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Template Matching Based Object Recognition With
Unknown Geometric Parameters

Roger M. Dufour, Eric L. Miller Member, IEEEand Nikolas P. GalatsandSenior Member, IEEE

Abstract—in this paper, we examine the problem of locating an on a basis composed as translated versions of the object [4]-[6].
object in an image when size and rotation are unknown. Previous This approach makes available image reconstruction methods
work has shown that with known geometric parameters, animage ¢y a5 the linear least squares estimator (LLSE) and maximum
restoration method can be useful by estimating a delta functionat ., . . . . .
the object location. When the geometric parameters are unknown, “_kel'hOOd .estlmator_whllch can incorporate ba_ckground statis-
this method becomes impractical because the likelihood surface to tics. The final step in either the delta restoration or the EXM
be minimized across size and rotation has numerous local minima method is simply to select the point of highest response in the
and areas of zero gradient. In this paper, we propose a new ap- recovered image.
proach where a smooth approximation of the template is used to Since they rely upon an accurate template the methods men-
minimize a well-behaved likelihood surface. A coarse-to-fine ap- .. . .
proximation of the original template using a diffusion-like equa- tlont_ad above are not sufficient when geometric parameters such
tion is used to create a library of templates. Using this library, we @S Size and rotation are unknown. Here, one must compose an es-
can successively perform minimizations which are locally well-be- timator which is invariant to these parameters or simultaneously
haved. As detail is added to the template, the likelihood surface estimate these parameters. With the invariant approach [7]-[10],
gains local minima, but previous estimates place us within a well- a discriminant function is composed in the spatial, frequency or

behaved “bowl!” around the global minimum, leading to an accu- ther d - hich is i iant t ffine t f Hi
rate estimate. Numerical experiments are shown which verify the another domain which 1s invariant to an afline transtormation

value of this approach for a wide range of values of the geometric Of the template. The discriminant function is usually computed
parameters. from local or global features of the image, boundaries within the
image or regions of the image. The invariant function score can

|. INTRODUCTION then be used for detection or classification. The second approach

and the one followed in this paper is to estimate the parameters.

ICO'\:MOT |mag_e ptroc_essmtg prolblte m Etotc:]ete_r mlneéhlgy estimating the parameters, an accurate template match can
_\locationoran objectusing atemplate when the Siz€ and s 5 -hieved as in the methods mentioned earlier. This approach
tation of the true target are unknowns [1]-[3]. An algorithm fo

- . . s also taken with the Fourier Mellin Matched Filter (FMMF)
finding the solution should be robust to noise, accurate acr

id f obiect f. , d tationall ? In the FMMF, the amplitude of the Fourier transform is
awide range of object configurations, and computationally napped to a log-polar coordinate system. The translational de-
ficient. With known geometric parameters (i.e., size and rot

. o : . ) ) .Ppendence is eliminated because it appears only in the phase of
tion) and additive Gaussian noise, the classic solution for bjgfi}, £ rier transform. The transformation to the log-polar coor-
localization is a whitening filter followed by a matched ﬂlter.di ate system converts the rotation and scaling parameters into

OtheL e;t]l_rln ato;sorll/la\ée be(;anh proposed, .suc: as th? phaseh9 slational parameters. Scale and rotation are then solved with
frmatc SePC;I:/TIL( hi h) an l:: ;sylmm(ta.tncg). ase on %’ matt;: &%matched filter or phase only matched filter. While computa-
ilter ( ) whic give better location discrimination arfionallyfast and a simple method, it is not very robust to noise or
the _s'Fanda_rd match_ed filter [3].' However these filters (_jo not Yfutter. Additionally if the template does not accurately match
additional m_formatlon r(_agardlng the bac_:kground noise whi e object in the image, this method again will often fail. An-
may be avaﬂ_ablt_a or estlmab_le. Alternatively, one may formlzB'ther approach is to minimize a likelihood surface defined from
late the localization problem in the framework of image recol. gifference between the matched template and the image.

