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Abstract

The problem of estimating the location of one or more coherent point scatterers from the
time-reversal matriz as computed from backscattered narrow or broadband multi-static data
is investigated. For the case of homogeneous backgrounds it is shown that under very weak
conditions and as long as the number of sensor elements exceeds the number of scatterers
the time reversal matrix has a rank equal to the number of scatterers so that the well-known
vector subspace methods underlying the MUSIC algorithm can be applied to this matrix. A
MUSIC type of algorithm is presented which computes a “pseudo-spectrum” of the location of
M coherent point targets from multistatic data obtained using an N (N > M) element sensor
array. The algorithm is tested in computer simulations and shown to yield excellent results,
especially in the case of very sparse arrays where conventional time-reversal imaging breaks
down.

1 Introduction

Two methodologies that have received considerable attention in the general area of array processing
are time-reversal imaging [1, 2, 3, 4] and MUSIC (Standing for MUItiple-SIgnal-Classification) [5,
6] and related methods. In time-reversal imaging one or more unknown targets (scatterers) are
sequentially probed using a set of N antennas' and the backscattered returns are measured at all
the antenna locations yielding the so-called multistatic response matriz K; ;, with ¢ and j ranging
from one to N. The multistatic response matrix is then used to compute the Hermitian time-
reversal-matriz T = KK whose eigenvectors can be shown to correspond, in a one-to-one manner,
with the different targets?. In particular, the wavefield generated from the array when excited
by one of these eigenvectors focuses on the associated target so that if the Green function of the
medium in which the targets are embedded (background medium) is known a synthetic image of
the target locations is easily computed [1, 2, 4].

Subspace methods in statistical signal processing [5, 6] are also used for detecting and locating
targets from antenna array data. However, these methods have, up to the present, been used in
conjunction with the autocorrelation function (ACF) as computed from passive array data. Al-
though these methods can be easily adapted to active arrays and, in particular, to SAR imaging
(SAR standing for Synthetic-Aperture-Radar) they have serious limitations when multiple coher-
ent targets are present or when sufficient data is not available for estimating the ACF. In particular,
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'We will use the term “antenna” to denote both acoustic as well as electromagnetic sensor elements in a phased
array system.

2This statement is strictly true only if the targets are well-resolved (see discussion in section 2).
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MUSIC fails completely for multiple targets and narrow band data unless the targets are uncorre-
lated. Although methods have been devised to deal with correlated targets [7, 8] they are generally
difficult to apply and require wide-band data.

In this paper we will describe how subspace methods can also be used in conjunction with active
phased array systems and, in particular, can be applied to the problem of locating M coherent point
targets (M < N) from the measured N x N multi-static response matrix K = K; ; of the antenna
array. In place of the ACF, which forms the basis for classical MUSIC, the scheme described here
employs the N x N time-reversal matrix (TR matrix) T = KK whose eigenvectors play the role of
the eigenvectors of the ACF in classical MUSIC. The rank of the TR matrix is investigated for the
case of homogeneous backgrounds in three space dimensions R? and a theorem is proven that places
severe restrictions on the geometrical distribution of targets in order for the rank of the TR matrix
to be less than M. It then follows that when additive noise is present the N dimensional space
of antenna voltages CV can be partitioned into the direct sum of a signal subspace S and a noise
subspace N: CN = SE@N in complete analogy with classical MUSIC. A pseudo-spectrum is then
computed using a steering vector equal to the background Green function (which models the antenna
return from an isolated target at a “test” location). The pseudo-spectrum then yields super-resolved
target locations in a manner completely analogous to the use of the pseudo-spectrum in resolving
closely spaced spectral lines or closely spaced angles of arrival in classical MUSIC [5, 6]. Thus
the coupling of time-reversal field processing with subspace methods, particularly with the MUSIC
algorithm, lead to a powerful approach for detecting and locating targets in both homogeneous
and non-homogeneous backgrounds especially in cases of closely spaced targets and/or very sparse
antenna arrays as are employed, for example, in the TechSat 21 program under consideration by
the Air Force.

The paper employs a scalar wave formulation and, hence, is strictly applicable only to acoustic or
ultrasound applications where the phased array system is an N element transducer array. However,
the basic ingredients and conclusions of the theory apply equally well to electromagnetic fields where
the phased array system is an N element antenna array and, indeed, we will use the term “antenna”
to encompass both acoustic as well as electromagnetic array elements and will not make a distinction
between these two types of applications in the paper. The paper is directed primarily at near field
target detection and location estimation where the target separation is sufficient where multiple
scattering between different targets can be ignored and the Born approximation used. Although the
underlying ideas and mathematics are easily generalized to medium and far field problems such as
occur with air and satellite surveillance the generalization to take into account multiple scattering
between different targets is not simple although it can, in principle, be included in the theory [3].
Also the theory is developed entirely in the frequency domain and so applies equally to narrow
band or broad band antenna elements. Finally, it should be mentioned that although the theory
is developed for point scatterers and ideal point (monopole) antenna elements the generalization
to continuously distributed targets and realistic antennas and to the full electromagnetic (vector
fields) case is not difficult and is currently under development.

2 Mathematical Model

Throughout this paper we will work entirely in the frequency domain. Thus, we tacitly assume
that the time-dependent signals are expressible in the Fourier integral

1 fe° ~ ;
X(t) = %/_ dw X (w)e ™

with -
X(w) = / dt X (1),
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Within the frequency domain and for real valued time-dependent signals, time-reversal becomes
phase conjugation as is easily verified from the above Fourier transform relations. Thus, from this
point on the time-reversal operation will be synonymous with phase conjugation in the frequency
domain.

