
Formalizing Classes of Information Fusion Systems

Mieczyslaw M. Kokar

Department of Electrical and Computer Engineering

Northeastern University

Boston, MA 02115, USA

Jerzy A.Tomasik

Universite d’Auvergne

LLAIC1, BP86 63172 AUBIERE

France

Jerzy Weyman

Department of Mathematics

Northeastern University

Boston, MA 02115, USA

Abstract

This paper provides an outline of a formalization of classes of information fusion

systems in terms of category theory and formal languages. The formalization captures

both the inputs/outputs of a fusion system and the fusion processing algorithms. The

paper also introduces a notion of subclass, which is used to compare classes of fusion

systems, whether they are different or one is a special case of another. Two examples

of classes of fusion systems formalized in the paper are data fusion and decision fusion;

decision fusion is shown to be a subclass of data fusion. A number of other classes

of fusion systems are defined. The formalization is extended by adding the notion of

measure of effectiveness, which is then used to prove that one of the classes (so called

overlapping system) is at least as efficient as a single-source system. And finally it is

shown how data association can be formalized in this framework. While at first the

formalization could be used by information fusion scientists to formally define various

types of fusion systems and then to prove theorems about properties of such systems,

it is expected that it should lead to the development of tools that could be used by

software engineers to formally derive designs of fusion systems.

Keywords: information fusion, formal methods, category theory, classes, subclass relation,

fusion systems

1 Introduction

Over the past two decades information fusion has established itself as an independent re-

search area. However, in spite of a significant progress in research on information fusion,

there is still a lack of a formal theoretical framework for defining various types of informa-

tion fusion systems, defining and analyzing relations among such types, and finally designing

information fusion systems using the formal method approach [1, 2, 3, 4]. In particular, al-

though various classifications of fusion systems exist (e.g., the JDL classification [5]), the

classifications are based on the input/output data, rather than on algorithms of fusion, and

moreover, they are expressed mainly in natural language rather than fully in mathematics

and logic. The consequence of this situation is that it is not possible to formally prove that

one type of fusion system is superior to another. Instead, algorithms are compared as “black

boxes”, i.e., they are first implemented and then their performance is compared based on

the simulated (or sometimes real) experiments. The main goal of this paper is to show how

fusion systems can be formalized (in a logical and mathematical notation) to enable their

theoretical analysis.

It is our belief that the main difficulty of formalizing information fusion lies in the fact

that the real issues of information fusion are resolved at the time of designing an information

fusion system, rather than at run time of such a system [6]. At run time, a fusion operation

(algorithm) is executed. But the real challenge of information fusion is to derive such an

algorithm, rather than to execute it. In our view then, the problem of information fusion lies

in the search through a space of various algorithms for one that satisfies some prespecified

criteria. The term “search” does not mean a search through a file of algorithms, since such

a file does not exist; it is used here in a sense similar like in “searching for a solution to

a problem”. It may involve, for instance, synthesizing an algorithm using some primitive

algorithms and algorithm composition operations.

The current situation in information fusion is that a designer proposes an algorithm for

fusion and then tests it on either real or simulated data. So the real fusion process is done in

the designer’s head rather than in the computer. Our ultimate goal is to develop a framework

in which various design solutions can be searched for and formally analyzed by a computer

2

rather than solely by the designer. Towards this goal, we are interested in methods for

analyzing fusion systems before they are built rather than testing their performance after

the system is implemented (cf. discussion on the selection of a fusion algorithm based upon

knowledge of the environment in [7]). In other words, we are interested in a formal theory

of information fusion.

To address these issues we need to ask the question of what defines our search space

(design space). The first step in this direction is answering the question of what is given

to us in the formulation of a specific fusion problem that would define the primitives from

which synthesis could start. It seems that we could consider the following three kinds of

knowledge:

• knowledge of the sensors used,

• knowledge of the goal for a fusion system, and

• background knowledge (e.g., physics, geometry)

There are various notions of “knowledge” in various research communities. Since we follow

the formal methods paradigm (cf. [1, 2, 3, 4]), to us knowledge means formal (logical)

theories and their classes of models [8]. Theories may be given as collections of signatures

of functions and relations and collections of axioms over the signatures. In particular, the

knowledge of sensors means theories through which we interpret sensory data. The central

element of such a theory is a measurement function. In our approach we conceptualize it

as a function that assigns sensory values to specific coordinates. Knowledge of the goal

may mean, for instance, theories describing targets to be detected by an Automatic Target

Recognition system (ATRS) and a target recognition function that assigns targets to world

locations. In the process of development of a fusion system, at first only the signature of such

a function is known. The function is then realized by a specific target recognition algorithm.

The algorithm is synthesized using some knowledge from the three types - theories of sensors,

signatures of the goal function and background knowledge theories.

The next question is what should be the composition operators and the formalism in which

such a search problem can be specified and an algorithm synthesized. The constraint here is

3

that the formalism must be able to capture various theories, for instance theories of sensors

and targets, models of the theories, as well as relations among them. And moreover, the

formalism must include combination operators for this kind of components. The set theory

operators, like union, shared union, intersection, Cartesian product, cannot be used here

since the components (theories and models) are not just set elements, they are structured

elements. To be able to manipulate structured elements, the operators of set theory must

be extended.

We came to the conclusion that the formalism that best satisfies these requirements is cat-

egory theory (cf. [9]). Category theory is a mathematically sound representation technique

used to capture the commonalities and relationships between structured objects, in partic-

ular theories and their models. This feature makes category theory a very elegant language

for describing information fusion systems and the information fusion process itself. This for-

malism is very convenient for combining (fusing) such structures. In particular, it provides

the operators of colimit and limit that allow us to combine such structures in a sound and

rigorous way. The colimit operator is a generalization of the shared union operator and the

limit operator is a generalization of the Cartesian product operator.

Finally, we would like to have some tool support for manipulating various theories in

the process of specifying a fusion problem and searching for solutions. In other words,

we need a language in which we could specify all of the knowledge and a tool that would

support (semi)automatic analysis of such specifications. To satisfy this requirement we used

the Specware specification tool (Kestrel Institute) and Slang, its specification language.

Specware is based on category theory. In Specware [10], category theory objects are called

specs (short for “specifications”). Specware supports the colimit operation. It also supports

progressive modular development of specifications. Additionally, it supports the process of

refinement - the process of progressive translation of specifications into code. The refinement

process is guaranteed to be correct, i.e., the code satisfies its specification.

In this paper we show some results of our investigations into an information fusion theory

within the category theory based framework. In the next section we describe a simple

example of one class of information fusion, i.e., the data fusion. Then we give a formal

definition of this class. Then we define a class called decision fusion (cf. [11, 12]). The results

4

in this paper include the definition of a subclass relation between classes of information fusion

systems in Section 4, proof that decision fusion is a subclass of data fusion in Section 4.1,

identification of necessary and sufficient conditions for decision fusion to be equivalent to data

fusion in Section 4.2 and identification of a number of additional classes of information fusion

systems in Section 5. Section 6 extends the formalization by adding a measure of effectiveness

of a fusion system. In Section 7 we briefly discuss the way data association is dealt with

within our framework. In Section 8 we review other approaches to the formalization of

fusion. And finally in Section 9 we present conclusions.

