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Abstract

The performance of K-means clustering depends on the
initial guess of partition. In this paper, we motivate theoret-
ically and experimentally the use of a deterministic divisive
hierarchical method, which we refer to as PCA-Part (Prin-
cipal Components Analysis Partitioning) for initialization.

The criterion that K-means clustering minimizes is the
SSE (sum-squared-error) criterion. The first principal di-
rection (the eigenvector corresponding to the largest eigen-
value of the covariance matrix) is the direction which con-
tributes the largestSSE. Hence, a good candidate direc-
tion to project a cluster for splitting is, then, the first prin-
cipal direction. This is the basis for PCA-Part initialization
method.

Our experiments reveal that generally PCA-Part leads
K-means to generate clusters withSSE values close to
the minimumSSE values obtained by one hundred ran-
dom start runs. In addition, this deterministic initialization
method often leads K-means to faster convergence (less it-
erations) compared to random methods. Furthermore, we
also theoretically show and confirm experimentally on syn-
thetic data when PCA-Part may fail.

1. Introduction

Cluster analysis is the unsupervised classification of pat-
terns into similar groupings. It is useful in various appli-
cations. One of the most popular clustering algorithms is
the K-means algorithm. We denote our data set as a matrix
X = [x1, . . . , xn]t ∈ <n×d, Each row of X,xi, represents a
d-dimensional instance. The goal of the K-means clustering
is to partitionX into K exclusive clusters{C1, . . . , CK}.
The most widely used criterion for the K-means algorithm
is theSSE [5]: SSE =

∑K

j=1

∑
xi∈Cj

‖xi − µj‖
2, where

µj = 1

nj

∑
xi∈Cj

xi denotes the mean of clusterCj andnj

denotes the number of instances inCj .
K-means starts with initialK centroids (means), then it

assigns each data point to the nearest centroid, updates the

cluster centroids, and repeats the process until theK cen-
troids do not change. The K-means algorithm is a greedy al-
gorithm for minimizingSSE, hence, it may not converge to
the global optimum. The performance of K-means strongly
depends on the initial guess of partition.

Several random initialization methods for K-means have
been developed. Two classical methods are random seed
and random partition. Random seed randomly selectsK in-
stances (seed points), and assigns each of the other instances
to the cluster with the nearest seed point. Random partition
assigns each data instance into one of theK clusters ran-
domly. To escape from getting stuck at a local minimum,
one can applyr random starts. Specifically, one can perform
one of the above methods to initialize K-means, repeat the
processr times, and select the final clustering with the min-
imumSSE from ther runs. [3] introduced a sub-sampling
version of random restart to cope with large data sets. The
main problem with random methods is that do not guaran-
tee obtaining the optimal solution unless we allowr to be
very large (thus, increasing the time complexity). A detailed
survey of initialization methods is available in [8].

In this paper, we motivate a deterministic initialization
method for K-means: PCA (principal component analysis)
based divisive hierarchical approach, we refer to as PCA-
Part for short. We show why PCA-Part is a good method,
and also show when it may fail. In Section 2, we describe
the motivation for PCA-Part. We, then, report our experi-
mental results in Section 3. Finally, in Section 4 we draw
conclusions and suggest avenues for future research.

2. PCA-Part Initialization Method

Good initial centroids are seeds that are evenly dis-
tributed [1]. [1] proposed sorting data instances on a sin-
gle variable then performing the initial partition. This par-
titions data only in one dimension. An alternative method
is to partition the sample space hierarchically. Starting with
one cluster, cut it into two. Pick the next cluster to parti-
tion, and so on. PCA-Part uses the latter approach.

Which direction should we split the chosen clus-



ter? Let µ be the mean for a given cluster. TheSSE of the
data within this clusterC is: SSEold =

∑
xi∈C ‖xi − µ‖2.

After dividing this cluster into two clusters,C1 with
mean µ1 and C2 with mean µ2, the new SSE is:
SSEnew =

∑
xi∈C1

‖xi − µ1‖
2 +

∑
xi∈C2

‖xi − µ2‖
2.

