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Abstract 

 
In this paper we consider the impact of the speed of the 
processor on the stability of the adaptation process.  The 
problem is investigated on a case study that involves a 
real-time system for monitoring illuminations of multiple 
emitters by one receiver mounted on a moving platform. 
This is a self-controlling system whose goal is to schedule 
the receiver so that the uncertainty about the times of 
illuminations of radars in the direction of the platform is 
minimized. The system has several controllers and a 
scheduler which are using the same computer as the 
computation resource. This paper demonstrates the 
effects of computation time on a real time self-controlling 
system and shows the changes in stability of the system 
under high computation loads. 
 
 
1. Introduction 
 

The paradigm of self-controlling software [1,2] is 
becoming recognized as a way of achieving both better 
performance and robustness in the presence of unexpected 
changes in the environment. Self-controlling software 
changes its behavior in response to external feedback it 
receives during operation which comes from human users 
or external world that the software system operates in. 
Some of the ways to change the behavior of the system 
are adjusting some parameters or changing the structure. 
We are pursuing a control theory based approach to self-
controlling software where the software is treated as a 
plant. The plant is viewed as a dynamical system with 
dynamics related to both the external environment and the 
computing system.  

Self-controlling software is also a part of autonomic 
computing [3]. Autonomic computing deals with 
computing systems that can manage themselves while 
trying to acquire high level objectives of administrators. 
Self-management of a system includes self-configuration, 
self- optimization, self-healing and self-protection. For 

dealing with changing run-time conditions, use of control 
theoretic approaches has been suggested by various 
authors, e.g., Kephard and Chess [3].   

Self-control consumes two kinds of resource: time and 
CPU. While we normally refer to the CPU resource as 
“CPU time”, this resource is quite different from the 
physical time resource. In order to analyze behaviors of 
self-controlling software, such software must be 
considered in the context of its operation. A 
representation of such context that captures dependencies 
between CPU time, physical time and other things is 
shown in Figure 1. 
 

 
Figure 1: Context and Dependencies for Self-
Controlling Software 
 

This diagram shows (in UML notation) five concepts: 
Physical Object, Time, Algorithm, CPU Time and CPU. 
Physical Object is in this picture since we assume that 
software interacts with the physical world. The behavior 
(or state) of a Physical Object depends on both the 
passage of time (we assume this is a dynamical system) 
and the activations it receives from an external activator – 
we represent it here as Algorithm. In this paper we assume 
that the algorithm is a Self-Controlling System, i.e., it 
both affects the Physical Object and controls itself. The 



Algorithm depends on the CPU time, i.e., the speed of the 
CPU multiplied by the time unit. Thus CPU Time 
depends on Physical Time, too. For completeness, we 
show CPU, which is a physical device. The parameter of 
CPU Speed is associated with this object. 

These dependencies imply that various elements in the 
context of operation of a self-controlling system may have 
conflicting demands for resources, in this case CPU Time 
and Time. In a situation where the computer makes 
decisions for a physical system, the time that the 
computer is spending for the derivation of the decision 
may affect the physical system, especially when the 
decision is derived too late. Self-control decisions 
consume CPU Time due to both algorithm selection 
(another algorithm does that) and the execution of the 
algorithm. (Both algorithms are modeled here as 
Algorithm.) Since the adaptability of the system depends 
on the timeliness of decisions for the Physical Object, the 
delays in making control decisions, both self-control and 
activation of the Physical Object, may affect the 
adaptability metric.  

In this paper we present some of the results of our 
study of adaptability of a self-controlling system. Since, 
as shown in Figure 1, CPU Time is one of the components 
that may affect adaptability, we had to implement a 
system in which this component is a first-class object, i.e., 
such an object that can have its own properties and that 
can be manipulated by the simulation. Then the effects of 
changes in this object can be measured. We used Ptolemy, 
a tool with a component assembly framework, to achieve 
this objective. In our implementation, we were able to 
vary the speed of the CPU and then observe the impact of 
such changes on the performance (adaptability) of the 
system. The varying of the CPU speed simulates the 
effect of using algorithms with higher time-complexity. 
We were able to not only provide support for the claim 
that CPU speed impacts the adaptability characteristic, but 
also captured quantitative relationships between the CPU 
speed and the adaptability.  