We consider an array of N antennas, centered at the space points R;, j = 1,2,...,N. We make
no assumptions about the location of the antenna elements and, in particular, do not require them
to lie in a plane or be reqularly spaced. Each antenna is assumed to radiate a scalar field ;(r,w)
into a half-space z > 0 in which are embedded one or more scatterers (targets). Within this paper
we make the simplifying assumptions that the antennas are monopoles (point antennas) and the
targets are ideal point scatterers and, in addition, neglect all multiple scattering between targets.
Under these assumptions the wavefield radiated by the j’th antenna element and the resulting
scattered field are equal to

Yi(r,w) = G(r,Ry)ej(w) (1)
M

vOre) = Y6 T ()G (X, Ry)e (@) (2)
m=1

where the sum is over all the targets and 7,,(w) is the target scattering amplitude and X, is the
location of the m’th target. Here, e;(w) is the input voltage applied at the terminals of the j’th
antenna element, G(r,r’) is the Green function of the medium in which the targets are embedded
(background medium) and w is the frequency. When all antenna elements are simultaneously

excited using the voltages ej, j = 1,2,..., N then the total incident and scattered wavefields are
given by
N N
P(rw) = Z =Y G(r,Ry)ej(w) (3)
j=1 =1
N ’ N M
PO (rw) = Z¢(8 D> G, X)) (W) G (X, Ry)ej (). (4)
j=1 j=1m=1

The voltage output v;(w) from the 1'th antenna is assumed to be equal to the amplitude of the
scattered field as measured at the ’th antenna and is then given by

uw) = YUY (Ry,w)

= Z Z G(Ry, X)) T (W) G (Xin, Ryj)ej (w). (5)

We can express the above equations in a compact matrix notation by introducing the N dimen-
sional “Green function” column vectors g, (w):

gm(w) = {GR,Xm)} = [G(R1,Xm), G(R2, X)), ..., G(RN, Xm)]T. (6)
In terms of these column vectors we define the symmetric multi-static response matriz (MSR matrix)

K = {KZJ} - Z G(Ry, X)) (w)G XmaR Z ngmgm (7)

m=1

where we have suppressed displaying the explicit dependence of the scattering coefficient and Green
function vectors on frequency. In terms of the MSR matrix we can write Eq.(5) in the form

N
v = ZKl,jej = Ke
j=1
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where e = {e;} = [e1,ea,...,en]T is the N-dimensional column vector formed from the set of input
voltages applied at the antenna terminals.

We conclude this section by noting that the Green functions G(r,r’) are completely general in
the sense that the above formulation applies to both homogeneous and non-homogeneous media,
including media with boundaries and highly dispersive media. Of course some of the computations
to be performed later will require that these Green functions be known and that will limit the
generality of the formulation in practice. However, two important cases where the Green functions
can be easily computed are:

e Homogeneous dispersive and non-dispersive media,
e Parallel layered media including a half-space with a planar interface.

The examples that we present later are for homogeneous media at a single frequency but can be
trivially extended to both of the above cases.

3 Time reversal matrix

We define the time-reversal matriz T to be
T=KK=KEK (8)

where the superscript T denotes the adjoint matrix and where the second equality follows from the
fact that the multi-static response matrix is symmetric so that KT = K* where the superscript
asterisk * denotes the complex conjugate. In terms of the green function vectors we conclude using
Eq.(7) that

M M
T = [Z ngmgz,;]*[ Z Tm’gm’grzr;’
m=1 m/=1

M M
= Z Z Am,m’g:ng;z’ 9)

m=1m/=1

where
Am,m’ = T:;ﬂ_m’ < Gm; Gm’ > (10)

where the angular brackets stand for the standard inner product in CV; i.e.,

N
< Gm; G >= g;rngm’ = Z g;(n)gm’(n)‘

n=1

3.1 Rank of the time-reversal matrix

The rank of the time-reversal matrix 7" is the same as the rank of the MSR matrix K and is a
quantity that will be important in the material to follow. Since K is, by its definition Eq.(7), a
linear sum of outer product matricies formed from the Green function vectors g.,, m =1,2,..., M,
its rank will be equal to the number of these vectors that are linearly independent. For the special
case of a homogeneous background and three space dimensions we have the following theorem which
is proved in the appendix

Theorem 1 The time-reversal matriz T for an N element array embedded in a three-dimensional
homogeneous background having wavenumber k with Sk > 0 and containing 1 < M < N targets
will have rank < M if and only if the following conditions hold:
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1. All of the targets are located on a single plane P that is orthogonal to at least N — M + 1
lines l;; connecting different antenna elements labeled by indicies j and I,

2. The plane P is the perpendicular bisector of the N — M + 1 lines satisfying condition (1) or
all targets on P are equidistant from every line satisfying condition (1).

The above theorem places severe restrictions on the geometrical distribution of targets in order
for the rank of the time-reversal matrix to be less than the number of targets. Indeed, condition 1 by
itself is very restrictive, especially for non-linear or non-planar arrays. For example if the antenna
array is not linear or planar then condition 1 cannot be realized if the number of antenna elements
N > 3. This follows from the fact that three or more non-parallel planes can intersect in no more
than a single point. For linear arrays Condition 2 requires that all the targets be located equidistant
to the line of the array. Although configurations of targets exist that will all lie on a single plane
that is perpendicular to the line of the array and, be equidistant from this line, it is clear that such
configurations are very special and unlikely to be encountered in any given experiment.

A few additional comments are in order as regards the above theorem. First, the requirement
that there be at least some absorbtion (Sk > 0) is required in order to eliminate additional,
very special target geometries that can reduce the rank of the MSR matrix (see discussion in
the appendix). Thus, the theorem will still hold for purely non-absorbing backgrounds except
for certain special target geometries. Also, the theorem says nothing about the magnitude of the
eigenvalues of the time-reversal matrix. In particular, certain eigenvalues may become very small
in certain situations. For example, if two or more target locations X,, become close relative to a
wavelength we can expect that the associated Green function vectors will become nearly parallel
(in CV) so that the effective rank of the time-reversal matrix will be reduced. We will return to
this point later when we present simulations showing that the effective rank of T is, in general,
reduced for closely spaced targets. However, this issue is somewhat moot within the context of the
present paper since we have ignored multiple scattering between targets so that our results only
apply to well separated targets.

We conclude this section by noting that Theorem 1 also holds in the case of homogeneous
backgrounds in two-space dimensions R? under the usual asymptotic approximation

cikIR—X|

G(R, X) = 7 Ho(kR — X|) ~ —\/#ﬁ (11)

where Hy is the zero order Hankel function of the first kind. The approximation in the above
equation is accurate so long as the distance between the antenna location R and the target location
X exceeds about three wavelengths. The case of two space dimensions corresponds physically to
where the antennas are line sources and the targets line scatterers all perpendicular to the plane R?.
From a purely mathematical point-of-view one can just as well consider the antenna elements and
the scatterers as simply points in the two-dimensional space R2. We will take this latter view in the
following discussion. It is easily verified that the steps used in proving Theorem 1 (see appendix)
for R® also hold in R? under the above approximation to the Green function. For the case of
R? where all antenna elements and targets are points in a single plane condition 1 of Theorem 1
requires that all the targets lie on a straight line that is perpendicular to N — M +1 lines connecting
different antenna elements. This condition cannot be satisfied if M < N for non-linear arrays while
condition 2 cannot be satisfied for linear arrays if M < N if we also require all the targets to lie
in the same half-space relative to the linear array. In the simulations that we will present later we
use two-space dimensions and all of the targets will be located in a single half-space relative to the
antenna array elements so that the rank of the time-reversal matrix will be guaranteed to be M so
long as M < N.