r.'I—fjéwever, this surface is not amenable to minimization due to

nealing [11], [12] or by using a jump diffusion technique [13],

, _ _ 14]. With these techniques, the parameter set is updated by a
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surface and therefore we can get close to the global minimumAs in [1] for estimation purposes we assume that the noise
of the cost surface. A standard optimization routine such aad thed are zero-mean stochastic functions with spectra given
the Newton algorithm can be used to find the best fit solutioas

Using this estimate as a starting point, we add more detail to

our template and search again. As we add detail, the surface be- Ss(k) = o2 and,S,, (k) = o2 4)
comes more ill-behaved, but the previous estimates have placed

us within a “basin of attraction” of the global minimum. Thiswherek” = [k, k,] are the spatial frequencies used in the 2-D
method is similar to the Graduated Non-Convexity (GNC) ap~ourier Transform

proach [15]-[17] in that it allows us to locally search a series of o oo

approximations to the likelihood surface and in a small numberf (k) = 7{ f(r)} = / / f(r)exp (—j27k -r)dr. (5)

of iterations will carry us to an accurate solution. To generate —00 J —c0

the templates for the search, we use a diffusion like equationW, h this f K . likelihood
which allows fast Fourier based computations of the templates, Ith this framewor , WE NOW UISe a maximum Ikelinood es-
ate of the parameter s&t while using the delta restoration

coupled with the Fourier based image restoration method [i' . i TN o )
This leads to a Fourier domain algorithm which is not compu-ethOd [1] for the Ic_)catlon est|ma_1t|on8|n_ce t_he additive noise
tationally burdensome. IS assgmed Gaussian, the negative log-likelihood for our param-
We demonstrate the performance of the algorithm using sﬁf?rs IS
thetic images, infrared images and optical images. The experi- B 1 B 5
mental evidence shows that this approach is able to accurately ~ [(#:Flg) = —5[1f(r;0) * 6(r —F) — g(r)]2. (6)
estimate the size, rotation and location of an object across a wide "
range of signal to noise ratios and clutter. In addition, it wakhe maximum likelihood solution is then achieved by mini-
demonstrated that it also works well for a wide range of valuesizing (6) as
of the rotation and scaling parameters.
In Section Il we will introduce the problem setup and the so- {r, é} = arg min [(6,T|g). @)
lution method via an impulse estimation routine. In Section I, {0}
we present a method for developing the template library. Sec-
tion IV shows the Newton algorithm used for parameter estima-

tion. Section V discusses the information loss and performarf?:ré’blem (i.e., the ML estimate of location, size, and rotation) is

of the parameter estimates. In Section VI, we present our Ot a trivial task. This is seen by the wide range of localization

merical experiments. Finally, in Section VIl we present Somtgtch_nl?(ues dlscgssEd |r_1t'_[he I?EOdUCt'%n both .W?ﬁn the geom-
conclusions and directions for future work. etry s known and when it IS not known. Hence, in this paper, we

propose a suboptimal estimation scheme which is both compu-
tationally tractable and is demonstrated to work effectively on
Il. BACKGROUND real data. Our approach has two steps. First, the delta restora-
In [18] the problem of template matching was formulatetion technique of Abu-Naseet al. [1] is used to determine an
using a novel nonorthogonal image expansion approach. In [1§lfnost closed-form estimate of the location of the target in terms
was shown that this approach in essence was an image rest8fdhe geometric parameters. Using this estimate to reduce the
tion approach. According to this approach the signal to be r@Pace of unknowns only to the size and rotation parameters, a
stored is a delta function at the template location. This leadsft@nlinear least squares approach is employed to determine these

general, determining the exact solution to this optimization

the convolution equation remaining quantities. Because even this problem is plagued by
local minima of the cost function, the template progression ap-
g(r) = f(r; 00) #6(r — T°) + n(r) 1) proach is introduced to “ease” the estimate of the geometric pa-

rameters into the global basin of attraction.
With a given set of geometric paramet@rsve can construct

by the templatef, at some locatio®®. We have described the
template using a parameter sefwhered” is the true parameter

