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cluster centroids, and repeats the process untilifheen-
troids do not change. The K-means algorithm is a greedy al-

The performance of K-means clustering depends on thegorithm for minimizingS.S E, hence, it may not converge to

initial guess of partition. In this paper, we motivate thebr
ically and experimentally the use of a deterministic diési
hierarchical method, which we refer to as PCA-Part (Prin-
cipal Components Analysis Partitioning) for initializafi.

The criterion that K-means clustering minimizes is the
SSE (sum-squared-error) criterion. The first principal di-
rection (the eigenvector corresponding to the largesteige
value of the covariance matrix) is the direction which con-
tributes the largestSSE. Hence, a good candidate direc-
tion to project a cluster for splitting is, then, the first pri
cipal direction. This is the basis for PCA-Part initializa
method.

Our experiments reveal that generally PCA-Part leads
K-means to generate clusters wif'SE values close to
the minimumSSE values obtained by one hundred ran-
dom start runs. In addition, this deterministic initializan

the global optimum. The performance of K-means strongly
depends on the initial guess of partition.

Several random initialization methods for K-means have
been developed. Two classical methods are random seed
and random partition. Random seed randomly sel&ciis-
stances (seed points), and assigns each of the other iastanc
to the cluster with the nearest seed point. Random partition
assigns each data instance into one of Ahelusters ran-
domly. To escape from getting stuck at a local minimum,
one can apply random starts. Specifically, one can perform
one of the above methods to initialize K-means, repeat the
process times, and select the final clustering with the min-
imum SSE from ther runs. [3] introduced a sub-sampling
version of random restart to cope with large data sets. The
main problem with random methods is that do not guaran-
tee obtaining the optimal solution unless we allowo be

method often leads K-means to faster convergence (less itvery large (thus, increasing the time complexity). A deail

erations) compared to random methods. Furthermore, we
also theoretically show and confirm experimentally on syn-
thetic data when PCA-Part may fail.

1. Introduction

Cluster analysis is the unsupervised classification of pat-
terns into similar groupings. It is useful in various appli-
cations. One of the most popular clustering algorithms is

survey of initialization methods is available in [8].

In this paper, we motivate a deterministic initialization
method for K-means: PCA (principal component analysis)
based divisive hierarchical approach, we refer to as PCA-
Part for short. We show why PCA-Part is a good method,
and also show when it may fail. In Section 2, we describe
the motivation for PCA-Part. We, then, report our experi-
mental results in Section 3. Finally, in Section 4 we draw
conclusions and suggest avenues for future research.

the K-means algorithm. We denote our data set as a matrix2, PCA-Part | nitialization M ethod

X = [x1,...,2,]t € R"¥4, Eachrow of Xz;, represents a
d-dimensional instance. The goal of the K-means clustering
is to partition X into K exclusive cluster§Cy,...,Cxk}.
The most widely used criterion for the K-means algorithm
istheSSE [5]: SSE = Zle >wiec, |z — ;1 where
i = % Zziecj x; denotes the mean of clust€y andn;
denotes the number of instance<in

K-means starts with initiak’ centroids (means), then it

Good initial centroids are seeds that are evenly dis-
tributed [1]. [1] proposed sorting data instances on a sin-
gle variable then performing the initial partition. Thisrpa
titions data only in one dimension. An alternative method
is to partition the sample space hierarchically. Startirity w
one cluster, cut it into two. Pick the next cluster to parti-
tion, and so on. PCA-Part uses the latter approach.

assigns each data point to the nearest centroid, updates the Which direction should we split the chosen clus



ter? Let . be the mean for a given cluster. TR E' of the
data within this cluste€ is: SSEoq = >, < llzi — pf|>.
After dividing this cluster into two clustersC; with
mean p; and Cy with mean us, the new SSE is:
SSEnew = Yog.co, 1w — mll> + Xp co, i — pal®.
Each d-dimensional vectorz; can be represented by a
weighted sum ofi linearly independent orthonormal basis
vectors® = [¢1, ..., Pa): z; = Zle Yis®s. Similarly, the
meany; can be represented as; = lei:l ajsps. We re-
state our question as, which directigp should we project
our data for splitting? Assuming that the old meamand
the new meansy; and s lie on the axis chosen for pro-
jecting, the ¢, which minimizesSSE,.,, is the ¢, that
maximizes

Z Yipdp — pp)®  —

z; €C

Z (Yindp — Q1p0p)”

z;€Cq

Z (Yip®p — O‘2p¢p)2 (1)

x;€Co

wherey;,, ap, a1p, anday, are the projected values of,
i, 1, @andpg on ¢, respectively. Refer to [8] for the proof.

Equation 1 isSSE,q due to the directionp, minus
SSEnew due to the directior,. To find this optimal di-
rection, we need to know the means,andy,. This leads
us back to a = 2 clustering problem. To avoid solving a
clustering problem, PCA-Part resorts to a suboptimal direc
tion which assumes that th&SE,,.,, due to the candidate
difeCtiOﬂ,Zmiecl (Yipdp — a1p¢p)2 + Zziecz (Yip®p —
agpgbp)?, is proportional to theSSFE,;; due to this direc-
tion, Y=, o (ipdp — apdyp)?, and this proportionality con-
stant,a, is the same for all directions afid< a < 1. The
optimization problem is now simplified to finding the di-
rection,¢,, that maximize$~, . (yip@p — ap¢p)?. Thus,
PCA-Part chooses, to be the direction which contributes
to the largestSSE. The first principal direction is the one
which contributes to the largeStSE.