3.2 Eigenvalues and Eigenvectors of the Time-reversal matrix

The time reversal matrix T' is Hermitian (T = T) and non-negative (< v,Tv >> 0, Vo € CV).
Because of these facts the matrix possesses a complete set of orthonormal eigenvectors having non-
negative eigenvalues. As we have just shown in Theorem 1 under very weak conditions and for the
case of homogeneous backgrounds with &k > 0 the rank of this matrix will be equal to M, the
number of targets, if M < N and will be N, the number of antennas, if M > N. We will from this
point on simply assume that M < N and the rank of T is equal to M so that there are exactly M
non-zero eigenvalues. We distinguish two cases corresponding to well resolved targets and non-well
resolved targets.

3.2.1 Well resolved targets

We first consider the case of well-resolved targets which is defined to be the case where the quantity
Ay defined in Eq.(10) is approximately zero when m # m’. This occurs when the Green function
vectors form an (approximate) orthogonal set or, equivalently, when the inner product between two
different Green function vectors is approximately zero; i.e.,

N N
< G G >= D G (M) gy (n) = G* (R, X0 ) G(Rip, X)) = 0, (12)
n=1 n=1

for m # m’. We can interpret the quantity

N
H(r, X)) =Y G*(Ry,r)G(Ry, Xo) (13)
n=1
as being the coherent point spread function (CPSF) of the antenna array. In particular, this quan-
tity represents an “image” of the source point X,,» formed by the antenna array from measurement
of the outgoing wave Green function G(r,X,, ) at the various array elements; i.e., for r = R,,,
n =1,2,...,N. Mathematically this equation represents the CPSF in terms of the backpropaga-
tion of the outgoing wave Green function G(r,X,, ) from the antenna array into the half-space
z > 0. It follows that the inner product < gm, g,y > defined in Eq.(12) is the antenna array point
spread function evaluated at the image point r = X,,, and the quantity A defined in Eq.(10) can
be expressed in terms of the CPSF as

Ay = Ty Ty H (X, Xy ) (14)

For large, closely spaced, regular arrays the CPSF will have a maximum at the source point
location r = X,,,» and will decay in amplitude for points removed from this image point. For sparse
arrays or for arrays having few elements the CPSF will have a complicated structure that consists of
ridges and valleys that converge to the source point at which the CPSF achieves a local maximum
or, at least, a maximum in some plane or line that contains the source point. The effective spatial
extent of the point spread function is determined by the geometry of the antenna array and the
wavelength of the radiation. For example, for a densely spaced (less than a half-wavelength spacing)
square antenna array, the transverse effective spatial region of support of the CPSF is roughly a
square having sides of length zA/a where z is the distance from the array, a = N¢ is the length of
the side of the array with ¢ being the spacing between array elements. The extent of the region of
the CPSF in the longitudinal direction (z direction) is considerably larger and, again, depends on
the wavelength and array geometry. We conclude from the above discussion that if the two target
locations X,,, and X,,» are separated by a distance larger than the effective spatial extent of the
CPSF then A, ,, reduces approximately to

Am,m’ = |7-m|2,0m5m,m’ (15)



where
Pm = H(Xmaxm) =< Ggm,9Gm > (16)

is the squared norm of the m’th Green function vector and 4, is the Kroneka delta function.
This is the case of well-resolved targets.
By making use of Eq.(15) we find using Eq.(9) that the time-reversal operator assumes the

simple form
M

T= Z |7—m|2pmg:ngg;' (17)
m=1
which is recognized as a projection operator onto the subspace spanned by the complex conjugates
of the Green function vectors g,,. Moreover, since for the well-resolved case, the Green function
vectors are orthogonal with norm squared equal to p.,; i.e.,

< Gm; Gy >= pmém,m’

we conclude that eigenvectors of the time-reversal matrix in this case are precisely the complex
conjugate of the Green function vectors and the eigenvalues are equal to |7, |2|pm|%; i.e.,

M
Tore = D Tl omingtgim,

m=1
M

= Z ‘Tm | 2pmg:npmo 5m,mo

m=1
= ‘Tm0‘2|pm0‘2g:;10‘

The complex conjugate of the Green function vectors comprise M eigenvectors of the time-
reversal matrix which has dimension N2 and, hence, possesses a total of N (orthogonal) eigen-
vectors. Under the assumption that the number of targets M is less than the number of antenna
elements N, the remaining N — M eigenvectors will have zero eigenvalues since they must be
orthogonal to the Green function vectors; i.e.,

<G>
M -
2 T
Tp=Y |mmlomgm goit =0
m=1
where p is an eigenvector in the orthogonal complement of the space spanned by the Green function
vectors. For later purposes we will refer to the space spanned by the Green function vectors as the

stgnal subspace and its orthogonal complement spanned by eigenvectors with zero eigenvalues as
the noise subspace. Thus

cN=SEP~N (18)

where S = {span(gm*,m = 1,2,..., M)} is the signal subspace and A the noise subspace and where
C¥ is the space of N-dimensional complex valued column vectors (the space of applied voltages to
the N element antenna array). Again, as indicated above, we tacitly assume that the number of
targets is less than the number of antenna elements V.

3.2.2 Non-resolved targets

In the general case A, will not be a diagonal matrix and the time-reversal matrix does not
simplify from its general form given in Eq.(9); i.e.,

M M

m=1m/=1
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In this case we see that the time-reversal matrix is still a projection operator onto the subspace
spanned by the complex conjugates of the Green function vectors g, (the signal subspace S). How-
ever, the eigenvectors of T are no longer simply the complex conjugates of the Green function
vectors but, rather, will be linear superpositions of these vectors. Nevertheless, the decomposition
of C¥ into a direct sum of the signal and noise subspaces according to Eq.(18) still holds. Most
importantly, we conclude from Theorem 1 that the rank of T' and, hence, the dimension of the signal
subspace S remains equal to M except for very specialized and unlikely target configurations.