 
2. Motivation 

 
The physical object studied in this problem is a radar-

receiver system [4]. The goal of the system is to manage a 
receiver whose goal is to monitor multiple radars 
operating in the environment surrounding the receiver. 
Each radar operates in a different frequency band. So the 
receiver can “see” the radar only when it tunes to the 
frequency of a given radar. The time when a receiver is 
tuned to a particular radar’s frequency is called a dwell. 
Radars illuminate the receiver once per rotation. For 
instance, a typical radar has a rotation period of 4 seconds 
and thus would illuminate the receiver roughly every 4 
seconds. The length of the illumination time interval (of 
the dwell) is rather short, typically 0.5% of the rotation 

period. The goal of the system is then to schedule the 
dwells in such a way that they coincide with the times of 
illuminations by particular radars in the direction of the 
platform. 

The approach used in this paper is called the control 
theory metaphor of software development [1]. In this 
paradigm, the control goal (the controlled output variable) 
must be represented by a quantitative metric. In control 
literature it is called the set point.  In this system the 
objective is to minimize the uncertainty about particular 
illuminations. This means that the system wants to know 
at what times the radars are looking at the platform. 
Knowing does not necessarily imply measuring. In other 
words, the system has two choices – either tune in to a 
specific radar’s frequency band or use estimation 
(tracking). The uncertainty about a system is measured by 
the entropy and the system’s controlled output variable 
then is simply the entropy.   

Another possible controlled output variable of the 
system could be defined. This variable is often called the 
Quality of Service (QoS). For instance, for the application 
discussed in this paper, this variable would have to be 
defined in such a way that when a radar is not being 
observed, its controller level QoS would increase; when it 
is observed, the QoS would decrease. In Autonomic 
Systems utility functions provide the objective function 
for self-optimization [5]. 

The problem addressed in this paper is an instance of 
the so called non-preemptive scheduling problem, which 
is known to be NP-complete [6]. One possible approach 
to solve this problem is to develop the schedule off-line, 
before the flight, i.e., before the mission of the platform. 
For the application discussed in this paper, this approach 
is referred to as Fixed Scan Scheduling [7]. This 
technique guarantees detection of each illumination at low 
loads, i.e., for a small number of radars. But when the 
system load increases, it cannot adjust itself.  A self-
optimization approach would make the system adaptable. 
In the self-adapting case, instead of giving the same 
importance to all emitters, the emitters that have not been 
detected as successfully have higher priority as compared 
to those emitters that are detected more frequently.  

To study the problem described in this paper we 
developed a simulation using Ptolemy II [8].  Ptolemy II 
is a Java-based component assembly framework with a 
graphical user interface, developed at UC Berkeley. The 
Ptolemy project studies modeling, design and simulation 
of concurrent, real time, and embedded systems. It is 
published freely and is open source. For our simulations 
we used the Ptolemy II Version 3.0.2. Ptolemy has 
different modes of computation including Discrete Event, 
Finite State Machine and Timed Multitasking models, and 
different calculation models can be used in the same 
system hierarchically. 



In this paper we will demonstrate how the simulation 
was used to show how the system tries to self-optimize 
using the control architecture approach. The effects of 
computation time on the system will be investigated and 
the instability due to the delays in computation will be 
demonstrated. 

The remainder of the paper is organized as follows: In 
Section 3, the detailed description of the system is 
presented. In Section 4, the system implementation in 
Ptolemy II is described. In Section 5, we present and 
discuss the simulation results with low and high 
computation times. Finally, in Section 6, the findings are 
summarized and future research directions are discussed. 

 
3. System Description 
 

In this section we will describe the self controlling 
system and its components.  

 
3.1 System Components 
 

The physical system is composed of a number of 
emitters, a receiver and the platform. The computer 
system includes emitter level controllers, a scheduler and 
a computer. The computer system is a resource 
management system, whose resource is the receiver 
(physical) time. Since the computer system also controls 
itself, one more resource is considered – Computer.   
 

 
Figure 2. UML diagram of the resource 
management system 

 
Figure 2 represents the UML class diagram for the 

whole system. Each Radar in the environment is 
associated with the Receiver. Receiver tries to keep track 
of all Radars. For each Radar, there is a Controller in the 
system and all Controllers are associated with both the 

Receiver and Scheduler. Finally Scheduler and 
Controllers are associated with the Computer and use it as 
the computation resource. 