2 Example of Data Fusion

In order to explain our ideas presented in this paper we use a simple example of an informa-

tion fusion scenario. We consider two vision sensors Sens1 and Sens2 observing an object in

the world. The first sensor, Sens1, returns the image denoted as I1(x1, y1) and the second

sensor, Sens2, returns the image I2(x2, y2). The signatures of sensory output functions can

be represented as I1 : X1 × X2 → V1, I2 : X2 × Y2 → V2. These functions assign intensity

values to world coordinates. We assume that I1 and I2 consist of two sub-functions. For

Sens1, there is a function g1(x1, y1) which returns pixel values, which are then filtered by

h1(z1). The composition of these two functions returns the values of I1(x1, y1). Similarly,

Sens2 consists of two functions g2 and h2.

The goal of the fusion system is to utilize the information from both sensors in order

to detect edges of the observed object. This goal can be represented by a goal function

∆ : X × Y → E, where X, Y represent the world coordinates and E represents edge points.

This goal can be achieved in two ways:

1. Data Fusion: Two images I1(x1, y1) and I2(x2, y2) are fused into one combined image

I(x, y) and then edge detection is performed on this image. The resulting edges (or

more precisely, edge points) are denoted by E(x, y).

2. Decision Fusion: The two images I1(x1, y1) and I2(x2, y2) are analyzed separately by

edge detection algorithms. This results in edges E1(x1, y1) and E2(x2, y2). Then the

5

detection information (edges) is fused into one E(x, y).

As we can see, in the end both systems derive the same kind of global information about

edges represented by E(x, y). For simplicity we assume that edge detection is based on the

magnitude of the gradient, for the image of Sens1, for the image of Sens2 and for the fused

image.

3 Formal Definition of Fusion

3.1 The Formalization Approach

Formalizations of a specific problem are usually called formal specifications. There are two

kinds of specifications: declarative and operational. In this paper we use the declarative

approach. In particular, we formalize fusion systems and subsystems in terms of algebraic

theories. Since a fusion system is to be composed of a number of subsystems, we also need

some structuring mechanism in which more complex specifications are composed from simpler

specifications. For this purpose we use the structuring operations of category theory (cf. [9]).

A category is a mathematical structure consisting of category objects and category arrows

(or morphisms). Category objects are the objects in the category of interest. For instance,

in category Set the objects are all sets. Category arrows are the mappings that define the

relationships between pairs of (possibly structured) objects, with one object called its domain

and the other called codomain. One of the arrows must be an identity arrow. In the category

Set the arrows are total functions between sets. A category has a composition operation

which assigns an arrow to a pair of arrows (the pair must satisfy the domain/codomain

compatibility condition). The composition operation must be associative. A diagram in a

category is a collection of objects and a collection of arrows between these objects. In the

category Set the composition is just the composition of functions and the identity arrow is

the identity function. An arrow identifies parts that are common to the two objects. The

colimit operation creates an object for a given diagram so that the common (shared) parts

are unified and the rest of the parts are inserted into the new object while preserving the

structures of all the objects.

6

To formalize specifications we use the category Spec in which objects are algebraic specifi-

cations and the category arrows are morphisms among the specifications. Algebraic specifica-

tions are pairs (Σ, T), where Σ are signatures and T - theories over the signatures. Signatures

have the following form: Σ = (σ, F), where σ are sorts and F are functions over the sorts.

Theories associated with the signatures are collections of axioms over the signatures. Signa-

tures and associated theories are called specifications, or for short specs. In the rest of this

paper we will represent specs in the following form:

S = ((σ, F), T). (1)

First we will show sorts and signatures of operations delimited by parentheses. Then we will

show the axioms of a specific theory, if any.

Specs are considered as objects in the category Spec related through morphisms. More

specifically, morphisms map sorts and operations of the source spec to sorts and functions of

the target spec. One special kind of morphism is called definitional extension. A morphism

S → T is called a (strict) definitional extension if it is injective and if every element of T which

is outside of the image of the morphism is either a defined sort or a defined operation. The

target spec T is also called definitional extension of S. Specs and morphisms are represented

as diagrams. The colimit operation creates a new specification from a diagram of existing

specifications. This new specification has all the sorts and operations of the original set of

specifications without duplicating the shared sorts and operators. We always assume that

our theories are consistent, i.e., that they have models, formally denoted as M |= T . We

implement and verify our specifications in the Slang language [13, 14]. In the paper, however,

we use mainly the mathematical notation.

The above introduction to category theory and algebraic specification is semi-formal and

incomplete. The purpose of this section was to give an overview of the concepts used in this

paper. For a more complete treatment of category theory the reader can refer to e.g., [9].

Algebraic specifications are described in [15]. Examples related to information fusion can be

found in [16, 17, 18].

7

3.2 Data Fusion

The two kinds of information fusion systems known in the subject literature (cf. [19, 12]) are

data fusion and decision fusion. Since, as we later prove in this paper, decision fusion is a

subclass of data fusion, we first define this more general class of information fusion systems.

We first introduce the diagram of a data fusion system (see Figure 1) in the category Spec.

This diagram consists of five nodes (specs) and six arrows (morphisms). The nodes represent

the following specifications: Sc - world coordinates; S1, S2 - sensors, Sw - world theory, Sf

- the fused system. We describe each of the nodes in the sections that follow. The arrows

specify which sorts and operations are unified as described in Section 3.1. First, we give a

general description of each spec, and then explain their meaning in relation to the example

of Section 2.

Sf

↗ ↑ ↖
S1 Sw S2

↖ ↑ ↗
Sc

Figure 1: Data Fusion

3.2.1 The World Specification, Sw

In the diagram of Figure 1 we assume that

Sw = ((L, E, ∆ : L→ E), Tw) (2)

specifies the world that both sensors observe. The specification includes signatures (L, E, ∆)

and axioms (Tw). L represents the sort of world coordinates (it can be, for instance a 2D

space where L = X × Y), E is the objects in the world; they “occupy” locations in the

world. The function ∆ assigns these objects to particular locations. We do not assume that

we always know this function, but we assume that we may know it for a number of cases.

This function is given as part of each of the models from the set of models M . This is also

referred to as ground truth. These known models are used for testing the resulting fusion

8

system. Additionally, the specification of the world can contain theories Tw (axioms) that

capture known dependencies and constraints that the world is known to obey.

Implicit in this formulation is the fact that the goal of the fusion system is to recognize

objects in the world, or more precisely, assign object names to all locations in the world. For

other goals, the fusion problem could have a different signature, but the idea should remain

the same.

Referring to the example of Section 2, the coordinates of the world are X, Y , i.e., L =

X × Y . The objects are E = [0, 1] - a subset of real numbers representing the confidence

of an edge point being at a particular world location. We may define the function ∆ that

assigns objects to each location in the world in a number of ways. For instance, we can map

each location to a subset of [0, 1]:

∆ : X × Y → 2[0,1] (3)

In such a case the subset represents the possible values of “edgeness” that can be associated

with a given location. Alternatively, we can define ∆ as a map to an element of the interval

[0, 1], i.e.,

∆ : X × Y → [0, 1] (4)

In this case the function ∆ returns just one edge point (one value of edgeness) for each world

location.