For future reference we will denote the orthonormal set of eigenvectors of T by pm, m =
1,2,...,M,M +1,..., N where the first M of these eigenvectors have non-zero eigenvalues and
span the signal subspace S and the remaining N — M vectors have zero eigenvalues and span the
noise subspace N; i.e.,

Tum = Ampm, m=12,...,M,
Tium= 0 , m=M+1,M+2,...,N,
< U Py >

6m,m’ .

We note that in the special case of well-resolved targets the normalized signal space eigenvectors
are proportional to the complex conjugate of the Green function vectors:

*

Im

= , m=12 ..., M. (20)

B

We also define the projection operators onto the signal and noise subspaces, viz.,

M
Ps = Zﬂmﬂin (21)
m=1
N
Py = Z Nmﬂln' (22)
m=M+1

Since, CV is the direct sum of the signal and noise subspaces (cf., Eq.(18)), the sum of the noise
and signal space projection operators is equal to the identity operator in CV:

Py + Ps = 1. (23)

4 Focusing with the Time-Reversal Eigenvectors

The natural question arises as to how one makes use of the time-reversal matrix and, in particular,
of the computed eigenvalues and eigenvectors to locate targets. The standard method that is
used is simple imaging; i.e., one computes the image corresponding to each one of the different
eigenvectors having non-zero eigenvalue and associates that image with one or some collection of
the targets. We consider first the case of well resolved targets where the signal space eigenvectors of
the time-reversal matrix are proportional to the complex conjugates of the Green function vectors
g5, ={G*R;, X))} = {G*(Xm, R;,)}T (cf., Eq.(20)). Consider now the radiated wavefield from
the antenna array when the input voltage e = {e;} is equal to one of these signal space eigenvectors
tm = {um(j)}, m=1,2,..., M. From Eq.(3) we find that

N
Ym(r,w) = Z G(r, Rj)#m(j) (24)

J=1



1 N
= — Y G* (X, R)G(T, R,
T 2 6 K Ry)Gle By)

1
- H'(rX,,
o A Xm)

where we have made use of Eq.(20) and the definition of g, and where H(r, X,,,) is the CPSF of the
antenna array defined in Eq.(13). As discussed in Section 3.2.1 the CPSF is an “image” of the target
point X,,, formed by the phased array antenna. In other words, in the case of well resolved targets,
the wavefields radiated from applied voltage distributions equal to signal space eigenvectors focus at
the target locations. Thus, in the case of well-resolved targets it is only necessary to compute the
image field using Eq.(24) and the target is located at the maximum value of the magnitude of this
image.

It is important to note that in order to make use of Eq.(24) it is necessary to know (i.e., have an
analytic or computer model) of the background Green function. Thus, although computation of the
eigevalues and eigenvectors of the time-reversal matriz requires no knowledge of the background,
computation of the image field requires knowledge of the background Green function. It is also
important to note that the quality of the time-reversed images as computed using Eq.(24) depends
critically on the number of array elements and the array geometry and will suffer serious degradation
in some cases such as in the case of sparse arrays. As was discussed in section 3.2.1 the CPSF
depends critically on array size, geometry and wavelength and, in particular, will exhibit pronounced
side-lobes if the array is sparse. In such cases the image generated by the eigenvector may not peak
at the actual target location and/or will have a number of local maxima. We will discuss how
this impacts the target location problem and how the use of vector sub-space methods and, in
particular, MUSIC can be used to circumvent many of these limitations later in the paper.

The above result does not, unfortunately, generalize to the case of non-resolved targets. In
particular, for this more general case, the signal space eigenvectors are linear combinations of the
complex conjugates of the Green function vectors. Thus, an applied voltage equal to one of these
eigenvectors generates a linear combination of CPSF’s, each focused on a different target location
and each having a different amplitude. Since the targets are not resolved these image fields would
interfere with each other so that the quality of the target location estimates would suffer. Because of
this the use of focusing to locate and identify non-resolved targets is limited. However, as happens
when the antenna arrays are sparse, vector sub-space methods such as MUSIC can be used in these
more general situations as will be discussed below.

5 MUSIC

Our goal is to estimate the locations of the targets from the scattered field data. One approach
to this goal is to employ the subspace methods used in signal classification and discrete spec-
trum estimation for this purpose. We describe in this section one such method called MUSIC (for
“MUltiple-SIgnal-Classification”). We emphasize that the MUSIC algorithm is to be used in con-
junction with time-reversal processing and not in replacement of time-reversal processing. Thus,
we still will require multi-static data and the multi-static response matrix K and will compute
the time-reversal matrix T' = K* K and the eigenvalues and eigenvectors of this matrix. What we
propose is to replace the classical image formation process described in the previous section with
the MUSIC scheme. By doing this we will be able to deal both with non-resolved targets as well
as with sparse antenna arrays, two cases where classical imaging fails.

The MUSIC algorithm makes use of the fact that the time-reversal matrix T is a projection
operator onto the subspace of C?V spanned by the complex conjugates of the Green function vectors
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(the signal subspace) and that the noise subspace N is spanned by the eigenvectors of T' having
zero eigenvalue. It then follows that the complex conjugate of each Green function vector must be
orthogonal to the noise subspace and, in particular, to the eigenvectors of the time-reversal matriz
having zero eigenvalue; i.e.,

< gy Gm >=< fimg> Gm > 0 (25)

form=1,2,...,M, mg=M+1,..., N, where y,,, are the eigenvectors of T" having zero eigenvalue.
We can then form a pseudo-spectrum according to the algorithm

1

D(X,) = (26)
: =M1 | < Hings gp > |2
where i, is the mo’th eigenvector of 1" having zero eigenvalue and
gp(w) = {GR1, Xp)} = [G(R1,X,), G(R2, Xp), ..., G(RN, Xp)] (27)

is the steering vector. The steering vector is seen to be the Green function vector for a target
located at the test location X,. Because the signal subspace is orthogonal to the noise subspace the
inner product < py,., gp > 2, with mg = M +1,..., N, will vanish when ever the test location X,
is equal to the actual location of one of the targets X,, and this will happen for non-resolved targets
as well as well-resolved targets. We see from Eq.(26) that the pseudo-spectrum D will then peak
(theoretically to infinity) at each target location; i.e., when X, = X,,,, m = 1,2,..., M. Eq.(26) is
the MUSIC algorithm for time-reversal imaging.