Each d-dimensional vectorxi can be represented by a
weighted sum ofd linearly independent orthonormal basis
vectors,Φ = [φ1, . . . , φd]: xi =

∑d

s=1
yisφs. Similarly, the

meanµj can be represented as:µj =
∑d

s=1
αjsφs. We re-

state our question as, which directionφp should we project
our data for splitting? Assuming that the old meanµ and
the new means,µ1 andµ2 lie on the axis chosen for pro-
jecting, theφp which minimizesSSEnew is the φp that
maximizes

∑

xi∈C

(yipφp − αpφp)
2 −

∑

xi∈C1

(yipφp − α1pφp)
2

−
∑

xi∈C2

(yipφp − α2pφp)
2 (1)

whereyip, αp, α1p, andα2p are the projected values ofxi,
µ, µ1, andµ2 onφp, respectively. Refer to [8] for the proof.

Equation 1 isSSEold due to the directionφp minus
SSEnew due to the directionφp. To find this optimal di-
rection, we need to know the means,µ1 andµ2. This leads
us back to aK = 2 clustering problem. To avoid solving a
clustering problem, PCA-Part resorts to a suboptimal direc-
tion which assumes that theSSEnew due to the candidate
direction,

∑
xi∈C1

(yipφp − α1pφp)
2 +

∑
xi∈C2

(yipφp −

α2pφp)
2, is proportional to theSSEold due to this direc-

tion,
∑

xi∈C(yipφp −αpφp)
2, and this proportionality con-

stant,a, is the same for all directions and0 ≤ a ≤ 1. The
optimization problem is now simplified to finding the di-
rection,φp, that maximizes

∑
yi∈C(yipφp − αpφp)

2. Thus,
PCA-Part choosesφp to be the direction which contributes
to the largestSSE. The first principal direction is the one
which contributes to the largestSSE.

How do we partition the cluster in this principal di-
rection? We choose to partition the data at the mean, so
that the center of gravity between the two halves will be
balanced at the mean.Which cluster should we split?
SinceSSE is the criterion K-means tries to minimize, we
decide to split the cluster with the largest with-in cluster
SSEj =

∑
xi∈Cj

‖xi − µj‖
2.

We now give a summary for PCA-Part. Starting from
a single cluster, divide it into two sub-clusters, choose the
sub-cluster with the largest within-clusterSSEj as the next
cluster to partition, repeat the process untilK clusters are
produced. At each split stage, for the selected clusterCj ,
we first projectxi ∈ Cj to the first principal direction of
xi ∈ Cj , we then divideCj into two sub-clustersCj1 and
Cj2 according to the rule: For anyxi, if yi (the projected
value ofxi)≤ αj (the projected mean), assignxi to Cj1,
otherwise, assignxi to Cj2.

PCA-Part is similar to the “PDDP” algorithm [2], while
“PDDP” is a complete hierarchical clustering. They also
differ in the way they select which cluster to split next.
“PDDP” selects the sub-cluster with the largest Frobenius
norm of the covariance matrix to partition.

3. Experiments

In this section, we compare the performance of
PCA-Part with the classical initialization methods (ran-
dom seed and random partition) based on the following
criteria:1. Quality: We quantify the quality of the cluster-
ing usingSSE. 2. Stability : We measure the stability of
the random initialization methods using the standard devia-
tion of SSE, σSSE for r runs (in our experiments,r=100).
ObviouslyσSSE = 0 for PCA-Part.3. Speed: We evalu-
ate the speed of convergence through the number of itera-
tions needed for K-means to converge.
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Figure 1. (a) Synthetic data 1. (b) Synthetic
data 2.

