

1

Abstract—In this paper, we first describe a system we have

implemented that takes expressions of policies, expressed in a
fragment of English called SBVR SE (Semantics of Business
Vocabulary and Rules Structured English), an OMG standard,
and automatically translates them into an executable semantic
web formalism (OWL 2 and semantic web rules). Specifically, we
describe how these policies can be used to automatically enforce
compliance with policies and to reconcile multiple policies
specified by independent parties. The scenarios implemented
concern information sharing via XMPP (“instant messaging”).
We then outline how situations can be characterized as policy-
compliant or policy-violating. In some cases, situations are policy
compliant or violating because of events and actions that they
contain. We show that our formalism supports this analysis.

Index Terms—Situation Theory; Actions; Events; Policies;

Deontology; Rules

I. INTRODUCTION
A “situation”, at a minimum, includes some number of objects
and relations among the objects during a time interval and at a
place [18]. “Situation awareness" is the inference of a
characterization of a situation based on a set of lower-level
facts pertinent to that situation about which the agent has
information. Situation awareness often takes the form of a
statistical, quantitative inference. As an example, think of the
characterization of the Iraq War in terms of the charts of
various types of incident counts and other trends that Gen.
David Petraeus and others presented in Congressional hearings
(Figure 1). These charts depicted the situation in Iraq in terms
of statistical trends among various indicators (relations): that
IED incidents were on a sustained upward or downward trend
or that Iraqi troops at a determined readiness level were
increasing and so on. Progress was measured against baseline
rates based on the start of the war or other milestones. In such
cases, the characterization of the situation was not a

Manuscript received October 31, 2011. This research was performed under
U.S. Army contracts W91260-09-C-0037 (USASMDC) and W15P7T-09-C-
S031 (CERDEC I2WD). The title alludes to Barwise and Perry’s book,
“Situations and Attitudes” (MIT Press, 1983), the primary text of Situation
Theory.
Brian Ulicny, Ph.D., VIStology, Inc, Framingham, MA., 

bulicny@vistology.com  
Gerald. M. Powell, Ph.D., U.S. Army Research Laboratory, Aberdeen 

Proving Ground, MD. gerald.m.powell@us.army.mil 
Won Ng, VIStology, Inc., Framingham, MA, wng@vistology.com 
Jakub Moskal, Ph.D., VIStology, Inc., Framingham, MA, 

jmoskal@vistology.com.  
Mieczyslaw M. Kokar, Ph.D., Northeastern University, Boston, MA. 

mkokar@ece.neu.edu  

Figure 1 Chart from Petraeus, 2007 [15]

characterization into discrete logical categories, perhaps based
on strict numeric thresholds. Rather, the characterization was
mostly based on detection of strong statistical trends from
period to period, toward or away from the baseline. As such,
the idea of logically inferring situation types from lower-level
situational data would, in general, seem to have limited
practical application.

However, at least one type of characterization of situations
does strongly lend itself to logical inference: the
characterization of a situation as being compliant with or in
violation of a policy. For example, it is either true or false that
a set of financial transactions violates a set of anti-money
laundering policies, although there may be some uncertainty
as to which, based on incomplete or ambiguous information.
The violation or non-violation of the policies is not a matter of
degree. If the prohibited conditions exist, then the situation is
a violation of the policy. Whether the legal or illegal behavior
is increasing or decreasing is a different matter.

In this paper, we first describe a system we have
implemented that takes expressions of policies, expressed in a
fragment of English called SBVR SE (Semantics of Business
Vocabulary and Rules Structured English) [1], an OMG
standard, and automatically translates them into an executable
semantic web formalism (OWL 2 and semantic web rules).
We describe how these expressions can be executed
automatically to enforce compliance with security policies
they describe and to reconcile multiple policies by
independent parties. As such, the policy engine can
characterize the corresponding situations as policy-compliant
or policy-violating.

We then discuss how situations can be characterized as

Situations and Policies
Brian Ulicny, Gerald M. Powell, Won Ng, Jakub Moskal, Mieczyslaw M. Kokar, Senior Member,

IEEE

CogSIMA 2012, New Orleans, LA

978-1-4673-0345-3/12/$26.00 ©2012 IEEE 7

2

policy-compliant or –violating both because of the actions that
they contain or independently of such actions. We extend our
Situation Theory Ontology formalism to include actions and
events as relevant individuals and show that this formal
representation is adequate to encode relationships between
situations, actions and policies and to derive inferences from
them

II. REPRESENTING POLICIES SEMANTICALLY

In this project we were concerned with the ability to use
policies to ensure compliance during runtime as well as with
the ability to do policy reconciliation. Policy compliance
involves the run-time process of ensuring that all of the
conditions defined by a policy hold true; a common example
is the checking of credentials required before granting access
to a document. In policy reconciliation, the goal is to take
multiple polices and generate a policy instance that
simultaneously satisfies all of them; a typical example here is
determining specific conditions under which a communication
session is to be established between nodes in a VPN where the
ends of the connection are governed by different policies.