5.1 Implementation of MUSIC

The denominator of the pseudo-spectrum Eq.(26) is simply the magnitude square of the projection
of the complex conjugate of the steering vector onto the noise subspace. To perform this projection
operation we can use the noise subspace projection operator defined in Eq.(22) or, equivalently, we
can use represent this projection operator in terms of the signal subspace projection operator using
Eq.(23). Thus, in particular, we have that

N N

S o<t g > P = Y < bmo g > P = |Pyvgy® = |[I - Pslg;)*. (28)
mo=M+1 mo=M+1

The two different methods of computing the pseudo-spectrum have different implementation impli-
cations. In particular, for large arrays and small number of targets the noise subspace is much larger
than the signal subspace and there is thus an advantage of employing the signal space projection
operator since there are fewer eigenvectors to compute. In the other extreme where the number of
targets approaches the number of antenna elements the noise subspace has small dimension and it
is advantageous to employ the noise space projection operator.

5.2 Connection with classical time-reversal imaging

The classical time-reversal image generated from an eigenvector i, in accordance with Eq.(24)
can be expressed in the form

N
meo Xpaw Z XpaR Nmo( ) =< N:n()?gp > (29)

where we have replaced the field point r by X, and where g, is the Green function vector evaluated
at X, and defined in Eq.(27) and where i, is the mg’'th eigenvector of T' having zero eigenvalue.
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On making use of the above expression we can express the pseudo-spectrum defined in Eq.(26) in
the form )
D(X,) =
) S e o )P %

We can interpret Eq.(30) as stating that the pseudo-spectrum is inversely proportional to the sum of
the intensities (magnitude squares) of the images formed from the eigenvectors having zero eigen-
value. Thus, the pseudo-spectrum can be computed from classically formed time-reversal images
but from the images corresponding to zero eigenvalue as opposed to the usually used non-zero eigen-
value.

An alternative interpretation of the pseudo-spectrum can be obtained by making use of the
alternative form of the projection operator onto the noise space N. In particular, on making use
of Eqgs.(refeq:17), (21) and (29) we conclude that

N
S I <timggs>1? = |[I-Pslgy
mo=M+1
M
= lgp— D tim < pim, g > |?
m=1
M
= |gpl* = D [¥m(Xp,w)*. (31)
m=1

We can interpret Eq.(31) as stating that the pseudo-spectrum is inversely proportional to the differ-
ence between the intensity of the image of the steering vector and the sum of the intensities of the
images formed from the eigenvectors having non-zero eigenvalue. Thus, the pseudo-spectrum can
also be computed from classically formed time-reversal images corresponding to non-zero eigenval-
ues.

6 Matlab Computer Simulation

The time-reversal imaging and time-reversal-MUSIC estimation methods outlined above were tested
in a simple computer simulation using MATLAB. The program assumes a two-dimensional geometry
where the antenna elements are line sources and the targets are line targets all embedded in a
homogeneous background and perpendicular to a single plane and all multiple scattering is ignored.
As discussed earlier, from a mathematical point of view we can consider the targets and antenna
elements as points in the two-dimensional space of the plane; i.e., as point locations in R2. We will
take this latter view in the discussion that follows.

In the R? case the appropriate Green function G(r,r’) is given in Eq.(11). The Green function
vectors are then given by

gm(w) = {Ho(k|Ri — Xu)} = [Ho(kR1 — Xinl), Ho(k|R2 — Xinl), ..., Ho(k[Ry — Xi|)]", (32)

where we have dropped the unessential constant —i/4.

In the simulations we employed a basic image space which is a rectangular grid representing a
section of the z, z plane with z being depth (pointing down) and z lateral location (with positive z
directed to the right). All dimensions are in relative to the wavelength which is taken to be unity.
The simulations used an image grid spacing parameter dx = dz equal to a quarter wavelength
dx = A/4 and an equally spaced linear array of from five to nine elements (depending on the
simulation) located at z = 0 and with adjacent antenna element spacing varying from a half-
wavelength to up to sixteen wavelengths again depending on the simulation. We also used from
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two to four targets located at the same z (depth) coordinate (sixteen wavelengths) but with variable
spacing along the x direction. In some of the simulations we added additive white Gaussian noise
(AWGN) to the computed MSR matrix K according to the model

K=K+ Ae®™ (33)

where K is the noisy MSR matrix, A is an independent Gaussian variable with variance proportional
to the peak amplitude of the ideal (computed) MSR matrix K and W an independent Gaussian
variable with unit variance. All parameters used in any given example are listed in the figure
captions.

6.0.1 Computing the Multi-static Response Matrix

The incident wave generated by the antenna array when excited by a unit amplitude voltage
ejr(w) =0,,, 3 =1,...,N is from Eq.(1)

Yj(r,w) = G(r,R;) = Ho(klr — R;)

7 =1,2,...,N and where r can be the coordinate vector of any point in the basic image grid.
In particular, the strength of the incident wave at the m’th target location is obtained by taking
r = X,,. In the absence of multiple scattering and assuming a perfect delta function target the
corresponding scattered field is defined by Eq.(2) with the amplitude e; = 1 and with the field
point r = R;. We then obtain the MSR matrix K = Kj ;:

M
Kij= ¢ (Ri,w) = Y G(Ri, Xin) (@) G (X, Ry) (34)
m=1

where 7, are the scatterer strengths.