set), which specifies the geometric parameters of the template . B fi(k;0) }
(i.e., the sizes and rotationy), as b(r)=F 1§ —=2 59(k) (8)
[Fok; 0)]2 + (2)
0" = s ¢l. (2)

and selecting the point of maximum response as our position

The template is a rotated and resized version of the stand§Riimate, as

template,f(r), given as .
r(#) = argmax é(r). 9)
r
f(r;H) =f lM(qﬁ)r , whereM(qS) = C9S¢ —sin¢ ) Iwhile 4 is the statistically optimal estimate &ftaking the maximum in (9)
S sin ¢ oS ¢ does not guarantee that the final estimate of position is in fact the maximum
likelihood estimate
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Substituting (9) into (7), we have a nonlinear least squart o7
estimatorf as

6 = axg min — 1£(5,8) » 8(x = (6)) = (0]}
=arg nbin J(0; f). (20)

o

The minimization ofJ(@; f) could be accomplished by cal-
culating J(8; f) on a dense grid in thé — s space to find the °*
minimum point. However, the calculations required to perforr o
this are generally prohibitive. The computation of the surfac

shown in Fig. 1 needed 67 billion flops. Instead, we seek to use

L . L :F40. 2. Four templates and contour plots of the associated likelihood surfaces.
standard optimization tools to find the minimum, the gradlem]e exact parameters are marked by thg the local minimum found by

descent algorithm we propose used only 260 million flops t@adient descent is marked by the.”
find the minimum of the surface in Fig. 1. The problem which

we encqunter when we attempt tq do this is that the IIkEzllho%\%curacy of the exact template estimation with the more easily
surface is not amenable to a gradient descent methods because

of local minima and other areas of zero gradient. We find tha mimizable surface of the approximate template.
) Y ' We formulate a method which uses smooth approximate tem-
these problem areas are a direct result of the shape of the t

i " . L i3tes which allow us to minimize on a well-behaved surface.
plate, f; specifically, multiple maxima in the template lead ince the results of the minimizations which we obtain from
multiple maxima in the likelihood surface. This can be seen }

. . . ; roximations are n r h which |
Fig. 1 where we have in (a) a simple target template with m Ee approximations are not as accurate as those ch could

. . . L e obtained from the exact template, we will add detail back
tiple maxima and in (b) the/(8; ) surface beside it. The X 10 our templates and minimize again with the previous esti-

aTr? Ig géven_hler:nlz izrtaet_sct;ma'ﬂn% thﬁhsi?:;rggspszr:dT%g?%te starting our current estimate within a well-behaved region
WIE slz€ s = lonp = 0 wi : ' around the global minimum.

minimum of this surface is a sharp point at size 1.0 and rotation
0, but the irregularity of the surface makes descent-type mini-
mizations impractical. Conversely, if we use a smooth rotation-
ally invariant template, shown in (c), to perform the match we In this section we will detail a method of generating target
obtain theJ(8; f) surface in (d) which is far better behaved. Théemplates which are approximations of the true template. This
minimum of this surface while close to 1.0 is no longer a shawpill allow us to make successive estimates beginning at smooth
point, but has a broad minimia with much less curvature. Thigoproximation which will generally locate us near the global
broader curve implies that the estimate will be more sensitieptimum and refine that estimate with more detailed approxi-
to noise in the data relative to that produced by the exact temations of the template until a sufficiently accurate estimate of
plate. Thus the primary objective of this work is to capture ththe parameters is reached.

I1l. TEMPLATE PROGRESSION
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TABLE |
VALUES OF ELEMENTS OF Vgt (8) FOR 1095 [TERATIONS

Vo f(x;6)| o o 5 o
mean mean std mean std mean std mean std
1.3534 0.0090 00334 00090 00334  0.0087 0.0406 _ 0.0087 0.0406
We will generate a spectrum of templates, indexed lag Std. Dev. of Size Estimate versus t

f+,» ranging from a smooth templatg to the exact template 1-4r
fE = lim;_ f;. We desire that the most smooth template
be monomodal to induce the behavior in the likelihood surface .2
which we discussed in Section Il. A relatively simple choice of
this is a Gaussian blob matched (in the two-norm sense) in siz 1
and amplitude to the original template given as
Ix|13 |
fole) = Aexp (-2 ) (11)
w
0.6f
While successive estimation will locate us inside a “well of
attraction” of the global minimum where we will avoid local 0.4}
minima, discontinuities in any template can yield discontinuities
on our surface. We therefore choose a method for generatirg ol
templates which in the continuous domain produces continuot
templates. A diffusion like process performs this adequately. Wi ‘ . s .