1.1 Semantic and Non-Semantic Representations of
Policies

Policies can be implemented in a system via the hardware (e.g.
this light will not turn on unless both of these switches are
turned on); or in software. In software, a policy can be
represented either syntactically or semantically. By a
semantic representation, we mean a representation in which
inferences can be made on the basis of a policy instance using
a domain-generic inference engine. So, for example, a
Windows Group Policy instance has a meaning that is clear to
everyone who knows the semantics of the policy language.
However, no generic reasoning engine can draw inferences
from Windows Group Policy instances in their native format.
The representation has no meaning to those engines. Instead,
procedures need to be written to interpret the policies.

A primary objective in our work is to develop the means
by which operations-governing policies can be handled
automatically by a computer using a generic inference engine.
For this reason it is important to be able to describe policies in
a formal, declarative way that will permit them to be
automatically processed by formal reasoning engines.

A formal reasoner or inference engine is a system capable
of applying the formal axioms of a language to a body of
data/facts/knowledge resulting in the derivation of additional
inferable facts. A rule-based system, for example, may be used
as a formal reasoner if it is provided with a set of axioms for
the language in which the data/knowledge is represented. Such
axiom sets are available for a number of ontology languages
as discussed below.

An important principle employed by many systems
including policy-based reasoners is the use of the closed world
assumption (CWA), which permits systems to assume that
everything that is known to be true of the “world” is available
in the facts that have been provided about it; if a fact is not
explicitly stated it is assumed to be false. The closed world

defined by a set of facts can be thought of as a “context” in
which reasoning is to occur. OWL-based systems, like the
one we describe here, adopt the open world assumption. In a
policy context, this means that the engine might not know
everything relevant to determining whether a policy is violated
or not.

For reconciliation to be possible there should be an
explicit separation of policies and mechanisms that use the
policies, and the policies should be first-class objects within
the system about which the system can reason. In this way,
policies will be objects that can be represented, stored and
manipulated by the system. Moreover, in this way policies will
have their own interpretation, or semantics. This has a very
important impact on the accreditation process in that
mechanisms can be accredited and then policies can be added
dynamically.

III. POLICY LANGUAGES
In our project, we used SBVR Structured English (SE) for
authoring policies in an English-like formalism. SBVR SE
policies are then automatically translated into proprietary
BaseVISor Rule Language (BVR) for execution and policy
reconciliation. Currently, we are also working on
automatically translating SBVR SE to Rule Interchange
Format (RIF) Core rules, which is a W3C published
recommended standard [20].

1.1.1 SBVR Structured English

Semantics of Business Vocabulary and Business Rules
(SBVR) [1] is an OMG standard introduced in 2008 that aims
at a more natural format for expressing rules. Business rules
are expressed in a subset of natural language that is readily
understandable by business people, instead of at an
implementation level, such as rules that are processable by a
formal reasoning engine. The vocabulary represents the
concepts used in the rules and can also express facts and
relations between concepts (i.e. ontological relations). The
specification is based on formal logic and captures the
semantics of implementation-independent business models.
SBVR is located in the Business Model (also called the
Computation-Independent Model) level in OMG’s Model
Driven Architecture (MDA) [2] and is meant to be translatable
to a Platform-Independent Model (PIM) that describes the
structure and behavior of the model, and subsequently to a
Platform-Specific Model (PSM) that includes all the platform
dependent information necessary for a developer to implement
executable code, such as specific programming language
packages. SBVR is mapped to the Meta-Object Facility
(MOF) [3] metamodel – a useful feature for transformations of
an SBVR model to other models.

SBVR distinguishes between alethic and deontic rules.
Alethic rules are categorized as structural business rules,
which are rules that must necessarily be true as part of the
business organization. For example, the rule that “it is
necessary that all supervisors be full-time employees”
expresses an alethic contraint. Deontic rules are operative
business rules that are expected to be obeyed but can be
violated in practice. For example, “it is obligatory that
employees fill out a W-2 form.” This rule expresses an

8

3

obligation that is supposed to be observed, but may actually be
violated in practice.