 In the simulation it was assumed that there are 10 
Radars in the environment. Each of the Radars rotates 
continuously. However, a Radar illuminates only in the 
direction it is pointing to at a particular time. We model 
radars as timed automata. Each Radar has a different 
beam width. For instance, a Radar that has a beam width 
of 2° can point in 180 different directions. It points in a 
direction for the time interval dt then switches to the next 
state. The state transition diagram for a Radar is shown in 
Figure 3. 

 

 
Figure 3. The behavior of the radars 

 
The Receiver is controlled by the Scheduler. The 

Scheduler generates scheduling events (sched-1,..., sched-
n). The Receiver, in response to an event sched-i switches 
to the state PointingAtRadar-i for the duration of the 
dwell time prescribed by the Scheduler. When pointing at 
a particular Radar, the Receiver either detects the Radar 
or not, depending on whether the Receiver is currently 
located on the direction in which the Radar is illuminating 
during this dwell time or not (see Figure 4). If the 
Receiver is on that line, the Receiver generates an event 
of detection, i.e., detect-i is set to 1. Otherwise detect-i is 
set to 0. Since the Receiver is on a moving platform, the 
line with respect to a particular Radar changes constantly. 
Thus even if the Receiver is on the line of a particular 
Radar at the beginning of this dwell, it may be outside of 
the line at some point in the middle of the dwell. 
Consequently if this happens, the Radar cannot be 
detected. For this reason detect-i event is set to 1 only 
when the Receiver is within the line of view of the Radar 
for the whole dwell period. 
 

 



Figure 4. The detection scenario 
The Receiver is modeled as a timed automaton as in 

Figure 5. Its continuous dynamics is given by the equation  

    

where V(0)=V0. In other words, the receiver is moving 
with a constant velocity V0. 
 

 
Figure 5. The behavior of the receiver 
 

The detection event is passed to an appropriate 
Controller. In this system there is one Controller for each 
Radar. In response to a detection (or non-detection) event 
the Controller needs to update the uncertainty information 
of the Radar by calculating its entropy.  Controller keeps 
track of the probability distribution for the beam direction 
the Radar is currently emitting at. The probability 
distribution is updated at a detection, no-detection or no-
observation event (if the Radar is not looked at for a 
specified period). Entropy of the Radar is calculated by 
using this probability distribution. After the Controller 
updates the entropy information, it needs to compute the 
time at which the Receiver should be pointed again at that 
Radar. To perform these calculations the Controller needs 
the Computer. For a calculation, Controller sends a 
calculation request to the Computer and waits for the 
answer Computer returns. The time of the return of the 
result to the Controller depends on the CPU speed of the 
Computer and awaiting computation requests in the 
Computer’s queue. After Controller receives the result of 
the next dwell time, it sends the control description word 
(CDW) together with the entropy information to the 
scheduler. The CDW specifies when and how long the 
receiver should look at a specific radar. 

After the Scheduler receives the dwell-i event, which 
indicates that the receiver is idle and is waiting for a new 
schedule, it re-computes its schedule.  Scheduler has a 
queue of received CDWs from the Controllers. Each 
CDW contains information about the radar id, the start 
time and the duration of the dwell. In addition to the 
CDW, Controllers send information about detection 
probability and entropy of the emitter to the Scheduler. 

Scheduler selects the CDW taking into consideration this 
dwell’s probability of detection and entropy of the radar. 
To add an incoming CDW to its queue and to compute the 
schedule, the Scheduler needs the Computer. After the 
schedule is computed, the CDW information is sent to the 
Receiver. 

The last system component is the Computer. The 
Computer is the single computation resource of the 
system and can answer a single computation request at a 
time. It receives calculation requests from all Controllers 
and the Scheduler. It services the requests with higher 
priority given to the Scheduler, and in a first-come first-
served mode among the Controller requests. The 
Computer is modeled as a separate entity to investigate 
the impact of the speed of the processor on the stability of 
the adaptation process. 
 
3.2. Self-Control of the System 
 

The Controllers are the major elements in the 
adaptation process. In this experiment we used a simple 
version of Controller, i.e., a P (or proportional) control 
law. Each Controller keeps track of the related Radar’s 
detections – non-detections and the uncertainty, 
represented by the entropy.  The control based sensor 
management architecture can be seen in Figure 6. 
 