As an initial example we computed the MSR matrix using Eq.(34) for the case of two targets
(M = 2) both located at a depth of sixteen wavelengths for a linear antenna array of nine elements
that was centered over the image grid. In this first simulation we used a half-wavelength spacing
for the antenna elements, no additive noise, and a target separation of eight wavelengths along the
x direction, with one target located exactly at the mid-point of the array and the other displaced
by eight wavelengths in the positive x direction. The scattering strengths 7,,, of the two targets
were equal (to unity). As discussed in section 3.2.1 the Coherent Point Spread Function (CPSF)
of a regularly spaced antenna array of length a will have an effective lateral width § at distance z
of approximately

0=2z\a

which using z = 16\, a = 4\ yields § = 4\. This is equal to twice the spacing between the two
targets so this example corresponds to two well-resolved targets. We show in Fig 1 the magnitude
of the scattered field |¢](-S) (r,w)| for j = 1,2,...,9 at all points along the z axis (the location of
the antenna array) as well as the sample values of this quantity at the array locations (shown with
triangles in the figures). We do not display the phase of the scattered field since phase wrapping
would prevent a simple comparison of the sampled values of this quantity with the continuously
distributed field. The sample values of the scattered field distribution across the antenna array are
the values of the MSR matrix K; ; defined in Eq.(34). Thus, the triangles in the j’th image in the
figure represent the magnitude of the matrix element K; j, ¢ = 1,2,..., N and for a specific value of
j. This same procedure was employed in all the simulations with the exception that in some cases
additive noise was added according to Eq.(33) and we display the noisy sample values relative to
the noise free values.
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6.0.2 Computing the Eigenvalues and Eigenvectors of the time-reversal matrix

The time-reversal matrix is computed directly from the MSR matrix according to Eq.(8). We used
a standard eigenvector /eigenvalue solver in MATLAB to compute the eigenvalues and eigenvectors
of the time-reversal matrix in the simulation. Since there are two targets there are two non-zero
eigenvalues with associated signal space eigenvectors. We show in Fig. 2 a plot of the eigenvalues
and unwrapped phase of the eigenvectors as computed from the MSR matrix whose magnitude
is shown in Fig. 1. We see for this case that there are two non-zero eigenvalues corresponding
to the two well resolved targets that are separated by eight wavelengths. We also show in the
bottom figure the phase of the complex conjugate Green function vectors g, which are seen to be
nearly identical (to within an additive integral multiple of 27) to the phase of the two eigenvectors.
This is in agreement with the fact that the complex conjugate of the Green function vectors are
proportional to the eigenvectors of the time-reversal matrix in the case of well-resolved targets
(cf., 3.2.1). We show only the phase of these quantities since the phase of the field is much more
important than amplitude (intensity) in imaging and target location estimation.

6.0.3 Forming the conventional time-reversal image

The time-reversal image is formed using Eq.(24). For the well resolved target case the image field
¥m(r) is proportional to the Coherent Point Spread Function (CPSF) of the antenna array. This
is well approximated in the first simulation where the targets are separated by 8. The magnitude
of the focused fields from the two eigenvectors for this case (whose phases are shown in Fig. 2)
are shown in Fig. 3. We have superimposed an X at the actual target locations to show that the
image fields tend to peak in the vicinity of the targets. We have also shown for comparison the
magnitude of the fields generated from the complex conjugate Green function vectors g, which
are the eigenvectors in the ideal case where the targets are perfectly resolved and whose phase
distributions along the antenna elements are also shown in Fig. 2. It is clear from the figure that
the image intensities for both the imaged eigenvectors and the imaged Green function vectors are
very close as can also be inferred from the fact that their phase distributions along the antenna
elements are almost identical as shown in Fig. 2.

It is clear from Fig. 3 that the images generated from the eigenvectors of the time-reversal
matrix provide a good indicator of the target locations. The reasons for this are that the targets
are well-resolved so that their separate image fields do not overlap significantly. However, we will
see later examples where the targets are not well-resolved so that the images generated by the
eigenvectors of the time-reversal matrix do not provide good indication of the target locations.
Moreover, even in this example where the targets are well separated the depth resolution generated
by the classical time-reversal images is not very good. Indeed, a close scrunity of the images in
Fig. 3 shows that the maximims do not occur at the target locations but rather in the immediate
vicinity of the array (see grayscale bar). The reason for this is at mentioned in section 3.2.1 the
longitudinal resolution associated with the CPSF is much less than is the horizontal resolution: a
fact that is clear from Fig. 3.

6.0.4 Computing the Pseudo-spectrum

The MUSIC algorithm was implemented using Eq.(26) with the denominator computed using both
forms given in Eq.(28). In all of the simulations the two methods of computing the denominator
gave essentially equivalent results so we only show the result obtained by the direct method of
projecting g, onto the noise subspace. In the first simulation discussed so far the targets are well-
resolved so that each eigenvector is associated with one of the two targets and the conventional
method of imaging the eigenvectors illustrated in Fig. 3 gives good indication of target location,
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at least as regards the lateral (x) location. The computed pseudo-spectrum for this example is
shown in Fig. 4 while Fig. 5 shows the pseudo-spectrum superposed on top of the conventional
time-reversal images. Also show in text are the estimates of target location obtained by simply
finding the maximum of the pseudo-spectrum. As expected in the absence of noise perfect target
location estimation is obtained.

6.1 Further Examples

As a second example we repeated the first simulation but added noise and also increased the spacing
between adjacent antenna elements to two wavelengths. In Fig. 6 we plot the magnitude of the
scattered field as well as the magnitude of the MSR matrix for a noise standard deviation equal to
20% of the peak value of the magnitude of the (noise free) MSR matrix. The effect of the noise is
clear from the plot as is the increased antenna element spacing. In Fig. 7 we show the plot of the
eigenvalues as well as the phase of the eigenvectors and complex conjugate Green functions. Note
that the noise has the effect of adding non-zero eigenvalues beyond the first two dominant ones.
Also note that the phases of the conjugate Green functions are no longer equal to the phases of the
first two eigenvectors due to the effect of the increased antenna separation and also the additive
noise. In Fig. 8 we show the images generated from the two dominant eigenvectors together with
those generated using the complex conjugate Green function vectors. It is seen that these images
possess a complicated spatial structure with multiple lobes making it difficult to located the two
targets. In Fig. 9 we show the pseudo-spectrum which, although noisy, returns exact estimates
of the target locations. The superposition of the pseudo-spectrum with the contour plots of the
time-reversal images is shown in Fig. 10 and illustrates that the lobe structure of the time-reversal
image makes target location estimation difficult.

To illustrate the effect of antenna element spacing and target separation on the rank of the
MSR and time-reversal matrices we show in Fig. 11 plots of the two largest eigenvalues of the time-
reversal matrix for two targets, both located at the same depth of sixteen wavelengths, but with
target separations of one, two, three and four wavelengths and for antenna element spacing varying
from one to twenty wavelengths. The top plots are of the largest eigenvectors and the bottom of the
lowest eigenvectors with the dots representing the results for a target separation of one wavelength,
the circles for two wavelengths, the crosses for three wavelengths and, finally, the stars represent
a target separation of four wavelengths. The horizontal axes represent antenna element separation
in number of wavelengths. It is clear from the plots that the rank of the MSR and time-reversal
matrix tend to increase with target spacing (expected) and antenna element spacing. Indeed, even
for a target spacing of a single wavelength the plots indicate that the rank of these matrices will
be two if the antenna element spacing is at least four wavelengths.