SBVR has two common notations: Structured English and
RuleSpeak®. We do not discuss the RuleSpeak notation here.
SBVR Structured English (SBVR SE) is a controlled English
vocabulary and grammar that uses font styling and colors to
indicate SBVR concepts. term represents a noun concept such
as rule and action. Name is an individual concept and usually
is a proper noun, e.g. California. verb is part of a SBVR
construct called a fact type and is usually a verb, preposition
or combination of preposition and verb. Lastly, SBVR SE
defines a set of keywords that are reserved words or phrases
with special meaning. Examples of keywords are the articles a
and the, modality phrases it is necessary that, and
quantifications every and at most one. An example of a SBVR
SE rule is:

It is obligatory that a driver is qualified if the driver rents a car
that is owned by EU-Rent

Like the other languages discussed, SBVR is domain and
application independent. The SBVR specification includes a
proposal relating SBVR concepts to equivalent OWL
expressions, so clearly some consideration was given to how
SBVR should work with semantic languages. Its main strength
over the other languages is its user friendliness. Because
SBVR SE is an almost-natural language, it is suitable for
expressing high-level rules.

SBVR is sufficiently expressive for representing high level
rules but because SBVR is at the business model level, it
suffers from the common problem that most business model
level components do: translation to a PIM and especially to a
PSM requires additional details about computations and
platform-specific information, usually supplied by an IS or IT
person. The SBVR vocabulary can be expanded to include
platform vocabulary and RuleSpeak includes templates to
write computation rules, but SBVR is meant to be a high level
language and is not executable, so SBVR is only truly useful
when translated into a lower level executable language like
BVR or Rule Interchange Format (RIF)-Core.

A. BaseVISor Rule Language (BVR)
BaseVISor (http://www.vistology.com/basevisor) is a versatile
forward-chaining rule engine specialized for handling facts in
the form of RDF triples (i.e., subject, predicate, and object). It
expresses rules in BaseVISor Rule language (BVR). The
engine implements OWL 2 RL inference rules and supports
XML Schema Data Types.

Generally speaking, rules are expressed in the form
of if/then statements. The ‘if’ part of the statement is
represented by the ‘body’ or ‘antecedent’ of the rule; the
‘then’ part is represented by the ‘head’ or ‘consequence’. In
BVR the contents of rule heads and bodies are made up of
triple patterns (i.e., triples that may contain variables) and
procedural attachments, i.e. functions such as add, assert, and
println (print line). Users can add user-defined procedural
attachments for use in rules. BaseVISor also supports BVR
queries, which are special cases of rules with empty heads,
and are useful for retrieving information from the resulting
fact base.

BVR is domain and application independent, compatible
with the semantic languages OWL and RDF, designed for
formal reasoning and executable in the BaseVISor
environment. It is very expressive, especially since the
language is extensible via user-defined procedural
attachments.

B. RIF-Core
The Rule Interchange Format (RIF) is a W3C
Recommendation. Since there are many rule languages in
existence, RIF is envisioned as a lingua franca in which rules
can be exchanged by expressing them in a common language.
RIF-Core is a subset of the Rule Interchange Format. RIF-
Core corresponds to the language of definite Horn rules
without function symbols (often called 'Datalog') with a
standard first order semantics. RIF-Core thus is a subset of
RIF-BLD (Basic Logic Dialect). At the same time, RIF-Core
is a language of production rules where conclusions are
interpreted as assertion actions. Thus RIF-Core also is a subset
of RIF-PRD (Production Rules Dialect). RIF-Core is based on
built-in functions and predicates over selected XML Schema
datatypes, as specified in RIF-(Databyes and Built-ins) DTB
1.0.

To give an example, the SBVR SE rule:

It is necessary that a customer has_status Gold if the
customer has_status Silver and the customer
has_shopping_cart a shopping_cart that has_worth a value that
is_greater_than $2000.

corresponds to the RIF-Core rule:

Forall ?customer ?shoppingCart (
 ?customer[ex1:status->"Gold"]
 := And(

?customer # ex1:Customer
?customer[ex1:status->"Silver"]
?shoppingCart # ex1:ShoppingCart
?customer[ex1:shoppingCart->
 ?shoppingCart]
?shoppingCart[ex1:value->?value]
pred:numeric-greater-than-or-
equal(?value 2000)
)

)

C. Translation of SBVR SE to BVR and RIF-Core
For the automatic translation from SBVR to BaseVISor, we

use ATL (Atlas Transformation Language) Given the
metamodels of source and target languages, ATL transforms a
model conforming to the source language metamodel to the
target language. We have created a metamodel for BaseVISor
and modified the SBVR metamodel used in a UML-to-SBVR
effort [6]. We then wrote ATL rules to map from SBVR rules
expressed in Structured English to BaseVISor rules. Because
BaseVISor Rule Language is not a standard, we are in the
process of doing the same thing for RIF Core.