specify the Fourier transform of a templateas 0 5 1t0 15 20
. - . —|IKk|[? .
09 = (et~ o)) exw (IF5) 4 k) 22 @
Curvature with respect to ¢
WherefE and fo are the Fourier transforms of the exact and 900 ' ' '
most smooth templates, respectively. 800+

A progression for the two peak template is shown in Fig. 2.
We see that at small values tfthe template is a smooth ap- 700}
proximation of the true template, adncreases, the true tem-
plate emerges. Associated with this are the likelihood surfacesgqq |
related to each template. Here we see that at small values of
t, the surface is very smooth has no rotational localization and 5q¢ }
a very broad scale localization. Asncreases, the ill-behavior
returns, but previous estimates place us within the area of the400}
global minimum, and our estimate becomes more accurate. The
final solution for the parameters will of course be a local min- 300
imum, but may not necessarily be the global minimum. As will
be shown later, the rate at which the templates evolve influences200
the final outcome of the optimization. Slowteschedules as ex-
pected lead to more accurate estimates of the global minimum.100

We can now describe a complete algorithm using the template

progression as 0 200 400 600 800 1000

. t
1. Begin at ¢=0. ()

2. Construct fr with (12).
3. Minimize the likelihood surface con-
structed via the equations

Fig. 3. The curvature of the likelihood surface with respect for (a) size
estimates and (b) rotation estimates.

The minimization in (14) is performed via
i(k) Y(13) a Newton algorithm given in Section V.

29 ‘ 4. Increase t and proceed to step 2. The
t-schedule should be chosen to take small
steps at low values of t where the al-
gorithm is more sensitive to changes in

(14) the likelihood surface. This agrees with

f7 (k: 8)
fa 02+ (2)

A 1 N
6, = arg min —5|1£(r;0) = 6(r — £(6)) — g(x)|l3-

n

i:(8) = arg max F 1

r
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Fig. 4. The bounds upon the parameter estimates with respect to SNR for (a) size estimates, (b) rotation estimates, and (c) location estimates.
the observations in [16] for the method wheree; is the error image given as
of graduated nonconvexity and also demon-
strated in the analysis of the bounds on ei(r;0) = fi(r;0) * 6(r — 14(0)) — g(r). (16)
estimation accuracy in Section V. In our
implementation, a small value is chosen The Newton iterative procedure produces updates of the param-
for the initial value of t and it is dou- eter vector as [19]
bled for each subsequent t. If a longer
schedule is desired, a smaller multiplier o+ —gk) 4 pR)  (17)
is used.
with (Ut (0<k>) +s, (a<k>>) p*) = _ / 3, (r;0<k>)
IV. NEWTON ALGORITHM
The Newton algorithm [19] is used for the minimizations in X e (r; g(k)) dr
our paper. The Newton algorithm implemented here seeks to 18
minimize the squared error in the estimated image against the (18)

data according to . .
¢ wherep(*) is the update vector for the parameter Jetis the
A . . Jacobian vector of the error function, abd andS; are func-
— . — 2(... ’ t
f = argmin J(6; f;) = arg min /et (r;0)dr  (15) tions of the Jacobian and Hessian that are described below.
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The Jacobian vector is the vector of first derivative functions _ Image Data
of the of the error as . -

Ji(r;0) =Vgeu(r;0) = [3%5:;9) %Zja)r
=V fi(r;0)* 6(r —14(0)) + fi(r;0)
£ Vgb(r — i4(6)) (19)
=V fi(r —1:(0);0)
— Vgt (0) Ve fe(r — £:(0); 0). (20)