3.2.2 The Sensor Specifications, S1, S2

The specifications S1, S2 represent specifications of two sensors.

S1 = ((L1, V1, f1 : L1 → V1), T1) (5)

S2 = ((L2, V2, f2 : L2 → V2), T2) (6)

Each sensor has its own coordinate sort: L1 is the coordinate sort of the sensor specified by

S1 and L2 is the coordinate sort of the sensor specified by S2. V1 and V2 are the sorts of

values returned by the sensors. The functions f1 and f2 are the measurement functions of

Sens1 and Sens2, respectively. T1 and T2 specify theories of sensor operation.

9

In our example, both sensors have the coordinates denoted as L1 = X1 × Y1 and L2 =

X2 × Y2, respectively. Their measurement functions are f1 = I1 for Sens1 and f2 = I2 for

Sens2. The measurement functions return the values from V1 and V2, respectively. Since I1

and I2 are compositions of two functions, the theories of S1 and S2 must have appropriate

axioms to this effect.

I1 = h1 ◦ g1 (7)

I2 = h2 ◦ g2 (8)

where g1 and g2 return values from V11 and V21, respectively. The specification of the first

sensor, Sens1, is shown below. We do not show the specification for the second sensor since

it is similar to the specification of the first sensor.

S1 = ((X1, Y1, V1, V11, g1 : X1 × Y1 → V11, h1 : V11 → V1, I1 : X1 × Y1 → V1), I1 = h1 ◦ g1) (9)

The sensor specification includes all the sorts and the signatures. Then, in its theory part,

it includes the axiom stating that the function I1 is computed as a composition of the

measurement function g1 and the filtering function h1 (see Eq. 7).

3.2.3 The Coordinate Sort Specification, Sc

So far we have shown three systems of coordinates: L, L1 and L2. Each of them can have

a number of components. In our example we showed two components for each. In the final

specification we need to show which coordinates are treated as the same coordinates. From

the notation in the example one might suspect that X, X1 and X2 refer to the same world

coordinate. But this fact would have to be made explicit in the specification. To achieve

this goal using the category theory formalism we need to define a diagram that captures

this fact. Towards this goal we introduce a spec Sc that contains only a number of unifying

coordinate sorts (note that the axiom set is shown as empty)

Sc = ((C1, . . . , Cn), ∅) (10)

and three morphisms: Sc → Sw, Sc → S1, Sc → S2, as shown in Figure 2.

For our example the unifying sorts in the Sc spec are:

Sc = ((C1, C2), ∅). (11)

10

S1 Sw S2

↖ ↑ ↗
Sc

Figure 2: Unification of Coordinate Sorts

We assume that we want to associate X1 and X2 with X, Y1 and Y2 with Y . The unification

of sorts is achieved by specifying the three morphisms:

Sc → S1 = {C1 → X1, C2 → Y1} (12)

Sc → S2 = {C1 → X2, C2 → Y2} (13)

Sc → Sw = {C1 → X, C2 → Y } (14)

3.2.4 The Goal Specification, Sf

Now we are ready to construct the goal specification, Sf . We call this so since it contains the

goal function of the ultimate fusion system. The specification Sf is obtained in two steps.

First, the colimit of the diagram in Figure 2 is constructed. At this point some of the sorts in

the specs Sw, S1, S2 are identified (or “glued” together). For instance, the six sorts in our ex-

ample (X, Y, X1, Y1, X2, Y2) would form two equivalence classes {X, X1, X2} and {Y, Y1, Y2}.
Note that this does not mean that in the final spec we would not distinguish between the

variables defined in the original specs. We would still have the variables representing the

values coming from the two sensors separately. Only after data association (discussed in

Section 7) is done could we use the same variables for the two sensors. In this paper we

assume, for simplicity, that the coordinates of the two sensors are perfectly associated and

thus we will use the symbols X and Y to represent the coordinates of the two sensors in the

final specification of the system.

In the second step the resulting specification is extended by adding the goal function Df .

Its signature is constructed out of the signatures of the two sensors and of the world. This

function takes two measurement functions f1 ∈ (L1 → V1), f2 ∈ (L2 → V2) as inputs and

returns a decision function that assigns subsets of objects to the world coordinates (note

11

that we write (L1 → V1) to represent the space of functions from L1 to V1).

Df : (L1 → V1)× (L2 → V2)→ (L→ 2E) (15)

So the final spec Df is of the following form:

Sf = ((L, E, ∆ : X → E, L1, V1, L2, V2, f1 : L1 → V1, f2 : L2 → V2,

Df : (L1 → V1)× (L2 → V2)→ (X → 2E)), Tf) (16)

For our example, the morphisms S1 → Sf , S2 → Sf and Sw → Sf would be specified

first (similarly as the morphisms shown above) and then the colimit operation would be

specified next. The resulting specification would include the sorts X, Y, E, the operations

I1, I2, g1, g2, h1, h2 and all the axioms from Sw, S1, S2. The colimit operation would guarantee

that sorts are unified appropriately, and the operations are applied to the appropriate sorts.

Additionally, it would insure that the axioms from the source specifications are preserved,

i.e., they are theorems of the colimit specification. This kind of mechanisms for formally

checking the colimit operation are part of the Specware tool [14].

The signature of the fusion function for our example would take the form as shown in Eq.

17 below.

Df : (X1 × Y1 → V1)× (X2 × Y2 → V2)→ (X × Y → E) (17)

Note that the mapping is to the set E rather than to 2E. This means that we expect a

concrete value for each of the objects (in this case, edges) rather than a distribution of

confidence as a result of the fusion process. This differs from our general specification where

the mapping is to 2E. The rationale behind the mapping specified in Definition 1 is to show

that the decision is not always unique, in some cases it may return a number of possibilities

rather than just one specific object.

3.2.5 Definition: Data Fusion

Now we summarize our discussion from the previous subsections in the following definition

of the class of data fusion systems.

12

Definition 1 A data fusion system consists of the following specs related through morphisms

as shown in Figure 1:

Sw = ((L, E, ∆ : X → E), Tw) (18)

S1 = ((L1, V1, f1 : L1 → V1), T1) (19)

S2 = ((L2, V2, f2 : L2 → V2), T2) (20)

Sc = ((C1, . . . , Cn), ∅) (21)

Sf = ((L, E, ∆ : L→ E, L1, V1, L2, V2, f1 : L1 → V1, f2 : L2 → V2,

Df : (L1 → V1)× (L2 → V2)→ (L→ 2E)), Tf) (22)

Note that the spec of Eq. 22 includes all of the other specs. So one might think that this

spec should be sufficient for a definition of a data fusion system. However, in such a case

the relations between the sources of information, the world and the final spec would not be

specified. In other words, any specs S1, S2, Sw, Sc could be used. By adding the morphisms

Sc → Sw, Sc → S1, Sc → S2 and the requirement that the resulting spec Sf must be the

colimit of the diagram shown in Figure 2 we significantly constrained the set of specs that

can satisfy this definition. In particular, note that all of the axioms (theories) associated

with the specs of sensors S1, S2 and of the world Sw must be theorems in Sf . This wouldn’t

be required if only Eq. 22 was used to define a data fusion system.