9

4

IV. POLICY ONTOLOGIES
We developed OWL ontologies to encapsulate our treatment
of policies and to represent concepts and their relations that
we have determined to be essential for policy compliance and
reconciliation scenarios, including information exchange
policies. These “core” ontologies are the basis for any domain-
specific application of policy reasoning, i.e., domain-specific
scenarios should extend these ontologies with their domain-
specific knowledge and rules. The design of the ontologies,
such as treating actions and operations as first-class entities,
are grounded in our study and investigation of formal security
models, which involve policies.

A. Representing Modal Notions in OWL
Our system, called PolVISor involves both forms of modality,
both deontic and alethic. Modal expressions qualify the truth
of a statement. For example, to say that “John is possibly
dyslexic” is not to assert that “John is dyslexic”, but a more
qualified statement that the statement might be true. Modality
is expressed logically as operators over propositions. Op(p)
means that some modal operator Op is being asserted of the
proposition p: It is Op that p. The operator identifies the way
in which the truth of the bare proposition p is being qualified.

Alethic modality is the logic of possibility (it is
possible that p) and necessity (it is necessary that p). As
specified by SBVR, alethic notions are encoded directly in the
ontology. Necessity relations between classes are expressed in
terms of subclass relations that apply to all instances. Thus, to
say that necessarily, all bachelors are unmarried is to say that
the class Bachelor is a subclass of Unmarried Things. Without
such a subclass relation, it might be the case that all of the
instances of Bachelor are instances of Unmarried, but that
would be a contingent coincidence, not a necessary truth, with
respect to that ontology. We encode that it is possible for a
member of class F to be a member of class G in the ontology
by failing to have classes F and G as disjoint classes. If F and
G are marked as disjoint classes, then necessarily, no Fs are
Gs, (and, necessarily, no Gs are Fs), according to that
ontology.

“It is necessary that a user has a password” expresses
a necessary relation between the class of Users and the class of
things that have a password. This necessary relation would be
expressed by saying that the class of Users is a subclass of the
class of things that have Passwords. This encodes the
necessity relation in the ontology directly. Ontologies express
constraints on how the world can be. To say that users may
have a password is expressible by saying that the class of
Users and the class of things that have a password are not
disjoint.

Deontic Logic [5] is the study of the logic of the
concepts “may” (or deontic ‘can’) and “must” and their duals
“may not” and “must not”. These concepts are crucial in
expressing policies: policies express what may or may not be
done, under certain conditions, and what must and must not be
done, again, under certain conditions. May and must are modal
notions. Sentences employing modal notions, like may and
must, do not express the way the actual world is, but qualify
the truth of the proposition they modify, in this case
expressing conditions on how possible worlds must be if they

are to comply with the deontic notions our ontology encodes.
That is, if I say that “John may go to the store” or “John must
(or must not) go to the store”, I do not say anything about how
the actual world is with respect to John’s going to the store.
What I express has to do with the consistency of John’s going
to the store with the ways in which John is permitted to act or
with the ways in which John must act.

In our inference engine, BaseVISor, propositions are
expressed as RDF or OWL triples (subject, predicate, object).
BaseVISor does not allow for modal operators over triples.
Therefore, rather than give modal operators their usual
semantics as quantifiers over possible worlds or ways the
world could be or ways a person could act, we treat Actions as
a class that can be subdivided into Permissible (may),
Omissible (may not), Optional (may and may not), Obligatory
(must) and Prohibited (must not) subclasses.

The structure of the ontology is represented in Figure 2:

Figure 2. Classes and subclasses of Deontic Ontology

First, Actions are subclassified as Permissible or Omissible.

An action is Permissible if it may be done. For example, if
getting married is permissible (without restriction) , then the
class of actions that are Marriages could be represented as a
subclass of the class of permissible actions.

An action is Omissible if one may not do it. For
example, eating okra is omissible. One may abstain from
eating okra. The class of actions that is okra-eating could
thus be represented as a subclass of the Omissible actions.

In fact, one both may and may not eat okra (and one
may or may not get married), so both of these classes of
actions would be subclasses of the intersection of the
Omissible and Permissible classes: the Optional actions.

Obligatory actions (actions one must do) are a subset
of the Permissible actions. If an action must be done, then it
may be done. The Obligatory actions and the Omissible
actions are disjoint: if an action must be done, it is not the case
that it may not be done.

Similarly, Prohibited actions (actions one must not
do) are a subset of the Omissible actions (actions one may not
do). The Prohibited actions and the Permissible actions are
disjoint: if an action must not be done, then it is not the case
that it may be done.

We have expressed these relations in an OWL
ontology. The ontology may be downloaded at
http://vistology.com/ont/2010/secpol/Deontic.owl.