 
Figure 6. Control based sensor management 
architecture 

 
The responsibility of the Controller is to generate the 

CDWs.  The start of the next dwell is a component of a 
CDW that needs to be re-computed for each dwell. If the 
illuminations of the Radars were perfectly periodic, if the 
Receiver was stationary and if the distance between the 
emitter and the platform were known, then it would be 
possible to predict the exact time of the next dwell. The 
next dwell time would be last dwell time (tds) plus the 
revisit time (τrv). In our case, in order to compensate for 
the phase shift, τrv is adjusted such that: 

 

where Teip is the illumination period of the radar, 
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where Teit is the illumination time (duration of a single 
illumination) and 

 
where K(i) is the proportional controller parameter  and 

ε = Entropyref (i) – Entropy(i)                            
ε is the difference between the reference input, which is 
the maximum entropy of the Radar and the entropy 
computed by the Controller. 

The effect of the above Controller can be summarized 
as follows. If a CDW is not scheduled, the uncertainty, 
hence the entropy of the Radar, gets higher. When 
entropy gets higher, the difference between the maximum 
entropy and current entropy (ε) gets smaller, which results 
in a smaller δ. When δ gets smaller, the revisit time gets 
smaller, which means more CDWs will be generated and 
the probability of detection of an illumination will 
increase.  If a dwell on an emitter results in detection, the 
entropy gets smaller, the difference between maximum 
entropy and current entropy (ε) gets larger and so δ gets 
larger. When  δ gets larger, the revisit time gets larger and 
fewer CDWs are generated. 

Each Controller calculates a CDW and sends the 
request to the Computer. Detection of a Radar decreases 
its entropy whereas no-observation of it (when a specified 
amount of time passes without the radar is looked at) 
increases the entropy. A detection event decreases the 
entropy to its minimum value since in such a case we 
know for certain that the Radar is illuminating at the 
Receiver. No-observation of the radar increases the 
entropy because as time passes if the radar is not 
observed, the uncertainty about it increases. 

 CDWs generated by the Controllers have an 
expiration time associated with them. As the key element 
of the CDW is the time of next dwell, if the CDW is not 
scheduled until the calculated tds , it expires and a new 
CDW needs to be calculated for the Radar. Expiration of 
the CDWs increases the need for a Computer with a fast 
processor. Computer’s speed affects the expiration 
frequency of the CDWs if the expirations are due to the 
delays in computation. Our aim is to simulate the system 
with fast and slow processor Computers and investigate 
the behavior and the stability of the system. 
 
4. Implementation of the System Using 
Ptolemy II 
 

Ptolemy II is a modeling and simulation environment 
that supports heterogeneous, concurrent modeling and 

design. It is composed of a set of Java packages and a 
graphical user interface. 

Ptolemy II software environment implements an actor-
oriented design methodology. An actor is defined as an 
encapsulation of parameterized actions performed on 
input data to produce output data [9]. By using the actor 
orientation, functionality concerns are separated from the 
component interaction concerns. The component 
interaction and control flow between actors is done 
through frameworks. In the design of this simulation 
different frameworks were used hierarchically. At the top 
level, discrete-event (DE) domain is used. In the discrete-
event model, actors share a global time and communicate 
through events. The global notion of time makes it 
possible to investigate the effect of communication delays 
and timing behaviors of the system [10]. In the next layers 
finite state machine (FSM) and timed multitasking (TM) 
domains are used. The Timed Multitasking domain is an 
event triggered model; it controls the time at which 
outputs are produced. It can effectively control starting 
and stopping times of tasks and so obtains deterministic 
timing properties [11]. The Timed Multitasking domain is 
used to model the computer’s behavior.  By using this 
domain in computer, the duration of the calculations is 
controlled and changes in the stability of the system due 
to the processor speed are observed. 

