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Abstract—Recent years have seen the introduction of large-
scale platforms for experimental wireless research. These plat-
forms, which include testbeds like those of the PAWR program
and emulators like Colosseum, allow researchers to prototype and
test their solutions in a sound yet realistic wireless environment
before actual deployment. Emulators, in particular, enable wire-
less experiments that are not site-specific as those on real testbeds.
Researchers can choose among different radio frequency (RF)
scenarios for real-time emulation of a vast variety of different sit-
uations, with different numbers of users, RF bandwidth, antenna
counts, hardware requirements, etc. Although very powerful,
in that they can emulate virtually any real-world deployment,
emulated scenarios are only as useful as how accurately they can
capture the targeted wireless channel and environment. Achieving
emulation accuracy is particularly challenging, especially for
experiments at scale for which emulators require considerable
amounts of computational resources. In this paper we propose a
framework to create RF scenarios for emulators like Colosseum
from rich forms of inputs, like those obtained by measurements
through radio equipment or via software (e.g., ray-tracers and
electromagnetic field solvers). Our framework optimally scales
down the large set of RF data in input to the fewer parameters
allowed by the emulator by using efficient clustering techniques
and channel impulse response re-sampling. We showcase our
method by generating wireless scenarios for Colosseum by using
Remcom’s Wireless InSite, a commercial-grade ray-tracer that
produces key characteristics of the wireless channel. Examples
are provided for line-of-sight and non-line-of-sight scenarios on
portions of the Northeastern University main campus.

I. INTRODUCTION

The last few years have seen the development of large-
scale platforms for experimental wireless research. They allow
users to operate on remotely-accessible nodes deployed in re-
alistic configurations [1]. By virtualizing softwarized protocol
stacks on general-purpose “white-box” hardware connected to
programmable radios these platforms enable experimentation
in a host of sectors of the wireless ecosystem, like 5G-and-
beyond cellular, ad hoc networks and Internet of Things (IoT)
applications, just to name a few. They also promote repro-
ducible results by enabling users to package their solutions in
shareable virtualized containers. This way, users can not only
replicate original results but also, easily and faithfully, build
upon them, pushing forward research and innovation.

Experimental platforms recently available to the wireless
community include those of the U.S. National Science Foun-
dation Platforms for Advanced Wireless Research (PAWR)
program: POWDER [2], COSMOS [3] and AERPAW [4].
These testbeds allow researchers and practitioners to test their

solutions in realistic setups. However, by design, they are
constrained to the specific hardware, topology and location of
the devices that are physically deployed. Another instrument
for experimentation at scale is Colosseum, the world’s largest
wireless network emulator with hardware in the loop [5],
[6]. Colosseum allows users to virtualize softwarized pro-
tocol stacks on remotely-accessible Software-defined Radios
(SDRs). The emulator is not site specific, in that it is not
constrained to a specific hardware topology. Channels among
each pair of nodes are emulated through so-called Radio
Frequency (RF) scenarios. This way, the users of Colosseum
can test their solutions in a large variety of wireless con-
figurations, modeling urban and rural setups, with variable
number of users, traffic and mobility patterns [7]. Although
very powerful, emulators like Colosseum are only as good as
their ability of accurately capturing and modeling the effects
of the wireless channel. Poorly designed scenarios would lead
to a non-realistic emulation. Even worse, prototypes developed
for such scenarios would not be applicable to the real world.

Achieving accuracy in creating large RF scenarios is chal-
lenging, especially for real-time wireless emulators. For in-
stance, emulating the Power Delay Profile (PDP) that repre-
sents the complex multi-path characteristics of a wireless link
may require a large number of non-zero valued taps of the
Finite Impulse Response (FIR) filter that models the PDP [8].
The higher the number of taps 6= 0, the more accurate the
multi-path model. Unfortunately, an emulator that in real-time
must consider the combined effect of multiple signals at each
receiver location, needs computational resources and time that
are proportional to the number of filter taps 6= 0 to combine,
which might render any useful experiment at scale impossible.
This is why the design of large wireless network emulators
requires to strike a judicious balance between accuracy and the
resources that are needed to emulate complex RF scenarios.
For instance, the designer of Colosseum had to settle for FIR
filters with 512 taps, only 4 of which may have non-zero
values [6]. This makes creating RF scenarios for large real-
time emulator an interesting and non trivial problem.