Ideally, we would like to have a perfect data fusion system, i.e., such that satisfies the

following requirement:

Tf � ∀x∈X Df(f1, f2)(x) = ∆(x), (23)

This requirement states that the resulting decision function Df is compatible with the world

(ground truth) specified through function ∆. This would mean that the fusion system can

always find a unique solution and that the decision would always be correct. Such a strong

requirement is difficult to achieve in practice. Thus instead, we can have a somewhat weaker

requirement by replacing the equality in this equation by the inclusion (∈); we call such a

system a correct data fusion system.

13

Definition 2 A data fusion system of Definition 1 will be called a correct data fusion system

if it satisfies the following condition:

Tf � ∀∆∀f1,f2∀x∈L ∆(x) ∈ Df (f1, f2)(x) (24)

This definition states that the axioms of the goal specification constrain the sets of decisions

so that the true value is always included in the system’s decision. This issue will be discussed

in more detail in Section 6 after we introduce the notion of measure of effectiveness of a fusion

system.

Another way of relating a data fusion system to the ground truth is to require that it satisfy

the known ground truth given in the form of models. Note that the term “model” is used

here in the sense of logic and model theory, where a model is a relational structure (cf. [8]).

For a decision fusion system a model would include explicit specifications of measurement

functions f1, f2 and the values of the function ∆ for these input functions. We will call a

system that agrees with a given set of models a model-satisfying data fusion system.

Definition 3 Consider a data fusion system as in Definition 1 and a collection of models

M = {M1, . . . , Mn}. A data fusion system will be called a model-satisfying data fusion

system if the following condition holds:

Mi |= Tf , ∀Mi ∈M (25)

In practice, these models would serve as test cases that are used to check the system we are

designing. It is expected that the system will perform correctly at least on the given test

cases.

Returning to the example used in this paper, the models would provide images representing

the measurement functions I i
1, I

i
2 as well as the decision functions ∆i(x, y) that would assign

the value of E for each location x, y. To check that the designed system performs correctly

we would need to show that for each Mi ∈M we have Mi |= Tf . This would be achieved by

showing that

∀i∀x,yDf(I
i
1(x, y), I i

2(x, y)) = ∆i(x, y) (26)

14

3.3 Decision Fusion

The class we have described so far is termed in the literature (cf. [19]) data fusion systems.

Another class is known as decision fusion systems.

Definition 4 A decision fusion system consists of the following seven specs related according

to the diagram of Figure 3.

Sw = ((L, E, ∆ : L→ E), Tw) (27)

S1 = ((L1, V1, f1 : L1 → V1), T1) (28)

S2 = ((L2, V2, f2 : L2 → V2), T2) (29)

Sc = ((C1, . . . , Cn), ∅) (30)

Sd1 = ((L1, V1, ∆ : L→ E, f1 : L1 → V1, D1 : (L1 → V1)→ (L→ 2E)), Td1) (31)

Sd2 = ((L2, V2, ∆ : L→ E, f2 : L2 → V2, D2 : (L2 → V2)→ (L→ 2E)), Td2) (32)

Sd = ((L1, V1, L2, V2, ∆ : L→ E, f1 : L1 → V1, D1 : (L1 → V1)→ (L→ 2E),

f2 : L2 → V2, D2 : (L2 → V2)→ (L→ 2E),

Dd : (L→ 2E)× (L→ 2E)→ (L→ 2E)), Td) (33)

Similarly as for data fusion systems, we can define a correct decision fusion system by

requiring that it satisfy the condition of Eq. 24 and a model-satisfying decision fusion

system, when it satisfies Eq. 25.

The first four specs are the same as in the definition of data fusion. The functions D1, D2

are the decision functions for the two sensors. They could have been used for making decisions

when only one of the sensors is available. In the process of decision fusion these two decision

functions are used instead of raw data. The spec Sd represents the decision fusion block.

Note that in this spec Dd takes the assignments that are the results of application of functions

D1 and D2 and combines these two assignments into one (fused) assignment.

Returning back to our example, we take the decision function D1 to have the signature

D1 : (X1 × Y1 → V1)→ (X × Y → E) (34)

15

Sd

↗ ↑ ↖
Sd1 Sd2

↑ ↖ ↗ ↑
S1 Sw S2

↖ ↑ ↗
Sc

Figure 3: Decision Fusion

In other words, the decision function D1 takes the function I1 and returns another function

(the decision function) which maps the world coordinates to the values of edges. An edge

in an image is manifested through a discontinuity (for continuous images) or a significant

jump in the intensity value (in a digital image). There are various edge detection techniques

(cf. [20, 21]). The simplest method is to take the gradient magnitude as the value of the

edgeness at a specific pixel. Denoting the (normalized) gradient magnitude by G(I)(x, y) we

would have

D1 ≡ G(I1) (35)

This information would be incorporated into the theory Td1 shown in the spec Sd1. Td1

would then incorporate the axioms about the gradient magnitude operator and the thresholds

used for detection. Although D2 could use a different edge detection algorithm, in this paper

we assume, for simplicity, that D2 also uses the same kind of “edgeness” operator. The Dd

operator can be defined in many different ways, for instance:

Dd(G1, G2)(x, y) ≡ Ḡ(x, y) =
1

2
(G(I1)(x, y) + G(I2)(x, y))

4 The subclass Relation

In order to be able to compare various kinds of fusion systems we introduce the relation

of subclass, which is a relation between classes of fusion systems. The notion of subclass

is present in most object-oriented modeling languages, e.g., UML [22], DAML [23, 24, 25],

16

OWL [26], or Java. Informally, the meaning of this relation is that one class is a subclass

of another if each instance of the former is also an instance of the latter. This definition is

sufficient only if the classes are interpreted as simply sets of elements. For instance, this is

the case for such languages as DAML and OWL. But this would not be sufficient to specify

the subclass relation among programs. For instance, the semantics of UML specifies the

subclass relation in terms of another relation called substitutability. Each object-oriented

programming language has its own interpretation of subclass, not necessarily compatible

with the subclass notion of UML.

For fusion systems, we could say that the class of systems defined by Sf1 is a subclass of

systems defined by Sf2 if each of the instances of Sf1 is also an instance of Sf2. But how

would one decide whether a given fusion system is an instance of a given class of systems?

Clearly, any two systems differ in some respect. For instance, consider two systems that

differ in only one line of code, i.e., one of them has the line a := b + c, while the other has

a := c + b. Are they equivalent or not? We propose a formal operational definition of the

notion of subclass such that will allow us to decide when the relationship of subclass holds,

given the formal specifications of two classes of fusion systems. Roughly, the interpretation

of the subclass relation for fusion systems is that each system that satisfies the spec Sf1 must

also satisfy the spec Sf2. The following definition makes this notion precise for the class of

data fusion.

Definition 5 Let Sf1 and Sf2 be two classes of data fusion systems like in Figure 1, where all

nodes except Sf1 and Sf2 are the same. We say that Sf1 is a subclass of Sf2 (meaning that Sf1

and Sf2 are related by subclass) if there is a morphism of specifications µ : Sf2 → S̄f1, where

S̄f1 is a definitional extension of Sf1, such that the diagrams shown in Figure 4 commute.