The first layer of the system is shown in Figure 7. In 
the first layer, all the entities are shown as separate actors 
and communication between actors is done via their ports. 
In this layer the control flow through actors is done in 
discrete event mode. As all entities share the same global 
time and they are communicating through events, the 
Discrete Event domain was the best fit for the scenario. 
The inter-connections among Receiver, Radar-control 
(Radar-control actor holds n-controllers in it, where n is 
the number of radars), the Scheduler and the Computer 
entities are shown in the first layer. The Environment and 
Detect-calculator entities are supporting entities of the 
system, where the Environment contains n-radars and 
Detect-calculator calculates whether detection has 
occurred or not, given the information from receiver and 
environment. Detect-calculator just calculates whether the 
physical factors at the moment will generate a detection 
event or not (whether radar is illuminating in the direction 
of the receiver, whether it is within the detection range, 
etc.). All the actors seen in the first layer are composed of 
other actors.  

The Computer behavior is modeled in the Timed 
Multitasking (TM) domain. The TM domain gives the 
Computer entity the capability to control the duration of 
the calculations, give the priority to requests coming from 
specified entities and choose a scheduling strategy 
(preemptive or non-preemptive).  In this problem, the 
Computer schedules the computations in non-preemptive 
mode and gives higher priority to Scheduler requests.  



 

 
Figure 7. First layer in system model 

 
The use of Ptolemy II in modeling and simulating this 

system made it straightforward to visualize the behavior 
of the Computer as a separate entity. The control logic 
and the entity relationships are implemented without 
difficulty by using Ptolemy’s different modeling domains. 

 
5. Simulation Results 
 

One of the goals of this research is to investigate the 
behavior of the system in response to the changes in the 
time spent for computing sensor scheduling decisions. 
Although a full investigation would involve the analysis 
of the computation duration for each separate algorithm 
within the system, so far we limited our study to the case 
where the computer speed changes. This is, in a sense, 
equivalent to the situation where the speed of computation 
of all of the algorithms changes at the same rate.  The 
main goal for us was to demonstrate the impact of the 
processing speed on the stability of the adaptation (self-
control) process. 

The Computer is a separate entity in the system. It can 
hold a queue of calculation requests. The system goal is to 
manage the Receiver as a resource and the Receiver being 
idle for a time period is a loss for the system. To make the 
Receiver dwell at some radar for a specified period, the 
Scheduler must send a CDW to the receiver. The 
Scheduler is given the highest priority in the calculation 
queue so that requests from the Scheduler are serviced 
first by the Computer. Controllers have the second 
priority and all Controller requests are served in a first-
come first-served fashion.  Controllers keep track of each 
Radar’s entropy and the average of all Radar entropies 
gives the overall system entropy. A change in the system 
entropy with respect to time is compared for three 
different computers, two with fast processors and one 
with a slow processor. 

In the first simulation, the system is run with a 
computer entity that has a fast processor. Ptolemy’s 
simulation environment gives the flexibility to assign 

different calculation times for each computation. For ease 
of comparison, all calculations are given the same time in 
this simulation. A single computation request incoming to 
the Computer from the Scheduler or Controllers is 
serviced within 5.10-4seconds. The resulting average 
entropy vs. time is shown in Figure 8.  

It is seen that the average entropy of the system 
quickly drops from its maximum 2.0 point to a range 
between 1.7 and 1.3 and stabilizes at that level. 
Simulation is repeated with a Computer entity that has a 
faster processor which can do a single computation in   
5.10-10 seconds. As the system load is not heavy in this 
problem (it is assumed that there are 10 radars in the 
environment, so 10 controllers and 1 scheduler asking for 
computation) using a faster Computer does not improve 
the results.   The average entropy of the system with a 
processor which can answer any computation request in 
5.10-10 is shown in Figure 9.  

However, with a higher workload, the use of a faster 
processor helps the system achieve stability more quickly. 
To demonstrate the effect of processor speed on system 
stability, the simulation is repeated with a computer entity 
that has a slow processor. In this case, a single 
computation request is answered (this includes just the 
computation time and not the waiting time) in 5.10-3 
seconds with this Computer. The result is given in Figure 
10. 

 

 
Figure 8. Average entropy of the system when a 
fast processor is used 
 

It can be seen in Figure 10 that the system entropy 
stays in a high range between 1.8 and 2.0 in the first 100 
seconds. In the next 40 seconds, the average entropy 
drops to a range of 1.8-1.5, and after the first 140 seconds 
the entropy drops to the 1.75-1.3 range.  

