is composed of a set of Java packages and a
graphical user interface.

Ptolemy II software environment implements an actor-
oriented design methodology. An actor is defined as an
encapsulation of parameterized actions performed on
input data to produce output data [9]. By using the actor
orientation, functionality concerns are separated from the
component interaction concerns. The component
interaction and control flow between actors is done
through frameworks. In the design of this simulation
different frameworks were used hierarchically. At the top
level, discrete-event (DE) domain is used. In the discrete-
event model, actors share a global time and communicate
through events. The global notion of time makes it
possible to investigate the effect of communication delays
and timing behaviors of the system [10]. In the next layers
finite state machine (FSM) and timed multitasking (TM)
domains are used. The Timed Multitasking domain is an
event triggered model; it controls the time at which
outputs are produced. It can effectively control starting
and stopping times of tasks and so obtains deterministic
timing properties [11]. The Timed Multitasking domain is
used to model the computer’s behavior. By using this
domain in computer, the duration of the calculations is
controlled and changes in the stability of the system due
to the processor speed are observed.

The first layer of the system is shown in Figure 7. In
the first layer, all the entities are shown as separate actors
and communication between actors is done via their ports.
In this layer the control flow through actors is done in
discrete event mode. As all entities share the same global
time and they are communicating through events, the
Discrete Event domain was the best fit for the scenario.
The inter-connections among Receiver, Radar-control
(Radar-control actor holds n-controllers in it, where n is
the number of radars), the Scheduler and the Computer
entities are shown in the first layer. The Environment and
Detect-calculator entities are supporting entities of the
system, where the Environment contains n-radars and
Detect-calculator calculates whether detection has
occurred or not, given the information from receiver and
environment. Detect-calculator just calculates whether the
physical factors at the moment will generate a detection
event or not (whether radar is illuminating in the direction
of the receiver, whether it is within the detection range,
etc.). All the actors seen in the first layer are composed of
other actors.

The Computer behavior is modeled in the Timed
Multitasking (TM) domain. The TM domain gives the
Computer entity the capability to control the duration of
the calculations, give the priority to requests coming from
specified entities and choose a scheduling strategy
(preemptive or non-preemptive). In this problem, the
Computer schedules the computations in non-preemptive
mode and gives higher priority to Scheduler requests.

Figure 7. First layer in system model

The use of Ptolemy II in modeling and simulating this

system made it straightforward to visualize the behavior
of the Computer as a separate entity. The control logic
and the entity relationships are implemented without
difficulty by using Ptolemy’s different modeling domains.

5. Simulation Results

One of the goals of this research is to investigate the
behavior of the system in response to the changes in the
time spent for computing sensor scheduling decisions.
Although a full investigation would involve the analysis
of the computation duration for each separate algorithm
within the system, so far we limited our study to the case
where the computer speed changes. This is, in a sense,
equivalent to the situation where the speed of computation
of all of the algorithms changes at the same rate. The
main goal for us was to demonstrate the impact of the
processing speed on the stability of the adaptation (self-
control) process.

The Computer is a separate entity in the system. It can
hold a queue of calculation requests. The system goal is to
manage the Receiver as a resource and the Receiver being
idle for a time period is a loss for the system. To make the
Receiver dwell at some radar for a specified period, the
Scheduler must send a CDW to the receiver. The
Scheduler is given the highest priority in the calculation
queue so that requests from the Scheduler are serviced
first by the Computer. Controllers have the second
priority and all Controller requests are served in a first-
come first-served fashion. Controllers keep track of each
Radar’s entropy and the average of all Radar entropies
gives the overall system entropy. A change in the system
entropy with respect to time is compared for three
different computers, two with fast processors and one
with a slow processor.

In the first simulation, the system is run with a
computer entity that has a fast processor. Ptolemy’s
simulation environment gives the flexibility to assign

different calculation times for each computation. For ease
of comparison, all calculations are given the same time in
this simulation. A single computation request incoming to
the Computer from the Scheduler or Controllers is
serviced within 5.10-4seconds. The resulting average
entropy vs. time is shown in Figure 8.

It is seen that the average entropy of the system
quickly drops from its maximum 2.0 point to a range
between 1.7 and 1.3 and stabilizes at that level.
Simulation is repeated with a Computer entity that has a
faster processor which can do a single computation in
5.10-10 seconds. As the system load is not heavy in this
problem (it is assumed that there are 10 radars in the
environment, so 10 controllers and 1 scheduler asking for
computation) using a faster Computer does not improve
the results. The average entropy of the system with a
processor which can answer any computation request in
5.10-10 is shown in Figure 9.

However, with a higher workload, the use of a faster
processor helps the system achieve stability more quickly.
To demonstrate the effect of processor speed on system
stability, the simulation is repeated with a computer entity
that has a slow processor. In this case, a single
computation request is answered (this includes just the
computation time and not the waiting time) in 5.10-3
seconds with this Computer. The result is given in Figure
10.

Figure 8. Average entropy of the system when a
fast processor is used

It can be seen in Figure 10 that the system entropy
stays in a high range between 1.8 and 2.0 in the first 100
seconds. In the next 40 seconds, the average entropy
drops to a range of 1.8-1.5, and after the first 140 seconds
the entropy drops to the 1.75-1.3 range.