S̄f1 ← Sf2

↑ ↗
S1

S̄f1 ← Sf2

↖↗
Sw

S̄f1 ← Sf2

↖ ↑
S2

Figure 4: Commutativity Requirements for subclass Relations

Figure 5 explains the meaning of the diagrams of Figure 4. First, this definition captures

the fact that the input information in both classes of fusion systems is the same, i.e., they

17

both deal with the same world and use the same sensors. Second, since the morphism arrow

points from Sf2 to Sf1 therefore all the constraints (sorts, operations and axioms) of Sf2 are

mapped to Sf1 and thus Sf1 must obey all of them, and possibly more. And finally, the three

diagrams of Figure 4 ensure that the mappings provided by the morphism µ agree with the

mappings from S1, Sw, S2 to Sf1 and Sf2, respectively.

Sf1

S1 S2Sw

Sc

Sf2

µ

Figure 5: The subclass Relation Among Two Classes of Data Fusion Systems

Definition 6 Two classes of data fusion systems Sf1 and Sf2 are equivalent if both Sf1 is

a subclass of Sf2 and Sf2 is a subclass of Sf1.

4.1 Decision Fusion as a Subclass of Data Fusion

Now we apply the idea of subclass to any two classes of fusion systems, not necessarily two

classes of data fusion systems. In particular, we show that decision fusion is a special case

of data fusion (see Figure 6).

Theorem 1 The class of decision fusion systems, as defined in Figure 3, is a subclass of

data fusion systems, as defined in Figure 1.

18

Sd

S1 S2
Sw

Sc

Sd1 Sd2

Sf

µ

νw

ν2
ν1

Figure 6: Decision Fusion is a Subclass of Data Fusion

Proof:

Assume that we have a decision fusion diagram as in Figure 3. In order to prove that this

class is a subclass of data fusion we need to show (according to Definition 5), that there is

a morphism µ = Sf → Sd, such that the three diagrams shown in Figure 4 commute. In

other words, we need to produce a data fusion diagram as in Figure 1 such that there is a

morphism from Sf of the diagram of Figure 1 to Sd of the diagram of Figure 3. Towards this

aim, we define Sf as a definitional extension of Sd by defining a new function D̄f : (L1 →
V1, L2 → V2)→ (L→ 2E):

D̄f ≡ Dd ◦ (D1 ×D2). (36)

The meaning of this equation is that an element from D1 ×D2 is a pair of functions whose

values are in (L→ 2E), i.e., in the domain of Dd. Consequently, Dd can be composed with

the function defined by D1 ×D2 giving a data fusion function as a result.

The definitional extension [13] Sf is equipped with an embedding Sf → Sd which is the

identity on all sorts, operations and axioms from Sd. We define the arrows S1 → Sf , S2 → Sf

as compositions

S1 → Sf ≡ S1 → Sd1 → Sd → Sf (37)

19

S2 → Sf ≡ S2 → Sd2 → Sd → Sf (38)

Then we define the arrow Sw → Sf as a composition

Sw → Sf ≡ Sw → Sd1 → Sd → Sf (39)

We can easily check that the new diagram we constructed is a data fusion diagram as in

Figure 1. The identity morphism Sf → Sd makes Sd a subclass of Sf according to Definition

5. Therefore the class of decision fusion systems is a subclass of data fusion systems. This

concludes the proof.

For our example, the fusion function Df for this system is

Df ≡ Ḡ ◦ (G1 ×G2) (40)

4.2 Can Data Fusion be a Subclass of Decision Fusion?

We have already proved that decision fusion is a subclass of data fusion. To prove this we

were able to construct a diagram of data fusion from a diagram of decision fusion. The main

point of the proof of this theorem was to construct the function Df . We can restate the

result of this theorem in terms of this function:

∀D1:(L1→V1)→(L→2E),D2:(L2→V2)→(L→2E),Dd:((L1→V1)→(L→2E)×(L2→V2)→(L→2E))→(L→2E)

∃Df :(L1→V1)×(L2→V2)→(L→2E) • ∀f1:L1→V1,f2:L2→V2Df(f1, f2) = Dd(D1(f1), D2(f2)) (41)

Now comes the question of when a class of data fusion systems is a subclass of decision

fusion systems. If we were able to prove that any data fusion system is also a decision fusion

system, then according to Definition 6, the two classes (decision and data fusion) would be

equivalent, and thus there would not be any good reason for introducing such a distinction.

Below we show that this is not the case and that actually it is very difficult to satisfy such

a requirement.

Note that in our framework, the statement that a class of data fusion systems is a subclass

of decision fusion systems would be expressed by the diagram of Figure 7, which shows what

20

it would take to construct a decision fusion diagram out of a data fusion diagram. While the

condition of Eq. 41 is a necessary condition for a class of data fusion systems to be a subclass

of decision fusion, the following corollary from Theorem 1 gives a sufficient condition.

Corollary 1 A class of data fusion systems Sf is a subclass of decision fusion if and only

if for a given function Df of the data fusion class Sf the condition of Eq. 42 is satisfied.

∃D1:(L1→V1)→(L→2E),D2:(L2→V2)→(L→2E),Dd:((L1→V1)→(L→2E)×(L2→V2)→(L→2E))→(L→2E) •
∀f1:L1→V1,f2:L2→V2Df(f1, f2) = Dd(D1(f1), D2(f2)) (42)

Sd

S1 S2
Sw

Sc

Sd1 Sd2

Sf

µ

νw

ν2
ν1

Figure 7: Data Fusion as a subclass of Decision Fusion

The following example shows the difficulty of constructing a decision fusion diagram out

of a data fusion diagram. Consider a data fusion system in which the measurement functions

f1, f2 have domains and ranges equal to the closed interval [0, 1] of real numbers and the

fusion function is defined as:

Df (f1, f2)(x) =




1 : 0.5(f1(x) + f2(x)) ≥ 0.5

0 : 0.5(f1(x) + f2(x)) < 0.5
(43)

21

Suppose the sensory inputs for a particular situation are given as two functions f1(x) = x

and f2(x) = 0.6x. The data fusion system will generate a decision Df (f1, f2)(x) = 1 for

x ≥ 0.625 and Df(f1, f2)(x) = 0 for x < 0.625. For this situation, the selection of the

following decision functions D1, D2 and the decision fusion function Dd would satisfy the

requirement of Corollary 1:

D1(f1)(x) =




1 : f1(x) ≥ 0.5

0 : f1(x) < 0.5
(44)

D2 can have the same form. The following decision fusion function Dd, in conjunction with

the functions D1 and D2, will give the same result as the data fusion function Df .

Dd(f1, f2)(x) =




0 : D1(f1)(x) = 0 & D2(f2)(x) = 0

1 : D1(f1)(x) = 1 & D2(f2)(x) = 1, otherwise

0 : x < 0.78125 · (min{x|D1(f1)(x) = 1}+ min{x|D2(f2)(x) = 1})
1 : x ≥ 0.78125 · (min{x|D1(f1)(x) = 1}+ min{x|D2(f2)(x) = 1})

(45)

While this works for these two specific functions f1 and f2, it will not work for other

functions, say f1(x) = 0.3x and f2(x) = 0.7x. Note, however, that the condition for a

decision fusion system to be a data fusion system involves quantification over all functions

f1, f2, i.e., it requires that the selection of D1, D2, Dd should give the same result as Df

for all such input functions f1, f2.