The first term of (20) is directly computable from the template s
function, however the second term is troublesome. The gradien
Vgt:(0) is not guaranteed to exist everywhere, and even if it
does exist, it cannot be calculated in closed form si¢8)
involves a maximization. Numerical computation\ojt(#) is
also complicated by the large granularity of image pixels with g d
respect to the usual size 8y, (). By this, we mean that if ] 20 40
we attempt to approximate an elementgjt; (@) (for example 2 : , : :
01, (0)/0s) by the relation

8TAz(s7 QS) ~ TAz(S + AS7¢) - TAz(s7 (:b)
ds - As

we find that the numerator is either zero (if the two estimates of1_6
position are usually the same pixel), or arbitrarily large (if they
are different pixels) becausks is made small. Therefore we
used an alternative method to obtain a more accurate approy4- 1
imation of the elements d¥yt: (). First we increase until
72 (s, ¢) moved at least by a pixel and denoted this pointhy
Similarly, we then find another point by decreasingnd this
point is denoted by,. The derivative is then approximated by

Ota(s,9)  Pals2,4) = Fuls1,4) 22)

Os S92 — 51 t=10 t

(21) e |

1.2 b

5 t=25 t=0
A similar approach was used to compute the remaining thre€ 5 10 ) is 2 25
elements of Vy1(0), that is 07,(0)/0s, 07.(0)/0¢, and Rotg%%ﬁtifs'}imate
Ot (0) /0. 025 ' ' ' '
The disadvantage of this method is that it is computationally |
intensive since we must calculatg() at many points. Using
this method, we find that the elements of the maWwiyt;(9) 05}
are typically two to three orders of magnitude smaller thar
Vg fi(r — £,(8); ) in (20). This is demonstrated by the figures *'[
in Table I, which shows a comparison between the averag |
magnitude ofVgf:(r;#) and the elements oWyt (#) for
20 runs (1095 iterations) of the algorithm for the two-peak o
example shown earlier. It is reasonable therefore to simplify
the calculation by eliminating this term, and using the approxi-**|

mation for the Jacobian given by il

T

~

Ji(r;0) = Vg fi(r — 1:(0);0). (23)
The Hessian of the error, or the matrix of second derivatives, is s
H.(r;0) :Véet(r;ﬂ) lteration

Fig. 5. Synthetic example. The two-peak target in 0 dB SNR. Accurate
= [Vé fi(r;0) — Véf‘t(ﬂ)vr f1(r;0) parameter estimation was achieved in 24 iterations with four values of

—2V i, (0)V Ve fu(x; 6) + (Vgi(6)) V2 filr;0)]
% 6(r — 4(0)). (24)
Similarly to the Jacobian, the terms of the Hessian which contain

the gradients of(#) are usually not significant and can cause The two matrices on the left hand side of (18) are computed
computational problems, so we disregard those terms. The dpam the Jacobian and Hessian. The first is the inner product of

-0.15

t=0 .
15 20 25

proximate Hessian which we used is given by
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Fig. 6. Scatter plots of estimations from 400 simulations of the two-peak example. The ellipse is drawn at 3 times the bounds around the exast madameter
is used to define “good” estimations.

the Jacobian with itself, and the second is given as the integi@induce better behavior from the minimization. The better be-

of the Hessian components with the error. Therefore, havior is induced by smoothing, or flattenning, the surface about
. the global minimum. The selection of the appropriate values of
U.(0) = /Jt(r; 6)J; (r;0)dr. (26)  has a direct affect upon the amount of computation and whether

the algorithm will converge to a local minimum or the global
minimum. It seems appropriate then to basettsehedule on
the expected value of the local curvature around the global min-

Specifying the elements &, (), by s, ;(#) and the elements
of Hy(r;0) by h; ;(r; @) we have
' imum.

si.g(60) = / fi,j(x; 8) s (x; 8) dr- (27) The expected local curvature at the minimum for any value of