The reason of the increase in the average entropy is as
follows. Because of the slow processor and high
computation times, the computation requests of the
controllers and scheduler wait in the computation queue
for a long time. As described in Section 2, the CDW’s
main component that is recalculated each time is tds –

time to start the next dwell. If the CDW calculation
request of the Controller is answered after the current
time becomes equal to tds, the Controller receives a CDW
that has already expired. The Controller sends the
incoming CDW to the Scheduler, but the Scheduler never
selects that CDW to send to the Receiver because it is
already expired. Following this reasoning one might
expect that the average entropy level should always
remain high as the Controllers which receive expired
CDWs may never catch up. However this is not the case
with this plant because the time of the next dwell is
calculated with a self-controlling approach. Once the
Radars that the Receiver first started to observe become
detected, their entropy drops and their CDW computation
requests decrease. The decrease in the workload of
Computer gives the other CDW computation requests a
chance to get computed before they are already expired.
After the first 100 seconds, more than half of the radars
start to get observed and after 130 seconds the other
radars start to be observed as the back to back detection of
the already observed Radars decreases the number of
CDW computation requests made to the Computer. As
the CDW computation requests decrease, the workload of
the Computer decreases and the CDW calculations get
completed before expiration time. After the first 140
seconds the average entropy drops to the 1.75-1.3 level
and the system stabilizes.

Figure 9. Average system entropy using a
processor which can respond to a calculation
request in 5.10-10 sec.

The time it takes for the system to stabilize depends on
the computation times, and thus it depends on the speed
of the computer. With very high computation times the
system may never be able to stabilize. Figure 11 shows
the change in entropy level of the system with different
computation times.

The time the system needs to drop to a certain level of
entropy directly changes with the length of the
computation time, too. Figure 12 demonstrates the change
in the time of stabilization with respect to the computation

time. Entropy level of 1.6 is taken as the stabilization
level of the system. As the speed of the Computer
decreases and consequently computation time increases,
the time it takes the system to reach the 1.6 level
increases. In systems with computation times longer than
5.5E-3, the system can never reach that level and thus is
unstable.

Figure 10. Average system entropy using a
processor which can respond to a calculation
request in 5.10-3 sec.

Figure 11. Change in entropy level with different
computation times

Figure 12. Time to stabilize vs. computation
length

6. Conclusion

In this paper we investigated the impact of the speed of
the processor on the stability of a self-controlling system.
For the case study we used a physical system whose goal
is to schedule a receiver that monitors radar illuminations.
The system goal is to minimize the entropy (uncertainty)
of the detection decision. The entropy for a specific radar
increases when the uncertainty about the time of
illuminating in the direction of the receiver increases. The
system has a single computation resource - the computer.
In our experiments we observed that the stability of the
self-controlling system developed for this application
highly depends on the computation speed. Simulations
were performed for different computation speeds, and the
change of average entropy with respect to time was
investigated.

Simulation results using different computation speeds
can be summarized as follows. The average entropy vs.
time graphics show that computer speed affects the
stability of the system to a great extent. Especially in real
time systems, when changes happen at run time, a
decrease in computation speed can make the computation
results useless. In our experiments we observed that in
many cases, due to the increased computation times, the
CDW calculations were already invalid. In other words, it
was already “too late”. However, since our system was a
self–controlling system, it did not request the same
computation load blindly at all times, the stability of the
process was achieved even as the load of the computer
decreased. Nevertheless, with very high computation
times the system was never able to stabilize, as expected.

One of the future research directions in this area may
be adding another control loop to control the number of
“too late” computations. The system may try to adjust the
workload of the computer by decreasing the CDW
computation requests of the controllers. When the number
of “too late” computations increases, some of the
controllers may sacrifice by not sending any requests
giving a chance to other controllers’ requests to get
calculated on time and in this way decrease the system
entropy. Studies in this area will support the research on
real-time computations.

While the speed of computation is an important factor
in keeping the system stable, one needs to analyze the
impact of time complexity of particular algorithms. In
particular, a self-controlling system might need to decide
whether to execute a more complex algorithm and
possibly get better results, or use a simplistic algorithm
that is only sub-optimal in terms of the system
performance metric.

Acknowledgements

We would like to thank Yong Xun and Kenneth
Baclawski for their helpful suggestions and feedback.

7. References

[1] M. M. Kokar, K. Baclawaski, and Y. Eracar, “Control
theory-based foundations of self-controlling software”, IEEE
Intelligent Systems, (May/June) (1999), pp. 37-45

[2] R. Laddaga, “Creating Robust Software through Self
Adaptation”, IEEE Intelligent Systems, (May-June) 1999, pp.26-
29

[3] J. Kephard, and D. Chess, “The Vision of Autonomic
Computing”, Computer, 36(1) 2003, pp.41-52

[4] Y. Xun, M. M. Kokar, and K. Baclawski, “Control based
sensor management for a multiple radar monitoring scenario”,
Information Fusion: An International Journal on Multi-Sensor,
Multi-Source Information Fusion, 5 2004, pp.49-63

[5] W.E. Walsh, G. Tesauro, J. Kephard, and R,Das, “Utility
functions in autonomic systems”, Proceedings of the
International Conference on Autonomic Computing, 2004

[6] M.R. Garey, and D.S. Johnson, A Guide to the Theory of NP-
Completeness, W.H. Preeman Company, 1979

[7] J.P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm-exact characterization and average case
behavior”, IEEE Real-Time Systems Symposium, 1989, pp.166-
171

[8] http://ptolemy.eecs.berkeley.edu/ptolemyII, last accessed
January 14, 2005

[9] J. Liu, J. Eker, J. W. Janneck, X. Liu, and E. A. Lee, “Actor-
Oriented Control System Design: A Responsible Framework
Perspective”, IEEE Transactions on Control Systems
Technology, Vol.12, No.2, March 2004

[10] J.Liu, X.Liu, and E.A.Lee, “Modelling Distributed Hybrid
Systems in Ptolemy II”, Proceedings of the American Control
Conference, Arlington VA, 2001

[11] J.Liu, and E.A. Lee, “Timed Multitasking for Real-Time
Embedded Software”, IEEE Control Systems Magazine,
February 2003