The reason of the increase in the average entropy is as 
follows. Because of the slow processor and high 
computation times, the computation requests of the 
controllers and scheduler wait in the computation queue 
for a long time. As described in Section 2, the CDW’s 
main component that is recalculated each time is  tds – 



time to start the next dwell. If the CDW calculation 
request of the Controller is answered after the current 
time becomes equal to tds, the Controller receives a CDW 
that has already expired. The Controller sends the 
incoming CDW to the Scheduler, but the Scheduler never 
selects that CDW to send to the Receiver because it is 
already expired. Following this reasoning one might 
expect that the average entropy level should always 
remain high as the Controllers which receive expired 
CDWs may never catch up. However this is not the case 
with this plant because the time of the next dwell is 
calculated with a self-controlling approach. Once the 
Radars that the Receiver first started to observe become 
detected, their entropy drops and their CDW computation 
requests decrease. The decrease in the workload of 
Computer gives the other CDW computation requests a 
chance to get computed before they are already expired. 
After the first 100 seconds, more than half of the radars 
start to get observed and after 130 seconds the other 
radars start to be observed as the back to back detection of 
the already observed Radars decreases the number of 
CDW computation requests made to the Computer.  As 
the CDW computation requests decrease, the workload of 
the Computer decreases and the CDW calculations get 
completed before expiration time. After the first 140 
seconds the average entropy drops to the 1.75-1.3 level 
and the system stabilizes. 

 

 
Figure 9. Average system entropy using a 
processor which can respond to a calculation 
request in 5.10-10 sec. 
 

The time it takes for the system to stabilize depends on 
the computation times, and thus it depends on the speed 
of the computer. With very high computation times the 
system may never be able to stabilize. Figure 11 shows 
the change in entropy level of the system with different 
computation times. 

The time the system needs to drop to a certain level of 
entropy directly changes with the length of the 
computation time, too. Figure 12 demonstrates the change 
in the time of stabilization with respect to the computation 

time. Entropy level of 1.6 is taken as the stabilization 
level of the system. As the speed of the Computer 
decreases and consequently computation time increases, 
the time it takes the system to reach the 1.6 level 
increases. In systems with computation times longer than 
5.5E-3, the system can never reach that level and thus is 
unstable.  
 

 

 
Figure 10. Average system entropy using a 
processor which can respond to a calculation 
request in 5.10-3 sec. 
 

 
Figure 11.  Change in entropy level with different 
computation times 
 

 
Figure 12. Time to stabilize vs. computation 
length 
 



6. Conclusion 
 

In this paper we investigated the impact of the speed of 
the processor on the stability of a self-controlling system. 
For the case study we used a physical system whose goal 
is to schedule a receiver that monitors radar illuminations. 
The system goal is to minimize the entropy (uncertainty) 
of the detection decision. The entropy for a specific radar 
increases when the uncertainty about the time of 
illuminating in the direction of the receiver increases. The 
system has a single computation resource - the computer. 
In our experiments we observed that the stability of the 
self-controlling system developed for this application 
highly depends on the computation speed. Simulations 
were performed for different computation speeds, and the 
change of average entropy with respect to time was 
investigated. 

Simulation results using different computation speeds 
can be summarized as follows. The average entropy vs. 
time graphics show that computer speed affects the 
stability of the system to a great extent. Especially in real 
time systems, when changes happen at run time, a 
decrease in computation speed can make the computation 
results useless. In our experiments we observed that in 
many cases, due to the increased computation times, the 
CDW calculations were already invalid. In other words, it 
was already “too late”. However, since our system was a 
self–controlling system, it did not request the same 
computation load blindly at all times, the stability of the 
process was achieved even as the load of the computer 
decreased. Nevertheless, with very high computation 
times the system was never able to stabilize, as expected. 

One of the future research directions in this area may 
be adding another control loop to control the number of 
“too late” computations. The system may try to adjust the 
workload of the computer by decreasing the CDW 
computation requests of the controllers. When the number 
of “too late” computations increases, some of the 
controllers may sacrifice by not sending any requests 
giving a chance to other controllers’ requests to get 
calculated on time and in this way decrease the system 
entropy. Studies in this area will support the research on 
real-time computations. 

While the speed of computation is an important factor 
in keeping the system stable, one needs to analyze the 
impact of time complexity of particular algorithms. In 
particular, a self-controlling system might need to decide 
whether to execute a more complex algorithm and 
possibly get better results, or use a simplistic algorithm 
that is only sub-optimal in terms of the system 
performance metric.  
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