5 Multi-Source vs. Single-Source

A classification of fusion systems can also be obtained according to their relation to single-

source systems. To introduce this classification we need to talk about functions in terms of

the sets of ordered tuples (argument-value pairs). More specifically, we will use the following

notation:

f = {(x, f(x))|x ∈ X} (46)

Consequently, ∆ will represent the set {(x, ∆(x))|x ∈ X}, D1(f1) will represent the set

{(x, D1(f1)(x))|x ∈ X}, and so on.

22

We will explain our classification using an example shown in Figure 8. The rectangle in this

figure represents the Cartesian product of the coordinate space (X) and the decision space

(E). The bold line annotated with ∆ represents a ground truth function for one measurement.

The decision function D1(f1) ∈ 2E is represented by two lines: D1l - the lower bound and

D1u - the upper bound. The intent here is to show that the values of D1(f1) for a given

x are between these two lines. Note that since values of D1(f1) are subsets of E, in this

example the values are intervals delimited by the points on the upper bound and the lower

bound lines respectively, i.e., by D1l(x) and D1u(x). The functions D2(f2) and Df(f1, f2)

are represented similarly by two lines (lower and upper).

a b c d e hf g

D1l

D1u

D2l

D2u

Dfl

Dfu

Space coordinates (X)

D
ec

is
io

n
sp

ac
e

(E
)

Figure 8: Comparison of Single Decision Systems vs. a Data Fusion System

Note that the single-source systems are not correct (see Definition 1), i.e., it is not guaran-

teed that the ground truth is within the bounds of the decisions of these systems. In math-

ematical terms, it is not guaranteed that the following relation holds: ∆(x) ∈ D1(f1)(x). In

particular, for D1(f1) this condition is satisfied in the intervals [a, b] and [d, f]. For D2(f2)

this condition is satisfied for intervals [a, c] and [e, g]. The fusion system, on the other hand,

satisfies this condition for all x.

23

In the following we analyze special kinds of information fusion which occur when we add

some natural constraints. In this discussion we will not necessarily assume the correctness

of either a single-source system or the fusion system.

Definition 7 Given two single-source decision systems S1, S2 and a data fusion system Sf ,

the fusion system is called:

1. overlapping, if Df(f1, f2) ⊂ D1(f1) ∩D2(f2)

2. inclusive, if Df (f1, f2) ⊃ D1(f1) ∩D2(f2)

3. alternative, if Df(f1, f2) ⊂ D1(f1) ∪D2(f2)

4. preferential, if Df (f1, f2) ⊂ D1(f1)

5. covering, if Df (f1, f2) ⊃ D1(f1) ∪D2(f2)

for all f1, f2.

The overlapping fusion system gives the smaller sets as values than any of its components.

For instance, if the set E consists of 10 objects and if S1 gives 3 objects for a given f1

and a given x, and S2 gives 2 objects, the overlapping system will give at most 2 objects

as output. In other words, it will always give a decision that is in agreement with both

single-source systems and will never contradict any of the single-source systems when they

agree. However, such a system cannot be guaranteed to be complete, i.e., the fusion function

Df is not guaranteed to be global.

The inclusive fusion system will always give at least as large sets as the overlapping

system. Again it is not guaranteed to be complete. It will include those decisions on which

both systems agree, and possibly more.

The alternative system will give only such decisions that agree with at least one of the

single-source systems. Again, this system is not guaranteed to cover the whole coordinate

space.

The preferential system will give decisions that are always in agreement with the preferred

system. If for the decisions of S1 and S2 do not overlap, the resulting decision set will be

24

overlapped with the set D1(f1)(x) and will have no common part with the set D2(f2)(x).

This does not mean that S2’s input will be ignored. It may be taken into account, but only

to the extent that the result does not violate the preference condition.

And finally the covering system will include all of the decisions of the single-source systems

and possibly more. This system gives less sharp decisions since the output sets are larger

than the output sets of the components. This system is guaranteed to be complete, although

still not necessarily correct.

6 Measure of Effectiveness

While correctness seems like a natural property to require, it is not sufficient for guiding

designers of fusion systems. Note, for instance, that a system that gives the output E (i.e.,

all possible values) for all f and for all x would be correct, but not very useful. This kind

of an answer would mean “I don’t know” in every case. To be able to assess various fusion

systems we need to have a quantitative measure of performance of such systems. While

various measures can be proposed, we give just one example to make our presentation of

formalization of fusion relatively complete. The measure captures the closeness to the ground

truth and thus can be thought of as a quantitative measure of correctness.

Consider two single-source systems S1, S2 and a fusions system Sf . Assume existence of

a measure

µ : L×E → [0, 1] (47)

We can extend specifications of S1, S2 and a fused system Sf by adding the measure µ to

these specifications. We then can define the following measure of effectiveness of a decision

D1:

ε(D1(f1)) =
µ(∆ ∩D1(f1))

µ(D1(f1))
(48)

The effectiveness measure for D2 takes the same form. For the fusion system the effectiveness

measure is:

ε(Df(f1, f2)) =
µ(∆ ∩Df(f1, f2))

µ(Df(f1, f2))
(49)

It is a measure of the intersection of the decision function with the ground truth function,

25

relative to the decision function. By definition, the measure of effectiveness would be a num-

ber between 0 and 1, which equals 1 when Df (f1, f2) ⊂ ∆, provided that the set Df(f1, f2))

is not of measure zero.

Having defined a measure of effectiveness, we can prove various theorems about the per-

formance of various classes of systems in terms of the measure of effectiveness. Below is a

theorem about overlapping fusion systems.

Theorem 2 Let S1, S2 be correct single-source decision systems, and Sf a correct overlap-

ping fusion system that includes S1 and S2. Then the fusion system is at least as effective

as any of its parts.

Proof:

We need to show that ε(D1(f1)) ≤ ε(Df (f1, f2)) for all f1, f2. More specifically, we need

to show that
µ(∆ ∩D1(f1))

µ(D1(f1))
≤ µ(∆ ∩Df (f1, f2))

µ(Df(f1, f2))
(50)

Recall that (Definition 7) for an overlapping system Df (f1, f2) ⊂ D1(f1) ∩ D2(f2). This

means that the left-hand denominator in Eq. 50 is greater than the right-hand. Since the

numerators are the same (because both S1 and Sf are correct systems) then the conclusion

follows.

Notice that the effectiveness of this kind of fusion system increases with the set D1(f1) ∩
D2(f2) becoming smaller. This means that such a fusion strategy has the “narrowing” effect

on the decision set. However, to prove a similar result for systems that are not necessarily

in the class of correct systems we would need to make additional independence assumptions.

Many more theorems could be proved for the classes of systems in Definition 7, but this is

beyond the scope of this paper. Since the goal of this paper is to provide a formalization of

fusion, our intention was simply to show examples of uses of the formalization.

