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1 Problem Formulation

We consider a source ρ conÞned to a Þnite source region τ = {r : r ≤ a} radiating a
scalar Þeld ψ in inÞnite free space:

[∇2 + k2]ψ(r) = ρ(r). (1)

We will select the source ρ to radiate a prescribed Þeld ψ everywhere outside the
source region τ and also to minimize a weighted sum of the source �energy�

Eρ =
Z
τ
d3r |ρ(r)|2 (2)

and the Þeld energy

Eψ = k4
Z
τ
d3r |ψ(r)|2 (3)

within the source region. It is not difficult to show that the Þeld energy evaluated
over all of space is given by the expression

E∞ = k4
Z
∞
d3r |ψ(r)|2 = <k2

Z
τ
d3r ρ∗(r)ψ(r). (4)

Moreover, the Þeld energy evaluated outside the source region τ is Þxed (since the
source is selected to radiate a prescribed Þeld outside τ ). Thus, minimizing the Þeld
energy within τ is equivalent to minimizing the source Þeld interaction term

Eρ,ψ = <k2
Z
τ
d3r ρ∗(r)ψ(r). (5)

We can thus cast our inverse problem as being that of minimizing the sum

E = Eρ + αEρ,ψ (6)
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subject to the constraint that the Þeld is prescribed everywhere outside the source
region τ where α is a non negative parameter.
As is well known the Þeld everywhere outside τ is completely and uniquely deter-

mined by the radiation pattern f(s). Indeed, the radiation pattern uniquely deter-
mines the Þeld multipole coefficients aml which, in turn, are related to the source via
the formulae

aml =
Z
d3r ρ(r)jl(kr)Y

m
l
∗(�r). (7)

It then follows that the source that minimizes the weighted sum of Þeld and source
energies deÞned in Eq.(6) subject to the constraint of radiating a prescribed Þeld
outside τ must minimize the generalized Lagrangian

L = Eρ + αEρ,ψ + <
X
l,m

Cml [a
m
l −

Z
d3r ρ(r)jl(kr)Y

m
l
∗(�r)] (8)

where Cml are a set of Lagrange multipliers with |Cml | > 0, ∀l,m.

1.1 Minimizing the Generalized Lagrangian

The source Þeld interaction energy Eρ,ψ can be expressed in terms of the source and
Green function via the equation

Eρ,ψ = k2
Z
τ
d3r

Z
τ
d3r0 ρ∗(r)GD(r, r0)ρ(r0) (9)

where

GD =
1

2
[G+G∗] (10)

is the �Dirac� Green function, with

G(r, r0) = − 1

4π

eik|r−r
0|

|r− r0| (11)

being the inÞnite free space Green function that satisÞes the radiation condition.
On making use of the expression Eq.(9) for the interaction energy and the deÞnition
Eq.(2) for the source energy we Þnd that

L =
Z
τ
d3r |ρ(r)|2 + αk2

Z
τ
d3r

Z
τ
d3r0 ρ∗(r)GD(r, r0)ρ(r0)

+<X
l,m

Cml [a
m
l −

Z
d3r ρ(r)jl(kr)Y

m
l
∗(�r)] (12)

On taking the Þrst variation of the above Lagrangian we Þnd that

δL =
Z
τ
d3r δρ∗(r){ρ(r) + αk2

Z
τ
d3r0GD(r, r0)ρ(r0)−

X
l,m

Cml
∗jl(kr)Y ml (�r)}+ c.c.
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where c.c. stands for the complex conjugate of the Þrst term. On setting the Þrst
variation equal to zero we obtain

ρ(r) = −αk2
Z
τ
d3r0GD(r, r0)ρ(r0) +

X
l,m

Cml
∗jl(kr)Y ml (�r), (13)

which must hold at all space points r contained in the source region. The above
equation constitutes an integral equation that must be satisÞed by the desired source.
The above integral equation can be reduced to a differential equation by applying

the D�Alembertian operator to both sides of the equation to obtain

[∇2 + k2]ρ(r) = −αk2ρ(r)
a result that follows from the fact that the last term in Eq.(13) satisÞes the ho-
mogeneous Helmholtz equation. The general solution to the above equation can be
expressed in the form

ρ(r) =
X
l,m

ρml jl(Kr)Y
m
l (�r) (14)

where K2 = (1 + α)k2 and where the coefficients ρml are selected to satisfy the
constraint; i.e., must generate a prescribed Þeld outside τ . The above equation deÞnes
the source within the source region τ . The source must, of course, vanish outside τ .

2 Optimum Source and Radiated Field

2.1 Optimum Source

On making use of the constraint Eq.(7) we Þnd that

aml =
Z
τ
d3r ρ(r)jl(kr)Y

m
l
∗(�r)

=
Z
τ
d3r

X
l0,m0

ρm
0

l0 jl0(Kr)Y
m0
l0 (�r)jl(kr)Y

m
l
∗(�r)

= [
Z a

0
r2dr jl(Kr)jl(kr)]ρ

m
l .

On deÞning the �eigenvalues�

σ2l =
Z a

0
r2dr jl(Kr)jl(kr) (15)

we then obtain the desired source

ρ(r) =
X
l,m

aml
ρ2l
jl(Kr)Y

m
l (�r) (16)

if r ∈ τ and zero otherwise.
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2.2 Radiated Field

To Þnd the Þeld radiated by the optimum source given in Eq.(16) we return to Eq.(13)
which we re-write in the form

ρ(r) = −αk2
Z
τ
d3r0G(r, r0)ρ(r0) + αk2

Z
τ
d3r0GS(r, r0)ρ(r0)

+
X
l,m

Cml
∗jl(kr)Y ml (�r), (17)

where

GS =
1

2
[G−G∗] (18)

is the �Schwinger� function. The Schwinger function satisÞes the homogeneousHelmholtz
equation so that we conclude from Eq.(17) that

ψ(r) = − 1

αk2
ρ(r) +

X
l,m

λml jl(kr)Y
m
l (�r) (19)

where the coefficients λml are linear combinations of the coefficients Cml
∗ and the

expansion coefficients of the Schwinger Þeld (second to last term in Eq.(17)). If we
now make use of the expression for the optimum source Eq.(16) we conclude that

ψ(r) =
X
l,m

[− aml
αk2ρ2l

jl(Kr) + λ
m
l jl(kr)]Y

m
l (�r) (20)

which is valid everywhere within the source region τ = {r : r ≤ a}.
To Þnd the coefficients λml of the �free Þeld� part of the Þeld ψ given in Eq.(20)

we use the fact that this Þeld must reduce to the Þeld exterior to the source region
when r = a. The exterior Þeld admits the multipole expansion

ψ(r) =
X
l,m

aml hl(kr)Y
m
l (�r)

from which we then conclude that

− aml
αk2ρ2l

jl(Ka) + λ
m
l jl(ka) = a

m
l hl(ka).

On solving for λml we Þnd that

λml =
1

jl(ka)
[
jl(Ka)

αk2ρ2l
+ hl(ka)]a

m
l . (21)
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