By means of this ontology, one can state that all
instances of actions of a certain type are, for example,
prohibited (e.g. theft, murder) or permissible (e.g. expressing
one’s opinion, forming associations) across the board. Policy
rules allow one to express conditions under which actions of a
certain type are classified as permissible or prohibited or
optional based on additional facts about them. For example,
one could express the policy that it is permissible to marry

10

5

only if one is at least a certain age, not currently married, and
so on.

Because of the open world assumption in OWL, the
fact that an action is obligatory does not lead to the inference
of a policy violation if there is no such action yet. Stating that
an action is obligatory entails that there must be such an action
at some point. We can infer a contradiction if an action is
asserted to be both obligatory and omissible, however.
Further, we can say that if an action must be completed within
a certain time frame, if the time frame contains no such action,
then this is a violation.

In the next section, we illustrate our approach by
showing how certain information sharing actions can be
inferred to be policy violating or compliant via formal
inference.

V. XMPP INFORMATION EXCHANGE POLICIES
Extensible Messaging and Presence Protocol (XMPP) [6] is a
popular open-standard protocol for instant messaging (IM)
widely used in military applications. There are a number of
extensions to the protocol that define protocols for other
functionality, for example Voice Over IP (VoIP) can use
XMPP for internet telephony.

Each user signs into his XMPP account identified by a jid,
commonly of the form name@domain.server, e.g.
juliet@montague.net. Each jid has a contact list called a roster.
The server hosting the user automatically sends a presence to
each of his contacts, except for those he has blocked, to
indicate that he is now online. The contact’s server forwards
the presence to the receiver, unless she specified that she does
not wish to receive presences from the sender. The contact’s
server also sends back a presence to the sender if she has not
blocked presence-outs to the sender. Now the two clients can
start chatting with each other. Users can also join chatrooms,
participate in conversations as a group, and send messages to
individuals in the room.

Using Openfire [7], an open source XMPP server available
from Ignite Realtime [8], for our server, we developed a
plugin that intercepts incoming and outgoing XMPP stanzas.
The stanzas of interest in our scenarios are presences and
messages, but all stanzas are intercepted so our
implementation is extensible. Users connect to the servers via
Spark IM Client [9], an open source IM client application also
provided by Ignite Realtime.

We wrote policies in SBVR SE corresponding to the
scenarios outlined below and converted them to an executable
rule language (BVR). We installed the policies on XMPP
servers and used them to control who could talk to whom
according to the policies and making use of descriptions of the
users encoded in either the friend-of-a-friend (FOAF) or
vCard vocabularies for describing persons.

To demonstrate server policies that limit who can
communicate with whom, based on facts about the persons
involved, we developed the rules and ontologies for one server
that restricted chat based on gender and another server that
restricts chat based on the first letter of the jid. The first
server allowed men to be visible Monday, Wednesday, Friday,
and women the other days. The second server, allowed jids
that began with the first half of the alphabet to be visible the

first half of the week; the remainder, the second half. The
policy engine correctly interpreted and enforced the policies
on each server, prohibiting messages and presences from
being sent when the users were not compliant with the policy
on that day.

In a second scenario, we implemented security level
markings for jids. We added policies limiting communications
to those with the appropriate security level. For example,
someone with a clearance of Top Secret could send and
receive messages classified as Top Secret or any “lower” level
like Secret or Unclassified. In this scenario, the policy
engines correctly prevented communications between users
involving illicit classification levels.

In both of these scenarios, there was no policy
reconciliation involved. In order for both servers to comply
with all of the applicable policies, it was only necessary for
each server to enforce its own policies on incoming and
outgoing messages and presences.

In a third scenario, we implemented explicit reconciliation
of policies between servers. In this scenario, both Server 1 and
Server 2 had security policies restricting who can join what
chatroom. Their policies must be successfully reconciled and
the attempt to join must satisfy the reconciled policy in order
for the attempt to be allowed. By satisfying the reconciled
policy, the request also satisfies each server’s policy. The
servers exchange policies, compute a reconciled policy, and
implement it. We were able to successfully compute a
reconciled policy, propagate it to the other server, and enforce
it.

In a fourth scenario, we implemented the same policy
reconciliation scenario but with each server expressing facts
about its users in a different ontology (using vocabularies
corresponding to the FOAF and vCard standards) that must be
aligned automatically before reconciliation takes place.

With these scenarios, we demonstrated that:
1. Policies authored in a restricted natural language

format (SBVR Structured English) can be automatically
converted to an executable formalism (BaseVISor rule
language and OWL 2 RL) effectively.

2. Policies written in the ontology-based rule language
can provide an effective and flexible way to specify expressive
policies regulating actions that can be automatically enforced
using ontology-based reasoning. The core ontologies used as
the basis for domain-specific knowledge are grounded by our
investigation of established security models.

3. Policies written in the ontology-based rule language
can be effectively reconciled to allow for dynamic, policy-
based information exchange between an open set of XMPP
servers.