The Newton algorithm is then an iteration of (17) and (18) ¢an be approximated by the expected values of the elements
until the likelihood as evaluated by (10) ceases to change ng_the Hessian matrix [20]. The elements of the Hessian matrix,

nificantly. That is, while with respect to the parameters, are given as
. . %l 2 0% f:(r; 0)
®). £\ _ (k—1). t_ 2 -0) — Z It 7
J(8f) =1 (04D ) > 7 @) P = /(ft(rﬁ) () =5 o
for some small value of. 2 [ 0fi(r;0) df:(r;0) 29
o2 / os, s, " 9

V. COMPUTING THE ¢-SCHEDULE In Fig. 3, we plot the value of the local curvature with respect

In the last section we presented the Newton algorithm whit¢h ¢ for the two-peaked target examined earlier. We see that the
finds the minimum of the cost surface with respect to the paalue of the curvature is small for small valug.@fhen the tem-
rameters. The minimization is performed successively for maplate is a smooth approximate template. The curvature quickly
values oft. As explained earier, the valuestomust be chosen increases as is raised until it asymptotically approaches the
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Short Schedule Estimations Long Schedule Estimations
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Fig. 7. Scatter plots of estimations from 400 simulations of the two-peak example for two schedules, longer schedules result in fewer misses.

TABLE I
ESTIMATION ERRORS FORSIZE, ROTATION AND LOCATION

Size Rotation T Ty
SNR (dB) Schedule  Mean Std. Dev. Mean Std. Dev. Mean  Std. Dev. Mean  Std. Dev.
-7.4595 short 0.50538  0.020603  0.42739 0.57641 64.8575 3.4557 65.0825 2.5947
-1.4389 short 0.50357  0.013774  0.33951 0.42302 64.9575 2.2921 65.0325 1.5756

12.5405 short 0.50105  0.0025995 0.25451 0.10889 65.025 0.5 64.9825 0.35
18.5611 short 0.50097 0.00095061 0.24918  0.0034543 65 0 65 0
32.5405 short 0.50104 0.00013374 0.24942 0.00046999 65 0 65 0
38.5611 short 0.50105 0.0002985 0.24943  0.0010505 65 0 65 0
-7.4595 long 0.5013 0.024512  0.38909 0.4705 64.785 2.5238 64.905 1.6379
-1.4389 long 0.50221  0.015672  0.32243 0.34788 64.895 1.9425 65.0325 1.1245
12.5405 long 0.50084 0.0014079  0.25412 0.10135 65.03 0.6 64.985 0.3
18.5611 long 0.50085 0.00096719 0.24918  0.0035128 65 0 65 0
32.5405 long 0.50093 0.00043025 0.24944 0.0015144 65 0 65 0
38.5611 long 0.50092 0.00030425 0.24944 0.0010707 65 0 65 0

Estimation Error vs. FMMF

curvature of the exact template. For efficient and accurate es oss : : ; ; ; ;
mation, it is important that we step througlquickly, however, x Multiresolution Newmr
if ¢ increases too rapidly then we are likely to end up in aloca o3} 1
minimum. At¢ = 0, the template is smoothest and the surfact
is the most well behaved and has the broadest well around tl ;.| i
global minimum. The template must evolve in such a way ths
the estimate remains within the well. Using the curvature as
gauge of this well, we see that initially small changeg¢ are 2
necessary so as not to too drastically change the surface. Ho3 ois
ever ast increases larger steps can be taken since the surfa
evolves slower with respect toUsing this knowledge, we have
computed a geometric series for atschedules in the examples
presented in this paper. This type of schedule is similar to th:
used in the Graduated Non-Convexity approach in [15]-[17].

0.2 ht

0.05- i

. , . . . . :
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VI. PERFORMANCE AND BOUNDS S\R ! !

cl | lated to th t f th £ is t Fig. 8. Estimation error for location for 400 simulations using the Fourier
osely relate 0 € curvawure 0 € surface Is ellin Matched Filter and the current algorithm. The current algorithm

Cramer-Rao bound on the variance of the parameter estimatiggiforms significantly better at low SNR values.