In this paper, we propose a new framework for creating RF
scenarios for time-domain FIR filter-based channel emulators
like Colosseum. We start by considering wireless scenarios
with rich RF information as produced by professional-grade
ray-tracing software. The wireless channel is modeled taking
into accounts typical effects such as path loss and multi-path



depending on the environment of a scenario of interest, e.g.,
considering the presence and make up of buildings and other
fixtures and the location of the devices. We then describe a
process to replicate the same scenario in the emulator, scaling
down the ray-tracer output to determine the non-zero taps of
the emulator filters, and what their non-zero value should be.
The process is based on techniques such as clustering—to
optimally select which taps should be different from zero—
and on channel impulse response sampling—to align the tap
delays to the input expected by the channel emulator. We
showcase our method by generating wireless scenarios for
Colosseum by using the commercial ray-tracer Wireless InSite
by Remcom [9]. Examples are provided for LTE D2D-based
line-of-sight and non-line-of-sight scenarios on portions of
the Northeastern University main campus in Boston, MA.
For these scenarios we show the effectiveness of our method
by computing the emulated path loss and delay spread and
comparing them to those of the ray-tracer. Our results show
that the proposed method results in 0 dB error path loss, and
in a significantly improved approximation of the delay spread
with respect to baseline techniques.

We notice that although using Colosseum as an exemplary
real-time wireless emulator, our framework is completely
general, and can be used to create RF scenarios for any time-
domain FIR filter-based channel emulator, starting from an RF-
rich input from any ray-tracer or electromagnetic field solver,
or from direct measurements in the field.

To the best of our knowledge, this is the first work on
creating RF scenarios for large-scale, real-time wireless em-
ulators. Previous works on wireless channel emulation, based
on FIR filters or Field Programmable Gate Arrays (FPGAs),
are mostly concerned with the definition and implementa-
tion of the instrument, rather than with the creation of RF
scenarios. Examples include the work by Patnaik et al. that
investigates the match between a FIR filter response and a
simulated one [10], the work of Olmos et al. on the design
and implementation of wide-band channel models for real-time
emulators [11], and the papers by Eslami at al. [12], Matai et
al. [13] and Buscemi and Sass [14], which propose solutions
for modeling a real-time channel in the FPGA, as done for
Colosseum [6].

The rest of the paper is organized as follows. A brief
primer on Colosseum and its main components is provided
in Section II. We describe how to create emulator-compatible
scenarios from ray-tracing output in Section III. A demonstra-
tion of the proposed method is provided in Section IV. Finally,
Section V concludes the paper.

II. COLOSSEUM: A PRIMER

With a total of 21 server racks, more than 170 high-
performance servers, 256 Universal Software Radio Periph-
erals (USRPs) X310 and the capability of emulating over 65K
wireless channels, Colosseum is the world’s largest network
emulator [5]. Originally built by DARPA to support the
Spectrum Collaboration Challenge [15], Colosseum is an
SDR-based testbed for repeatable—yet realistic—experimental

wireless research [6]. The Colosseum SDRs are equally di-
vided among 128 remotely-accessible servers called Standard
Radio Nodes (SRNs) that are assigned to the users of the
testbed and a Massive Channel Emulator (MCHEM), which
performs the real-time emulation of complex wireless envi-
ronments. Colosseum enables users’ experiments through the
instantiation of virtualized Linux Containers (LXC) instances,
and to operate the USRPs they are connected to, which act as
an RF front-end. The USRPs on the SRN-side are connected
in a one-to-one manner to the 128 USRPs of MCHEM. Instead
of exchanging wireless signals “en plein air,” the Colosseum
SRNs transmit their waveforms to MCHEM, which emulates
the wireless channel specified in the RF scenario, and sends
the resulting signal to the receiving SRNs.