4. While policy reconciliation typically requires the
sharing of a common vocabulary, we have shown that
effective ontology matching can be implemented to allow
policy reconciliation across different (but similar)
vocabularies.

Video demos of these scenarios can be viewed at:
http://173.14.188.57:9999/secpol/

11

6

VI. SITUATIONS
In the previous section, we illustrated formal reasoning

about constraints on actions imposed by policies. In this
section, we extend the analysis of policy violation and
compliance to the notion of a situation that contains or
involves an action constrained by a policy. We do this by
extending an ontology we have developed previously to
include actions as individual entities. Doing so allows us to
extend the notion of policy compliance from the level of an
individual action to the context (situation) in which it occurs.

Situation Theory, as initiated by Barwise and Perry [16] and
developed by Devlin [17], is a theory of information flow
among cognitive agents, particularly by means of language.
Barwise and Perry begin with the assertion that people use
language to talk about (i.e., exchange information about)
limited parts of the world, which they call situations. (For
example, scenes are situations that are visually perceived by
some observer.) Abstract and concrete situations are partial
possible worlds, and the information an agent has about a
given situation at any moment is limited to information about
elements of the situation.

In situation theory, information about a situation is
expressed in terms of infons. Situations support (|=) infons.
Infons are written as

<<R, ai, …, an, l, t, 0/1>>

where R is an n-place relation and a1, . . .,an are objects
appropriate for R. Infons have slots for time and location
parameters, which, by convention, are encoded as the two
slots before the final polarity parameter (0 or 1). Each slot is
associated with a type of individual that must fill it (e.g. times,
locations, persons). A polarity of 1 indicates that the situation
contains the described state of affairs. A polarity of 0
indicates the opposite. Infons may be recursively combined to
form compound infons.

In [18], a (partial) computer-processable implementation for
Situation Theory was developed that is compatible both with
Barwise and Perry and with Endsley’s model of human
situation awareness [19]. To achieve this, Situation Theory
was encoded using a formal ontology (STO) in OWL (Figure
3, excluding red boxes). An ontology-based approach to
situation awareness supports the inference of new facts about
the situation from the encoded facts.

It has been shown that the OWL ontology encoding
Situation Theory can be used to model and track situations as
they unfold. Implicit features in Situation Theory notation are
made explicit in the STO OWL notation.

Similarly to Barwise and Perry, we consider situations to be
associated with spatiotemporal regions, although STO does
not explicitly identify the class for location or time; these are
just special types of Attribute. Endsley defines Situation
Awareness as "the perception of elements in the environment
within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future."
That is, for Endsley, situation awareness is not the perception
of some thing, a situation. Rather, it is a perception of "what
is going on" with entities in a spatiotemporal region and a

projection of their status in the future, in order to support
decision making. 

Figure 3 Situation Theory Ontology (STO) extended to
include Events, Actions and Thematic Roles

 

Situations evolve, and by this we mean that situations
exhibit differences across time, just as they exhibit differences
across space. Situations have an associated spatiotemporal
extent.

Clearly, situations can have discontiguous spatiotemporal
regions: for example, a phone conversation is a situation that
takes place at two discontiguous locations. Similarly, a play
with an intermission can be thought of as a situation with a
discontiguous time span.

How can we represent that a situation complies with a
policy or violates a policy?

Our Situation Theory Ontology does not contain a class of
events. Therefore, what is the relation between our situation
ontology and the event-based ontology that our policy
reasoning employs? (Actions are events with agents; they are
events that someone makes happen, as opposed to events that
simply occur, like rain or snow.)

In order to bridge the gap between the two vocabularies,
one involving events and actions over which policies are
defined, and the other involving situations over which
situation awareness is defined, for the purposes of this paper,
we consider events to be a subclass of Individual within a
situation. Actions are a subclass of Event: an Event that has
something as an agent. For the purposes of this paper, we use
the “F” event model ontology (“Event Model F”) described in
[23]. This ontology is based on the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) (Figure 4).
See [24] for a comparison of similar ontologies.

Figure 4 Event Model F (diagram from [23])

12

7

We depict the extended Situation Theory Ontology in

Figure 3. The class of Event (from Event Model F) is made a
subclass of Individual. The class of Thematic Role is a
subclass of Relation. Thematic Roles have domain Event and
range Individual. They include agent, theme, instrument,
source, goal, and so on. Thematic roles are ways in which
individuals participate in events.1 For example, something
that bears the agent relation to an event is the participant who
brings about the action, and something that bears the theme
relation to the event is the entity that undergoes the action or
event. Something that bears the goal relation to an event is the
participant at which (to whom) the action is directed, as in
John sent a message to Mary.