The CRB for the estimates is arrived at by inverting the Fisher

information matrix, which is computed by evaluating the Hedimit on the variance of the estimates for an unbiased estimator.
sian as given above at= co. The CRB establishes the lowerThe CRB is only achievable for an unbiased estimator which
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Template Image Data
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Fig. 9. Infrared target example. (a) The template, (b) the data with estimated center location, (c) the estimated size at each iteration, amigtidetaton
at each iteration.

uses the sufficient statistic for the parameter to be estimatedin Fig. 4 we see the CRB versus noise. These behave as ex-
If such a statistic is not available, then the CRB cannot lpected with exact estimation possible in the no noise case and
achieved. Nonetheless, it is useful to examine the lower lingstimation performance degrading as noise increases.

to the variance of the estimates

VIl. NUMERICAL EXPERIMENTS

E (8_21) E 921 E %1 E 8%l ) . ) )

9s? 9596 95Ty 9s0ry In this section we present numerical experiments from the
E 83521¢ E (%) Eaf% Eai% proposed algorithm and performance comparisons with the

I= 01 o1 J J (30) Fourier Mellin Matched Filter estimate [2]. We first present

Loormr  Pogarr F (@) E—arzary a synthetic target estimation example using a Monte Carlo

91 2% 2% 2% simulation analysis. Then we show results of the proposed
Easa'r‘y E3¢>87‘y Or,Ory E(W) Y prop

algorithm when applied to infrared (IR) and optical images.
Then from the elements of the inverse of the information matrix 79+ 2(@) shows the two-peak target shown earlier buried in

we have the lower bounds upon the variance of the param f5€ with 0 dB SNR. Fig. 5(b) and (c) show the estimates of

estimations, as and¢ at each |t.erat|on of the Newton algorithm. Here we used
at-schedule with four valueq0, 2.5,5,10}. We see here that
_1 the algorithm converged to close to the true parameters in 25
var s >[17"]1 4 31) . . . ;
e iterations. The true parameters were a size of 1.0 and a rotation
var ¢ >[I7" |22 (32) angle of 0.25 the estimations converged to values of 0.9914 for

varr >[I 33 + [T 44 (33) size and 0.2354 for rotation.
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Fig. 10. Optical example of a cup in a cluttered scene. (a) The data, (b) the template at estimated size, rotation and location, (c) the estirpatbdtsizian,
and (d) the estimated rotation at each iteration.

In Fig. 6, we show scatter plots of estimates from 400 simul&rue parameters. The first type of error is bounded below by the
tions of the two-peak example at varying signal to noise raticSR bounds, and in practice is usually so small as to effect the
The true parameters are a size of 0.5 and a rotation of 0.25. Target location estimation by less than one pixel. The second
ellipses are used to show estimates which are “accurate”, thgie of error constitutes a catastrophic miss by the algorithm.
is are close to the true parameters. The center of the ellips&Tss error is demonstrated in Fig. 7 with a pair of Monte Carlo
at the true parameters and the ellipses are drawn at 3 timesrtnies at two different-schedules. From the first scatter plot,
CRB computed from the equations in Section VI. The interiomse see that the majority of estimates are grouped around the
of these ellipses can be viewed as regions of sufficient confiue parameters, but 35 of the estimates missed dramatically.
dence in which “accurate” estimates of the parameters fall. \WWaese are instances where the algorithm became caught in a
observe that in (a)—(c), the number of estimates which are olgeal minimum which was not the global minimum, and thus
side the ellipse, and are therefore considered misses, decreassslted in an enormous error. The second scatter plot shows
The number of misses increases for the highest SNR becausthefsame Monte Carlo runs withteschedule which has twice
a bias in the size estimates which when combined with the tiglais many stops and thus has twice the computational burden.
ness of the CRB causes us to register more misses at high SN#Re, the number of misses was reduced from 35 to 18. By
levels than may be warranted by the fact that these estimates@mgressing through theschedule at a slower rate, we can
close to the true parameters. reduce the chances of become trapped in a local minimum

Table Il summarizes the Monte Carlo runs of the exampg the expense of more computations.
just presented. Each line shows the result of 400 simulationdn Fig. 8 the performance for these Monte Carlo runs is com-
of the algorithm for a specific level of noise ameschedule. pared with that of the Fourier Mellin Matched Filter [2]. The
The error in the estimates is composed of two componenpdot shows the standard deviation of the error in the location
one caused by the variance of the local minimum around thstimate versus SNR. We see that at high SNR, both methods
true parameters, and the second caused by the the algorifherform well, but as the SNR decreases then error in the FMMF
becoming trapped in a local minimum which is far from thécreases at a faster rate.
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Data Template
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Fig. 11. FMMF of the cup in a cluttered scene. The FMMF fails to accurately estimate the parameters.