7 Summary and Future Work

In this paper we have reviewed the theory of time-reversal imaging using multi-static data and
merged that theory with the MUSIC method of sub-space signal processing. In particular, it was
shown how to employ the time-reversal matriz in place of the autocorrelation matrix normally used
in MUSIC to generate a pseudo-spectrum that yields accurate location estimates of coherent point
scatterers from near field multi-static data. The theory was developed for ideal point antennas and
point scatterers in arbitrary backgrounds and ignored all multiple scattering between the scatterers.
The simulations treated the case of two-dimensional line antennas and line scatterers in a uniform
background. All of the material was developed in the frequency domain and the simulations only
treated a single frequency component (the monochromatic case) although generalization to multiple
frequencies in both the theory and simulations is straightforward. Future work will concentrate on
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including the effects of multiple scattering and complex extended objects in the underlying theory
and extending the simulations to these more general situations.

A  Proof of the Theorem

In this appendix we will prove the theorem presented in section 3 that asserts that for the case of
a homogeneous background in three-dimensional space (R3) with 3k > 0 and for M < N targets
the rank of the time-reversal matrix is less than the number of targets M if and only if both of the
following conditions hold:

1. All of the targets are located on a single plane P that is orthogonal to at least N — M + 1
lines /;; connecting different antenna elements labeled by indicies j and [,

2. The plane P is the perpendicular bisector of the N — M + 1 lines satisfying condition (1) or
all targets on P are equidistant from every line satisfying condition (1).

As noted in section 3 the time-reversal matrix has the same rank as the MSR matrix K so we will
prove the theorem by proving that the MSR matrix K has rank < M if and only if the above two
conditions hold.

Since K is, by its definition Eq.(7), a linear sum of outer product matricies formed from the
Green function vectors g,,, m = 1,2,..., M, its rank will be equal to the number of these vectors
that are linearly independent. In order for two or more of these vectors to be linearly dependent
there must exist at least one non-trival solution C' to the homogeneous matrix equation gC = ¢
where ¢ is the N x M matrix whose columns are the Green function vectors g,,:

G(Ry,X1) GMRy,X3) ... ... GRy,Xy)
A G(R2,X1) GR2,X3) ... ... GRyXy)
g= : : o ) :
G(Ry,X1) GRN,X3) ... ... GRuy,Xu)

and C is an M dimensional column vector and ¢ is the N dimensional null vector. If M = N then
this set of equations will have a non-trivial solution and the set {g,,} will be linearly dependent if
and only if at least two rows of the matrix g are linearly dependent. More generally, if M < N the
set of equations will have a non-trivial solution and the set {g,,} will be linearly dependent if and
only if at least N — M + 2 rows of the matrix § are linearly dependent. We will show that the two
conditions listed above and in the Theorem are precisely the necessary and sufficient conditions for
at least N — M + 2 rows of the matrix § to be linearly dependent.
The j’th and I'th rows of the matrix § will be linearly dependent if and only if

G(R;,X1)G(Ry, Xp) = G(R, X1)G(Rj, X) (35)

where R; and R; are the locations of the j’th and I'th antenna elements and X,,, and X; are the
locations of the m’th and first targets and where the above equation must hold for all m. We limit
our attention to a homogeneous background in three-space dimensions so that the Green functions
are given by

ik R—X|
S

where k is the wavenumber of the background and R = |R| and X = |X| denote the lengths of the
R3 vectors R and X, respectively. We will also assume that the background medium has at least
some absorbtion so that &k > 0. On substituting the above expression for the Green function into

G(R,X (36)
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Eq.(35) we then conclude that a necessary and sufficient condition for the j’th and 1'th rows to be
linearly dependent is that

k(dj1 + dpn) = k(din + djm) + 27N (37)
dindin, = dndjm (38)

where

and where NN is some integer that depends of j,l, m. If we equate the real and imaginary parts of
both sides of Eq.(37) and recall that Sk > 0 we conclude that

dj1 +dip, = dpp +djm + AN (39)
djl +dy, = dp+ djm (40)

which can both be satisfied only if N = 0 and Eq.(40) is satisfied. If we did not have at least
some absorbtion in the medium (Y% > 0) then we would have to deal with Eq.(39) rather than
Eq.(40) and the subsequent analysis becomes extremely complicated due to the possibility that this
equation might possess solutions for values of N other than zero. Thus, in the absense of absorbtion
the following analysis only rules out target configurations corresponding to N = 0 in Eq.(39) so
that other specialized configurations corresponding to N # 0 may arise that also cause the rank of
the MSR matrix to be less than M. In the presence of absorbtion or for the special case of N =0
Eqgs.(40) and (38) must both be satisfied for all values of m in order for the j’th and I'th rows of
the matrix ¢ to be linearly dependent.
If we square each side of Eq.(40) and make use of Eq.(38) we obtain

2 2 2 2
djy + diyy, = diy + dj,. (41)
We now make use of the definition of dj,, to find that Eq.(41) reduces to
R[>+ |X1]> - 2R; - X1 + [Ri|* + X[ — 2Ry - X, = |Ry* + X4 > — 2R, - X5 + [R; 2 + [ X, - 2R; - X,

which simplifies to yield
R —Ry)- (X —Xy) =0 (42)

Eq.(42) states that all targets must lie in a single plane that is perpendicular to the line joining the
j’th and l’th antenna elements.