To illustrate, we encode a situation in which John joins
Chatroom 1 at t, John sends a presence to Mary at t+1 and
John sends Message M to Mary at t+2 as follows (suppressing
location, for simplicity):

s |= <agent,e1, John, t, 1>
s |= <theme,e1, Chatroom1, 1>

where e1 is of rdf:type Join, and Join is rdfs:subclassOf Event

s |= <agent, e2, John, t+1, 1>
s |= <theme, e2, Mary, t+1, 1>

where e2 is of rdf:type SendPresence, and SendPresence is
rdfs:subclassOf Event.

s |= <agent, e3, John, t+2, 1>
s |= <theme, e3, Message_M, t+2, 1>
s |= <goal, e3, Mary, t+2, 1>

where e3 is of rdf:type SendMessage, SendMessage is
rdfs:subclassOf Event.

The Relations agent, theme and goal are Thematic Roles,
which are a subclass of Relation, with domain Event and range
Individual. In this way, we represent that several events take
place within the context of a single information exchange
situation.

In addition to allowing us to express the relation between
situations and actions, this also has the virtue of allowing us to
more explicitly encode n-ary relationships within the STO
ontology. In the STO ontology, argument places are denoted
simply by anchor1, anchor2 and anchor3 object properties.
These do not have any explicit meaning. To say that Bob is
the first argument of the Chase relation and John is the second
argument, it is not clear who is the agent of the chasing and
who is being chased. The domain and range of the Chase
relation do not help us to distinguish the roles here. In the
extended ontology, we represent this as follows (ignoring time
and location for now):

s |= <Agent,e,Bob,1>, <Theme,e,John,1>

1 Thematic Role. Utrecht Dictionary of Linguistics.

http://www2.let.uu.nl/UiL-OTS/ Lexicon/zoek.pl?lemma=Thematic+role
&lemmacode=150

where e is of rdf:type Chase, a subclass of Event.

Secondly, we can encode a taxonomy of action types. For

example, we can say that Chase is a subclass of Move.
Therefore, we can infer that if Bob is the agent of an action
that is a Chase, then he is an agent of a Move action (a
motion).

Finally, we can encode relations of arbitrary arity in an
explicit way. For example, to say that a situation involves
John sending Mary in London a book via Fedex, we can
assert:

s |= <agent,e,John,1>,
s |= <theme,e,book,1>,
s |= <goal,e,Mary,1>,
s |= <in, Mary, London, 1>,
s |= <instrument,e,Fedex, 1>,

where e is of rdf:type Send.

A situation contains an action if it supports a positive infon
in which the action appears.

We can now define when an action performed in a specific
situation is compliant with a set of policies. If an action is
inferred to be forbidden by a policy, then the action violates
the policy. Every situation that contains an action that violates
a policy is noncompliant with that policy. So, for example,
suppose that John’s sending Mary his presence is forbidden by
a policy (as in one of the scenarios described above) because
of John’s gender and the day of the week. (The policy of one
server states that men can only send presences only on
Mondays, Wednesdays and Fridays). As such, if it is a
Tuesday, the action e2 is forbidden by the policy. Thus,
action e2 is policy non-compliant, and therefore, situation s
which supports a positive infon that contains e2 is also policy
non-compliant.

A corresponding action and corresponding situation would
be policy compliant in respect to the policy described if it had
taken place on a Monday, Wednesday or Friday, or if a female
had sent the presence on Tuesday. Thus, actions of the same
action type and situations that are identical in most respects
can be policy-compliant or policy-violating depending upon
the circumstances and the individuals involved.

A situation, expressed in the STO vocabulary, is policy-
compliant if it contains no actions that violate a specified set
of policies, in the sense of supporting no positive infons that
involve forbidden events

By means of this encoding of the situation or context that an
action occurs in, we can also encode rules or ontological
constraints on actions that occur in a context in which a
forbidden action occurs or in which an obligatory action
occurs. For example, if an exchange of information violates
security levels, then all subsequent exchanges of information
in that context are tainted.
 In other situations, we can say that the entire situation
involving a number of actions is policy violating even without
knowing what action was forbidden.

This can be illustrated by the scam known as “change
raising”. Videos illustrating the scam may be readily found
online. In one such clip (“The Change Rasising Con”), from

13

8

the BBC program “The Real Hustle”, the scammer first starts
a transaction of getting change for a 20 pound note. Then, he
exchanges some of the smaller bills for a 10. Finally, he ends
up calling the whole transaction off, ending up with 10 pounds
more than he started The steps are illustrated in Table 1.
Positive numbers represent receipts. Negative numbers
represent disbursals. The conman nets 10 pounds by
misguiding the shopkeeper, who doesn’t realize her mistake.