How do we partition the cluster in this principal di-
rection? We choose to partition the data at the mean, so
that the center of gravity between the two halves will be
balanced at the meanhich cluster should we split?
SinceSSE is the criterion K-means tries to minimize, we
decide to split the cluster with the largest with-in cluster
SSEj=3.cc, llwi — ull>.

We now give a summary for PCA-Part. Starting from
a single cluster, divide it into two sub-clusters, choose th
sub-cluster with the largest within-clust§6 E; as the next
cluster to partition, repeat the process uiifilclusters are
produced. At each split stage, for the selected cluSter
we first projectr; € C; to the first principal direction of
x; € Cj, we then divideC; into two sub-clusterg’;; and
Cj2 according to the rule: For any;, if y; (the projected
value ofz;)< «; (the projected mean), assign to C;q,
otherwise, assigm; to Cj,.

PCA-Part is similar to the “PDDP” algorithm [2], while
“PDDP” is a complete hierarchical clustering. They also
differ in the way they select which cluster to split next.
“PDDP” selects the sub-cluster with the largest Frobenius
norm of the covariance matrix to partition.

3. Experiments

In this section, we compare the performance of
PCA-Part with the classical initialization methods (ran-
dom seed and random partition) based on the following
criteria: 1. Quality: We quantify the quality of the cluster-
ing usingSSE. 2. Stability : We measure the stability of
the random initialization methods using the standard devia
tion of SSE, ossg for r runs (in our experiments=100).
Obviouslyossg = 0 for PCA-Part.3. Speed: We evalu-
ate the speed of convergence through the number of itera-
tions needed for K-means to converge.

(b)

(a)

Figure 1. (a) Synthetic data 1. (b) Synthetic
data 2.

DATA SET #OF #OF # OF
SAMPLES | FEATURES | CLUSTERS
PENDIGITS 10992 16 10
SEGMENTATION 2310 19 7
LETTER 20000 16 26

Table 1. Real data set descriptions

We compare the different initialization schemes on sev-
eral data sets. Due to space limitation, here we only show
results for 5 data sets: two two-dimensional synthetic data
sets as shown in Figures 1, and three real data sets from
the UCI Machine Learning Repository [7](see table 1 for a
summary). The complete experimental results are presented
in [8]. Synthetic datd presents a case where the first prin-
cipal direction maximizes Equation 1. Datdas a similar
configuration as Datawhile the second principal direction



INIT.
METHOD SYN. 1 SYN. 2 PENDIGITS SEGMENTATION LETTER
RAND. MAX 6819.39 14922.4 5.44E+7 2.15E+7 636249
SEED usse | 6185.06+271.82| 13684.1+ 507.29 | 4.52E+7+ 1.88E+6 | 1.49E+7+ 2.14E+6| 620258+ 4151.52
MIN 6067.99 12971.1 4.37E+7 1.35E+7 611567
RAND. MAX 6925.2 14921.8 5.47E+7 2.15E+7 646874
PART. usse | 6253.59+ 323.61| 13681.8+ 553.95| 5.09E+74+ 1.23E+6 | 1.44E+74+ 1.49E+6| 6232694+ 6416.11
MIN 6067.99 12971.1 4.93E+7 1.35E+7 611008
PCA-PRT usse | 6068.07+0 14029.6+0 5.00E+7+ 0 1.38E+74+0 6178460
Table 2. The SSFE values for the Data.
INIT. METHOD SYN. 1 SYN. 2 PENDIGITS SEGMENTATION LETTER
RAND. SEED wite | 10.544+3.82 | 9.41+ 7.24 32.254+12.49| 23.86+11.04 | 85.22+ 33.21
RAND. PART. wite | 8.85+ 3.80 10.30+£ 8.60 | 30.294+10.28 | 24.70+£10.60 | 84.94+ 29.84
PCA-RART Wite | 30 2+0 15+ 0 14+ 0 85+ 0

Table 3. The number of iterations for the Data.

maximizes Equation 1. Data seis difficult for PCA-Part
because it violates the assumption of PCA-Part.
Table 2 listsusse, osse, the minimumSSE and the

maximum SSFE returned by K-means when each initial-

algorithm, instead of just random start. This work suggests
research directions, such as exploring other ways of par-
titioning the sample space (e.g., “pie”-slices). When time

complexity is not crucial, one may apply different determin

ization method is used. We observe that PCA-Part obtainsistic intelligent restarts (capturing different possildlata

smallerS S E values thanss g obtained from random par-

configuration scenarios), or combine random and determin-

tition and random seed for all data sets except for syntheticistic restarts for initializing K-means. This way, we are as
data2 and pen digits data. In addition, usually PCA-Part sured that at least one of the K-means runs would lead to

leads taS'SE values close to the minimusiS E values ob-

good clustering result in terms &fSE. In addition, one

tained from the random methods. Moreover, the worst casemay also explore the effectiveness of PCA-Part for initial-
reached by the K-means algorithm when initialized with the izing other clustering methods such as mixtures of Gaus-
random methods may be far from the best case, confirmingsians with the Expectation-Maximization algorithm [4] .

the need for stable initialization methods.

Table 3 lists the average and standard deviation of theReferences

number of iterations that K-means needs to reach conver-
gence for different initialization methods. This table siso

that in all cases except the letter data, PCA-Part lets the
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