Eq.(42) is only a necessary condition since it does not fully incorporate the conditions required
by Eqgs.(38) and (40). However, it is easily seen that Eq.(42) together with Eq.(38) are equivalent to
Eqgs.(38) and (40) so that these two equations together constitute necessary and sufficient conditions
for the j’th and I'th rows of the matrix § to be linearly dependent. To examine the additional
requirements imposed by Eq.(38) we select an z,y, z coordinate system where the x axis passes
through the two antenna locations R; and R; so that

R, = Rj%x, R;=R%

where X is a unit vector along the x axis and where R; and R; the locations of the antenna elements
along this line. We will choose the origin of the = axis so that the x coordinate of X; is zero; i.e.,

x-X1=0

from which it follows from Eq.(42) that
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Vm; i.e., all targets lie in the plane z = 0.
Using the above coordinate system we find that Eq.(38) becomes

|Rjx — Xaf|[Rix — Xim| = [Rix — X4[|Rj% — Xy
which, upon making use of Eq.(43) reduces to
(R} — R})(X7, — X7) =0 (44)

where X = |Xy|, X;n = |X;,| are the lengths of the X; and X,,, vectors. Eq.(44) requires that in
addition to all targets being required to lie in a single plane (the plane x = 0) that is perpendicular
to the line joining the two antenna elements either |R;| = |R;| or X,, = X;. If |R;| = |Ry| the
plane x = 0 containing all targets must bisect the line joining the two antenna elements while if
X, = X7 all target locations in the plane x = 0 must be equidistant from the line connecting the
two antenna elements but the exact location of the plane (the origin of the x axis) is arbitrary.

In summary, we have shown that in order for two rows of the matrix ¢ to be linearly dependent
it is necessary and sufficient that

1. All of the targets are located on a single plane P that is orthogonal to at least one line /;;
connecting two different antenna elements labeled by indicies 7 and [,

2. The plane P is the perpendicular bisector of at least one of the lines satisfying condition (1)
or all targets on P are equidistant from at least one line satisfying condition (1).

If M = N then the above two conditions are necessary and sufficient to guarantee linear dependence
of the set of Green function vectors §. However, if M < N then at least N — M + 2 of the rows
of the matrix § must be linearly dependent in order to guarantee linear dependence of the set g,
which then leads to the two conditions stated in the Theorem.

Acknowledgment

The author would like to thank Professors Hanoch Lev Ari of Northeastern University and George
Papanicolaou of Stanford University and Mr. Ed. Barile of Witten Technologies for helpful discus-
sions and comments on the material presented in the paper.

References

[1] C. Prada, J.L. Thomas and M. Fink, ”The iterative time reversal process: Analysis of the
convergence”, Journal of the Acoustical Society of America, 97, pp.62-71 (1995).

[2] C. Prada, S. Manneville, D. Spoliansky and M. Fink, ”"Decomposition of the time reversal
operator: Detection and selective focusing on two scatterers”, Journal of the Acoustical Society
of America, 99, pp.2067-2076 (1996).

[3] R.K. Snieder and J.A. Scales, “Time-reversed imgaing as a diagnostic of wave and particle
chaos,” Physical Review E, 58, pp.5668-5675 (1998).

[4] N. Mordant,C. Prada, and M. Fink, "Highly resolved detection and selective focusing in a
waveguide”, Journal of the Acoustical Society of America, 105, pp.2634-2642 (1999).

[5] Charles Therrien, Discrete Random Signals and Statistical Signal Processing [Prentice Hall,
New Jersey, 1992].



18
[6] P. Stoica and R. Moses, Introduction to Spectral Analysis [Prentice Hall, New Jersey, 1997].
[7] H. Wang and M. Kaveh, “Coherent signal-subspace processing for the detection and estimation

of angles of arrival of multiple wide-band sources”, IEEE Trans. Acoustics, Speech and Signal
Processing, ASSP-33, pp.823-831 (1985).

[8] H. Hung and M. Kaveh, “Focussing matrices for coherent signal-subspace processing”, IEEE
Trans. Acoustics, Speech and Signal Processing, 36, pp.1272-1281 (1988).



19
Figure Captions

Fig.1 Plots of the magnitude square of the scattered field generated across a linear array having
nine elements with equal spacing of one-half wavelength together with sample values (dia-
monds) of the magnitude square of the MSR matrix |K; |2, i = 1,2,...,9. Each separate
figure corresponds to excitation by a different antenna element.

Fig.2 (Top) Plot of the magnitude of the eigenvalues of the time-reversal matrix for the simulation
parameters used in Fig. 1. (Bottom) plots of the (real) phase of the two eigenvectors corre-
sponding to the two non-zero eigenvalues (solid) and of the phase of the complex conjugate
of the two Green function vectors (dashed).

Fig.3 (Left) Images generated by the two eigenvectors shown in Fig. 2 and (right) images generated
by the complex conjugate Green function vectors shown in Fig. 2. The “X” on the images
indicates the location of the targets.

Fig.4 The pseudo-spectrum computed for the simulation depicted in Figs. 1-3. The peak values
of the pseudo-spectrum are given as text in the figure and indicate that exact results were
obtained for both the x and z location estimates.

Fig.5 Contour plots of the time-reversal images shown in Fig. 3 on which are superposed the
pseudo-spectrums shown in Fig. 4.

Fig.6 Plots of the magnitude square of the scattered field generated across a linear array having
nine elements with equal spacing of two wavelengths together with the noisy sample values
(diamonds) of the magnitude square of the MSR matrix |K; ;|?, i = 1,2,...,9. Each separate
figure corresponds to excitation by a different antenna element.

Fig.7 (Top) Plot of the magnitude of the eigenvalues of the time-reversal matrix for the simulation
parameters used in Fig. 6. (Bottom) plots of the (real) phase of the two eigenvectors corre-
sponding to the two non-zero eigenvalues (solid) and of the phase of the complex conjugate
of the two Green function vectors (dashed).

Fig.8 (Left) Images generated by the two eigenvectors shown in Fig. 7 and (right) images generated
by the complex conjugate Green function vectors shown in Fig. 7. The “X” on the images
indicates the location of the targets.

Fig.9 The pseudo-spectrum computed for the simulation depicted in Figs. 6-8. The peak values
of the pseudo-spectrum are given as text in the figure and indicate that exact results were
obtained for both the x and z location estimates.

Fig.10 Contour plots of the time-reversal images shown in Fig. 3 on which are superposed the
pseudo-spectrums shown in Fig. 9.

Fig.11 Plots of the eigenvalues of the time-reversal matrix for two targets as a function of an-
tenna element spacing. The top plots are of the largest eigenvectors and the bottom of the
lowest eigenvectors with the dots representing the results for a target separation of one wave-
length, the circles for two wavelengths, the crosses for three wavelengths and the stars for
four wavelengths. The horizontal axes represent antenna element separation in number of
wavelengths.
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