The measure of effectiveness ε gives an assessment of the quality of a given decision. This

measure then could be used for defining a measure of effectiveness of the fusion system.

Consequently, the signature of the fusion functions Df and Dd could be changed by adding

the measure of effectiveness of either each decision, or of the system. Below we show a case

26

when each decision carries a value of the measure of effectiveness:

Df : (X1 → V1)× (X2 → V2)→ (X → E × [0, 1]) (51)

In this case the value of the measure of effectiveness of each decision is within a unit interval,

i.e., it could be a probability of correct decision.

7 Data Association

Finally, we need to discuss the issue of data association, which is at the core of any fusion

problem. We discuss this problem using the diagram of Figure 9. This diagram, similarly as

all previous diagrams, shows how to unify the distinguished sorts. It also shows how to unify

other sorts and operations. Once sorts are mapped by appropriate morphisms (similarly as

in Eq. 12), the mapping of values of particular sorts is uniquely defined. I.e., if we unify

two sorts both of which are isomorphic with say natural numbers, then the number “5” in

one sort must be mapped to “5” in the other sort. However, “5” in one coordinate system

may correspond to “36” in the world coordinate system. Consequently, data association

must map “5” to “36”. To achieve this goal, we add an additional specification Sh, which is

a definitional extension of Sf . The association is then done through the transformation of

coordinates:

x � x1 ≡ x1(x) (52)

x � x2 ≡ x2(x) (53)

The specification Sh imports Sf and adds four additional functions: x1 and x2, as described

in the above equation, and f ′
1 and f ′

2, defined by the following equations:

f ′
1(x) = f1(x1(x)) (54)

f ′
2(x) = f2(x2(x)) (55)

The functions f ′
1, f ′

2 play the role of f1 and f2 from the initial specification.

For an example of data association, consider the two sensors from Section 2. The points

of origin of the coordinates (x10, y10) = (0, 0) and (x20, y20) = (0, 0) for the two sensors must

27

Sh

↑
Sf

↗ ↑ ↖
S1 Sw S2

↖ ↑ ↗
Sc

Figure 9: Data Association

be aligned with the world coordinate system, say

(x10, y10) = (a1, b1) (56)

(x20, y20) = (a2, b2) (57)

Assuming that the coordinates are simply shifted, the coordinate mapping functions then

are:

(x1(x), y1(y)) = (x− a1, y − b1) (58)

(x2(x), y2(y)) = (x− a2, y − b2) (59)

The new measurement functions then are:

f ′
1(x, y) = f1(x− a1, y − b1) (60)

f ′
2(x, y) = f2(x− a2, y − b2) (61)

For instance, if the measurement function for the first sensor is f1(x1, y1) = 2x1 + 3y1, then

the new function is f ′
1(x, y) = 2(x−a1)+3(y−b1). A similar transformation would take place

for the second sensor. Consequently, after the association, the measurements of both sensors

are aligned with the world coordinates. Thus the formalism of specifications presented in

this paper provides a natural framework for data association.

8 Other Conceptualizations of Information Fusion

Various aspects of fusion have been addressed in the literature under the names of data

fusion, sensor fusion, sensor integration and information fusion. It seems rather clear that

28

the framework presented in this paper is more abstract than other frameworks for fusion

known in the literature. Consequently, it should be possible to capture the aspects of other

conceptualizations of fusion within our framework. A mapping of each of the approaches is

beyond the scope of this paper. Below we just outline the relation of our approach to some

of the conceptualizations known in the fusion community, without trying to be complete.

The most influential conceptualization and classification of fusion systems was provided

by the JDL Model [5]. The JDL model classifies fusion systems with respect to the data

that they take as input and the outputs they generate. For instance, Level 1 fusion inputs

raw sensory data and generates either object IDs or object states. Level 2, on the other

hand takes object information from Level 1 and derives relations among the objects. This

classification is especially tuned to the military domain, although it is also used in the

commercial applications as well. Although particular classes of algorithms are suggested for

particular levels (see for instance a classification provided in [27]), the assignment is rather

loose. It is often stated (cf. [28]) that the algorithms are standard algorithms for computing

uncertainty associated with particular decisions and not specific to fusion.

Our formalization presented in this paper differs from this approach in many respects.

For one, our formalization focuses on the processing rather than on data, although data

are included in the formalization as well. Note that our formalization views fusion as a

function together with its inputs and outputs. It also captures the relationships among

the functions, for instance it captures the process of constructing a fusion function out of

component functions. Finally, our formalization does not contradict the JDL model in any

way. Using our approach, one can formalize the fusion function of each of the levels in

the JDL model. However, since such a formalization would have to specify the classes of

functions used for fusion on particular levels of the JDL model, it would be an extension to

the JDL model. While this would be a very interesting and challenging work, it is beyond

the scope of this paper.

Another classification of fusion was proposed by Dasarathy (cf. [19]). First of all, he

proposed to view fusion systems in terms of what in software engineering terms can be

viewed as data flows. Data flows can be characterized by inputs, outputs, and processes

(functions). In this paper we made this fact more explicit by specifying the sensors and

29

the processes as functions. Similarly as in [19] we distinguished data fusion and decision

fusion. The difference is that we showed decision fusion within the context of a complete

sensor information processing module, rather than showing it by itself. In our formalization

of data fusion we showed the output to be in the set of decisions, E. But nothing in our

formalization prevents one from interpreting E to be a (fused) data space. Our Definition 7

was also influenced by [19]. For instance, our overlapping fusion is a case of what in [19] is

called “AND” fusion, our preferential fusion is similar to the serial sensor suite.

Most of the literature on fusion deals with various approaches to deriving the uncertainty

of decisions. However the algorithms are standard algorithms of probability and statistics,

fuzzy logic, Dempster-Shafer possibilistic reasoning or neural nets. The aspects specific to

fusion are in the schemes of processing rather than in the algorithms themselves. In other

words, it is the arrangement of algorithms into a processing architecture that distinguishes

fusion from other data analysis systems. Examples of such schemes are presented in [29,

30, 31, 32, 33, 34, 35] and many others. All of the architectures presented in these papers

and books could be formally specified using our formal approach. The benefit of such an

exercise would be an ability to perform reasoning about the algorithms using automatic

computer-based tools (theorem provers).

A more general conceptualization of fusion, based on the notion of random set, was pre-

sented in [36]. The distinguishing feature of this approach is that the uncertainty of decisions

is combined with the decisions themselves by the means of set-valued functions. This con-

ceptualization then allows one to view various kinds of uncertainty as special cases of the

generic scheme. While we did not go into any of the details of algorithms that use this

kind of approach, the influence of this conceptualization on our approach can be seen in

the fact that our general model starts with the assumption that the result of fusion is a

set-valued function (see, for instance, Eq. 22). Our examples, on the other hand, use only

object-valued functions. The framework of category theory used in our approach if flexible

enough to capture the formalism proposed in [36].

30

9 Conclusions

This paper presents an approach to the formalization of information fusion. The approach is

general enough to capture all kinds of fusion, including data fusion, feature fusion, decision

fusion and fusion of relational information. The paper gives only a taste of what formalization

would look like rather than giving a complete formalization of any kind of a fusion system.