In Colosseum, each wireless channel is emulated through
512 complex-valued FPGA-based FIR filter taps, which model
the different paths, delays, and other conditions of the wireless
channel between transmitter and receiver. The channel taps of
Colosseum scenarios have a time-granularity of 1ms. For each
instant of the emulated scenario, tap values for the channel be-
tween any two SRNs are loaded by MCHEM in real-time and
applied—i.e., convoluted—to the signals generated by all the
SRNs transmitting at the same time. Because of the elevated
complexity and size of emulated scenarios, only four taps have
non-zero values for each emulated channel [6], [16]. Even with
this limitation, creating scenarios is computationally intensive.
For instance, a 10-minute scenario with 50 communicating
nodes requires more than 2 hours to build on a computer with
24 CPUs and 96 GB of RAM, and its output occupies more
than 100 GB of storage. Once gone through MCHEM, i.e.,
after MCHEM has convoluted the signal in input from an SRN
with the channel taps of the RF scenario, the signal is sent
to the intended receiving SRNs. Consequently, choosing the
right value for the channel taps of RF scenarios is paramount
to guarantee a realistic channel emulation on emulators like
Colosseum. The aim and main contribution of this work is to
determine a general process for determining optimal values for
the non-zero taps of a FIR filter-based wireless emulator.

III. MODELING REALISTIC RF CHANNEL EMULATION

The propagation model of the wireless signal in a channel
is often represented by a set of parameters such as path loss,
multi-path, and Doppler spread. Path loss describes how the
signal power is attenuated in the channel; multi-path indicates
the presence of multiple copies of the attenuated and de-
layed copies of the transmitted signal. Emulating the wireless
channel requires finding a mathematical model that represents
the characteristics of the channel. A model can be created
in different ways, including experimental measurements or
simulation software and theoretical analysis. The former can
provide very accurate models. However, it is often costly
and results to be site specific. Theoretical and simulation-
based models are instead more flexible because of extensive
capabilities in modeling a variety of complex scenarios. With
today software and hardware, professional wireless simulators
allow the creation of scenarios at scale in reasonable time.



Fig. 1. Northeastern University campus simulation scenario.

In theoretical analysis, path loss is calculated based on
physical phenomena such as absorption and spreading. Multi-
path, however, can be derived by applying multi-path param-
eter extraction algorithms, such as SAGE [17], [18], CLEAN
[19], and RIMAX [20], [21]. Alternatively, multi-path can be
found by using ray-tracer channel simulation tools. In any
case, the number of multiple paths is not fixed, and depends
on the propagation environment. However, channel emulators
can emulate a limited—and often fixed—number of paths. This
limit is usually a result of specific signal processing techniques
and/or hardware capabilities used in the channel emulation
system. Therefore, there is a need for down-scaling the multi-
path components with appropriate approximation methods that
preserve the characteristics of the channel. In this section,
we introduce a process to optimally approximate a wireless
channel to a limited number of multi-paths imposed by the
channel emulator’s requirements. Our approach is a generic
process that can be applied to virtually any channel model
whether obtained by measurement or ray-tracer simulation.

Ray-tracer. The ray-tracer simulation is a promising method
to predict the propagation channel between the transmitter and
receiver in a high-frequency regime. It is based on ray optics
theory and assumes that the radio waves propagate through the
medium while experiencing reflection from surfaces, diffrac-
tion from edges of objects, and scattering from non-smooth
surfaces. Ray-tracing software considers all combinations of
these phenomena and forms the possible multiple paths be-
tween a pair of transceivers [22].