Fig. 9 shows an example of estimating the size, rotation and TABLE Il

location of a vehicle in an IR image. Shown first is the target TOTAL MISSES OUT OF20 MONTE CARLO SIMULATIONS OF ESTIMATING
SEVERAL SCALES AND ROTATIONS. PROPERESTIMATION WAS USUALLY

template which we are using followed by the data image. Belowcyieven For ScaLEs Down T00.6,AND FOR ROTATIONS LESSTHAN 30°
this is are the estimation values for size and rotation for each iter-

ation. The iterations are divided into several sections by vertical ¢°

dotted lines denoting the respective value &dr each stage of 0° 30° 60° 90°

the algorithm. We can see that the algorithm converges in 60 it- 1.0(0 0 15 13

erations to values which upon matching the template to the data 0810 0 15 14

appear to be appropriate. Also shown is the position estimate of s 062 2 4 2

the target which also appears to be correct. 043 3 2 2
Fig. 10 shows an example with a real optical image. The first 028 8 7 6

image shows a cup in a simple background which is close to
white noise. The second image shows the estimated positioraafl the ¢-schedule used. For the two-peak example used
the template with proper size and rotation. We see here that thethis paper, and theé-schedule discussed earlier, we ran
algorithm settled into this estimate after 42 iterations and thistionte Carlo simulations of the convergence for values of
it is an accurate estimate. In Fig. 11, we show the output of teeale of {0.2,0.4,0.6,0.8,1.0} and values of rotation of
Fourier-Mellin matched filter which fails to isolate the true sizé0, 7 /6, 7/3,7/2}. The noise variance was set to produce
and rotation for this image. The performance of the FMMF ia SNR of 10 dB across the support of the target. Table Il
degraded by the clutter in the scene. The FMMF operates acregemarizes the results of this experiment as the number of
the entire image while the template matching is isolated to thasses out of 20 simulations. The results show that the algo-
support of the template. rithm converges to the proper parameters across a wide range
The last topic of consideration is the ranges of scale anflvalues of the rotation and scale parameters. The algorithm
rotation over which this algorithm converges to the prope&onverges to the correct parameter for scale values down to 0.6
values. This would be highly dependent upon the shape of thed the correct rotation. For values of rotation higher thAB
template, the resolution to which template data is availaliee algorithm often converged to a local minimum arouid.
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Interestingly, the performance at higher rotations improvesis)
for smaller scale objects. We believe that this is a result of
the smoothing operation. Since the smoothing is constant, the
relative amount of smoothing is greater for smaller objects. This[6]
results in an effectively finet-schedule than the-schedule
for larger objects. We believe that if theschedule were made
sufficiently fine, performance would improve for all areas of
Table I1l. However, this is part of the larger issue of optimal [g
t-scheduling. This topic is beyond the scope of the paper, but
one which we intend to pursue in the future. ol

(71

[10]
VIIl. CONCLUSIONS AND FUTURE WORK

In this work, we have examined the problem of finding a1l
target in a noisy image. Following in the work of Abu-Naser [1], [12]
we represent the problem as animage restoration problem where
the object to be reconstructed is a delta function encoding thig3
target location and the blur is a target template. Previous work
showed that the restoration can be performed using a LLSE ariéf]
choosing the location of maximum response [1]. However, thig;s)
did not consider the problem of unknown geometric parame-
ters, i.e., the size and rotation of the target within the imagel®
To estimate size and rotation of the object, we choose to follow
the previous approach for location estimation and minimize thél7]
negative of the likelihood function across size and rotation tq; g
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