We envision two kinds of advantage of such a formalization. First of all, the formalization

of information fusion presented in this paper can be viewed as a first step in developing a

formal theory of fusion. Using this approach, the scientist working in the fusion domain can

specify various fusion concepts in a clear and unambiguous language so that other scientists

can interpret the concept in a unique way. Moreover, the scientist can provide formal proofs

of the features of the proposed new fusion related concepts so that other scientists can verify

the proofs.

It is our hope that the development of a theory of fusion would be followed by the de-

velopment of tools that the developer of fusion systems could use. A formal framework for

developing fusion systems would allow the designer to first formally specify algorithms in a

formal language and then follow the formal method approach to synthesizing and analyzing

a fusion system. This expectation strongly depends on the popularity of formal methods in

software development.

Everybody in the fusion community seems to agree that fusion is a process that accepts

some data (from multiple sources) as input and produces some outputs (decisions). However,

in the fusion literature, only the input/output data are used to specify various fusion systems,

while the processing part is treated as a second-class concept. The main contribution of

this paper is that all aspects of multi-source information processing, i.e., both data and

processing, are captured in this formalization. And even more, the processing elements

(algorithms) can be combined in a consistent way. The concept of subclass introduced in

this paper allows for comparison of various fusion systems and for proving that one system

is a special case of another.

In conclusion, we would like to stress that we do not view this formalization as the only one

and correct formalization of information fusion. Others may have different views of informa-

31

tion fusion and thus their formalizations might be different than this one. The contribution

of this paper is that it gives a precise formal statement of one view of information fusion.

Everybody can analyze this conceptualization and present findings in a precise mathematical

language.

The directions for future work have been mentioned in the paper in various places. For

one, as mentioned above, one could use this framework to formalize and extend the JDL

model of data fusion. In particular, this framework would allow one to formalize processes of

fusion, in addition to data. Various classifications of information fusion processes could be

formally specified and then used in the process of formal development of information fusion

systems. Relations among particular classes of processes could be formulated as theorems,

which then would have to be formally proved.

Acknowledgments

This research was partially supported by a grant from the Air Force Office of Scientific

Research under contract No: F49620-98-1-0043. The authors wish to express their thanks to

all those who provided feedback on their formalization of fusion, especially to the members

of the research team: Hongge Gao, Jingsong Li and Marek Malczewski. We would also like

to acknowledge the comments of the anonymous reviewers who made suggestions on how to

improve the readability of this paper.

References

[1] R. A. Kemmerer. Integrating formal methods into the development process. IEEE

Software, 9:37–50, 1990.

[2] Formal methods specification and verification guidebook for software and computer

systems. Technical Report NASA-GB-002-95, National Aeronautics and Space Admin-

istration, 1995.

32

[3] Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaishnavi. Strategies for incorporating

formal specifications. Communications of the ACM, 37, No.10:74–85, October 1994.

[4] J. M. Wing. A specifier’s introduction to formal methods. IEEE Computer, 9:8–24,

1990.

[5] A. N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the JDL data fusion

model. In The Joint NATO/IRIS Conference, 1998.

[6] M. M. Kokar and Z. Korona. A formal approach to the design of feature-based multi-

sensor recognition systems. International Journal of Information Fusion, 2 (2):77–89,

2001.

[7] T. M. Schuck, M. Friesel, and J. B. Hunter. Information properties as a means to

define decision fusion methodologies in non-benign environments. In Proceedings of

Fusion’2003, 6-th International Conference on Information Fusion, pages 479–484, 2003.

[8] C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, New York,

Oxford, Tokyo, 1992.

[9] B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

[10] Specware: Language manual, version 2.0.3. Technical report, Kestrel Institute, 1998.

[11] B. V. Dasarathy. Sensor fusion potential exploitation - innovative architectures and

illustrative applications. Proceedings of IEEE, 85, No.1:24–38, 1997.

[12] P. K. Varshney. Distributed Detection and Data Fusion. Springer-Verlag, 1996.

[13] Y. V. Srinivas. Category theory: Definitions and examples. Technical Report TR-90-14,

University of California at Irvine, 1990.

[14] Specware: User guide, version 2.0.3. Technical report, Kestrel Institute, 1998.

[15] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and program

development. Formal Aspects of Computing, 9:229–269, 1997.

33

[16] S. A. DeLoach and M. M. Kokar. Category theory approach to fusion of wavelet-based

features. In Proceedings of the Second International Conference on Information Fusion,

Vol. 1, pages 117–124, 1999.

[17] M. M. Kokar, J. A. Tomasik, and J. Weyman. A formal approach to information fusion.

In Proceedings of the Second International Conference on Information Fusion, Vol. 1,

pages 133–140, 1999.

[18] M. M. Kokar, J. A. Tomasik, and J. Weyman. Data vs. decision fusion in the category

theory framework. In Proceedings of FUSION 2001 - 4th International Conference on

Information Fusion, Vol. 1, pages TuA3–15 – TuA3–20, 2001.

[19] B. V. Dasarathy. Decision Fusion. IEEE Computer Society Press, 1994.

[20] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, 1990.

[21] E. R. Dougherty and C. R. Giardina. Matrix Structured Image Processing. Prentice-Hall,

1987.

[22] G. Booch, I. Jacobsen, and J. Rumbaugh. OMG Unified Modeling Language Spec-

ification, March 2000. Available at www.omg.org/technology/documents/formal/-

unified modeling language.htm.

[23] DAML: DARPA Agent Markup Language Web Site, 2001. www.daml.org.

[24] J. Hendler and D. McGuinness. The DARPA Agent Markup Language. IEEE Intelligent

Systems, 15, No. 6:67–73, 2000.

[25] DAML+OIL, March 2001. www.daml.org/2001/03/daml+oil-index.html.

[26] OWL Web Ontology Language Reference, 2003. www.w3.org/TR/owl-ref.

[27] D. L. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House, Boston

- London, 1992.

[28] D. L. Hall and J. Llinas. An introduction to multisensor data fusion. IEEE Transactions,

85, No. 1:6–23, 1997.

34

[29] J. K. Aggarwal. Multisensor Fusion for Computer Vision. Springer-Verlag, 1993.

[30] J. J. Clark and A. L. Yuille. Data Fusion for Sensory Information Processing Systems.

Kluwer Academic Publisher, Boston, 1990.

[31] L. A. Klein. Sensor and Data Fusion Concepts and Applications. SPIE, Bellingham,

WA, 1993.

[32] R. Krzysztofowicz and D. Long. Fusion of detection probabilities and comparison of mul-

tisensor systems. IEEE Transactions on Systems, Man, and Cybernetics, 20 No.3:665–

677, 1990.

[33] S. C. A. Thomopoulos. Sensor integration and data fusion. In Sensor Fusion II: Human

and Machine Strategies, pages 178–191. SPIE, 1989.

[34] S. C. A. Thomopoulos. Sensor integration and data fusion. Journal of Robotic Systems,

7(3):337–372, 1989.

[35] E. Waltz and J. Llinas. Multisensor Data Fusion. Artech House, Norwood, MA, 1990.

[36] I. R. Goodman, P. S. Mahler, and H. T. Nguyen. Mathematics of Data Fusion. Kluwer

Academic Publishers, 1997.

35