DATA SET # OF # OF # OF

SAMPLES FEATURES CLUSTERS

PENDIGITS 10992 16 10
SEGMENTATION 2310 19 7
LETTER 20000 16 26

Table 1. Real data set descriptions

We compare the different initialization schemes on sev-
eral data sets. Due to space limitation, here we only show
results for 5 data sets: two two-dimensional synthetic data
sets as shown in Figures 1, and three real data sets from
the UCI Machine Learning Repository [7](see table 1 for a
summary). The complete experimental results are presented
in [8]. Synthetic data1 presents a case where the first prin-
cipal direction maximizes Equation 1. Data2 has a similar
configuration as Data1 while the second principal direction



INIT.
METHOD SYN . 1 SYN . 2 PENDIGITS SEGMENTATION LETTER

RAND . MAX 6819.39 14922.4 5.44E+7 2.15E+7 636249
SEED µSSE 6185.06± 271.82 13684.1± 507.29 4.52E+7± 1.88E+6 1.49E+7± 2.14E+6 620258± 4151.52

MIN 6067.99 12971.1 4.37E+7 1.35E+7 611567
RAND . MAX 6925.2 14921.8 5.47E+7 2.15E+7 646874
PART. µSSE 6253.59± 323.61 13681.8± 553.95 5.09E+7± 1.23E+6 1.44E+7± 1.49E+6 623269± 6416.11

MIN 6067.99 12971.1 4.93E+7 1.35E+7 611008
PCA-PART µSSE 6068.07± 0 14029.6±0 5.00E+7± 0 1.38E+7±0 617846± 0

Table 2. The SSE values for the Data.

INIT. METHOD SYN . 1 SYN . 2 PENDIGITS SEGMENTATION LETTER

RAND . SEED µite 10.54± 3.82 9.41± 7.24 32.25± 12.49 23.86± 11.04 85.22± 33.21
RAND . PART. µite 8.85± 3.80 10.30± 8.60 30.29± 10.28 24.70± 10.60 84.94± 29.84
PCA-PART µite 3 ± 0 2 ± 0 15± 0 14± 0 85± 0

Table 3. The number of iterations for the Data.

maximizes Equation 1. Data set2 is difficult for PCA-Part
because it violates the assumption of PCA-Part.

Table 2 listsµSSE , σSSE , the minimumSSE and the
maximumSSE returned by K-means when each initial-
ization method is used. We observe that PCA-Part obtains
smallerSSE values thanµSSE obtained from random par-
tition and random seed for all data sets except for synthetic
data2 and pen digits data. In addition, usually PCA-Part
leads toSSE values close to the minimumSSE values ob-
tained from the random methods. Moreover, the worst case
reached by the K-means algorithm when initialized with the
random methods may be far from the best case, confirming
the need for stable initialization methods.

Table 3 lists the average and standard deviation of the
number of iterations that K-means needs to reach conver-
gence for different initialization methods. This table shows
that in all cases except the letter data, PCA-Part lets the
K-means algorithm run less iterations to converge than the
random methods. One can apply the power method [6] for
computing the first principal direction only to save time. In
addition, here we only present the average iteration num-
bers for one K-means run when random method are used. In
practice, random methods are re-started around ten or more
times to escape from local minima. Therefore, generally us-
ing PCA-Part to initialize the K-means algorithm requires
less computation than the random methods.

4. Conclusions

The performance of K-means depends on the initial con-
dition. We theoretically and experimentally analyze the mo-
tivation behind PCA-Part and show its strengths and limita-
tions. Our results are encouraging. It presents some promise
in initializing at intelligent starting points for the K-means

algorithm, instead of just random start. This work suggests
research directions, such as exploring other ways of par-
titioning the sample space (e.g., “pie”-slices). When time
complexity is not crucial, one may apply different determin-
istic intelligent restarts (capturing different possibledata
configuration scenarios), or combine random and determin-
istic restarts for initializing K-means. This way, we are as-
sured that at least one of the K-means runs would lead to
good clustering result in terms ofSSE. In addition, one
may also explore the effectiveness of PCA-Part for initial-
izing other clustering methods such as mixtures of Gaus-
sians with the Expectation-Maximization algorithm [4] .
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