Table 1 Change-Raising Scam, broken down into
component actions

Perhaps no known policy forbids any action on the
shopkeeper’s part or the scammer’s part. Nevertheless, the
entire situation might be seen as violating a policy: the policy
that change-making situations, in which cash is exchanged
only for cash, should not end up with a net loss. Thus, the
situation is policy-violating, even though it is not clear which
action within the situation is prohibited.

VII. CONCLUSION
In this paper, we have shown how policies can be expressed in
SBVR SE and translated into an executable rule language that
can constrain information exchange actions in XMPP
scenarios. We then went on to show how our Situation
Theory Ontology could be extended to include actions and
events as individuals. This enabled us to extend formal
reasoning about policy compliance to situations as a whole,
which we illustrated with various examples. We showed that
situations may be inferred to be policy compliant because of
actions in infons they support. Policy violations within a

context can then affect the status of other actions. We also
outlined a case in which situations can be policy (non-)
compliant based on the cumulative effect of several actions.

REFERENCES
[1] Semantics of Business Vocabulary and Business Rules v1.0.

http://www.omg.org/spec/SBVR/1.0/ . May 2011
[2] MDA Home Page. www.omg.org/mda/ . May 2011.
[3] MOF Home Page. www.omg.org/mof/ . May 2011.
[4] Lee, R. Using New Standards to Develop IC Ontologies. In Proc. of the

Fifth International Conference on Semantic Technologies for
Intelligence, Defense, and Security. (STIDS’10). Fairfax, VA, USA,
October 27-28, 2010.

[5] P. McNamara, Deontic Logic. The Stanford Encyclopedia of Philosophy
(Fall 2010 Edition), Edward N. Zalta (ed.).
http://plato.stanford.edu/archives/fall2010/entries/logic-deontic/

[6] XMPP Standards Foundation. www.xmpp.org/ . May 2011.
[7] Openfire http://www.igniterealtime.org/projects/openfire/ . May 2011.
[8] Ignite Realtime Home Page. http://www.igniterealtime.org/ . May 2011.
[9] Spark Home Page.

http://www.igniterealtime.org/projects/spark/index.jsp . May 2011.
[10] CWID 2010 UK Cross Domain Chat. Enclosure 1 to Cross Domain Chat

Point Brief. July 2010.
[11] Boldon James – Military Messaging and Secure Information Exchange

Software Page. http://www.army-
technology.com/contractors/navigation/boldonjames/ . May 2011.

[12] Isode Whitepaper: Using Security Labels to Control Message Flow in
XMPP Services. http://www.isode.com/whitepapers/controlling-
message-flow.html . May 2011.

[13] Common Information Sharing Standard for Information Security
Marking: XML Implementation Implementation Guide. Office of the
Director of National Intelligence Chief Information Officer. Release
2.0.3, February 2006.

[14] J. Euzenat, F. Scharffe, and A. Zimmermann, “Expressive alignment
language and implementation,” deliverable, Knowledge Web NoE,
2007. Available at http:// ftp//ftp.inrialpes.fr/pub/exmo/reports/kweb-
2210.pdf

[15] Gen. David H. Petraeus, Report to Congress on the Situation in Iraq,
Joint Hearing of the House Committee on Foreign Affairs and the House
Committee on Armed Services. Sept 10, 2007.

[16] J. Barwise, J. Perry, Situations and Attitudes, MIT Press, 1983.,
[17] K. Devlin, Logic and Information, Cambridge U. Press, 1991.
[18] M. Kokar, C. Matheus, and K. Baclawski, "Ontology-based situation

awareness," Information Fusion, vol. 10, no. 1, pp. 83-98, January 2009.
[19] M.R. Endsley, Theoretical underpinnings of situation awareness: a

critical review, in: Situation Awareness Analysis and Measurement,
Lawrence Erlbaum Associates, Mahawah, NJ, USA, 2000.

[20] W3C. RIF Core Dialect. W3C Recommendation June 22, 2010.
http://www. w3. org/TR/rif-core

[21] ATLAS Transformation Language http://www.eclipse.org/gmt/atl/
[22] Casati, Roberto and Varzi, Achille, "Events", The Stanford

Encyclopedia of Philosophy (Spring 2010 Edition), Edward N. Zalta
(ed.), <http://plato.stanford.edu/archives/spr2010/entries/events/>.

[23] A. Scherp, T. Franz, C. Saathoff, S. Staab, F—a model of events based
on the foundational ontology DOLCE+DnS ultralight, in: International
Conference on Knowledge Capturing (K-CAP), Redondo Beach, CA,
USA, 2009.

[24] W. van Hage, et al . Design and use of the Simple Event Model (SEM).
J. Web Semantics, 2011.

14