Scenario Definition. To illustrate our process of RF scenario
generation we start from the output of the commercial ray-
tracer Wireless InSite (WI) by Remcom [9]. As a case study,
we consider the outdoor portion of the Northeastern University
(NU) Boston campus depicted in Fig. 1. To obtain accurate RF
results we use a high-resolution 3D shapefile of the area with
∼13k faces, and assign concrete and dry earth material prop-
erties to the buildings and terrain, respectively. In this setup,
we model an LTE Device-to-Device (D2D) communications
scenario [23], [24] whose parameters are shown in Table I.
Since building and terrain properties are frequency-dependent,
we derive the material properties from the recommended ITU
model [25] at the carrier frequency of the simulation scenario.

TABLE I
SIMULATION SCENARIO PARAMETERS.

Parameters LTE Scenario

Carrier frequency [GHz] 2.3
Signal bandwidth [MHz] 20
UE Transmit power [dBm] 24
UE antenna gain [dBi] 0
UE antenna pattern Omni-directional
UE antenna height [m] 1.5
UE noise figure [dB] 5
Ambient noise density [dBm/Hz] -167.1

Particularly, Fig. 1 models the NU Krentzman Quadrant, an
outdoor space surrounded by three buildings and Huntington
Avenue to the North. As potential positions of the LTE User
Equipment (UE) we define a grid with 10 meters spacing that
covers the area (blue squares in the figure) and provides 625
possible wireless channels. The grid spacing is approximately
100 times the wavelengths, which allows us to obtain a good
compromise between capturing the large-scale characteristics
of the channel and get a manageable complexity for both the
ray-tracer and the emulation scenario generation process.

Assumptions. We configure the ray-tracer to find the paths
with up to 3rd order reflections. Higher order reflections are
not considered as they suffer from very high attenuation due
to the longer paths. Furthermore, to reduce the computational
burden, diffraction, transmission, and scattering effects are
not considered. With this configuration, the ray-tracer is able
to find the most dominant paths that contribute to the total
received power. However, even with all these assumptions, the
resulting model still includes tens of multi-path components,
which cannot be represented in channel emulators with a
limited number of non-zero valued FIR taps.

Our process of reducing the RF rich information, and es-
pecially many multi-path components of the channel obtained
from the ray-tracer to a model for channel emulators with
limited number of non-zero taps (such as Colosseum) is made
up of two distinct steps. First, we utilize a Machine Learning
(ML)-based clustering method to form groups of multi-path
components and approximate each group with a single tap
that represents the characteristics of all the components in that
cluster. Then, we perform a re-sampling step where each of
the approximated taps will be aligned to the specific FIR tap
indices allowed by the channel emulator. We explain these
steps in detail in the following subsections.

A. Channel multi-paths clustering and approximation

The wireless channel consists of Multi Path Components
(MPC) between a transmitter and a receiver. The MPC has
both spatial and temporal characteristics, which represent
angles and Time of Arrival (TOA) respectively. The angles
further include Angle of Arrival (AOA) at the receiver and
Angle of Departure (AOD) at the transmitter, each of which
consists of azimuth and elevation angles. Therefore, these
MPC parameters form a multi-dimensional space. Needless
to say, clustering multi-dimensional data by visual inspection
is impractical especially for a large amount of measured data.



ML-based algorithms, such as K-means, are instead practical
in such cases.

K-means. In machine learning, the K-means algorithm [26]
is a well-known unsupervised clustering algorithm to optimally
cluster high dimensional data. This algorithm and its variation,
K-power-means, are widely used in wireless channel modeling
applications to obtain accurate channel models [27]–[30].
Their effectiveness in estimating the number of clusters in
a wireless channel for improved extraction of temporal and
spatial channel characteristics has been studied in [31], [32].

We leverage the K-means algorithm as a clustering tool to
find similar MPCs in a real world channel model and group
them into a given number of clusters that is defined by the
number of non-zero taps supported by a channel emulator.
Each of these clusters is then identified by a single tap, i.e.,
the cluster center, that represents an approximation of all the
MPCs in that cluster. The final output will be a K-tap channel
model that can be used in the channel emulator and is rep-
resentative of the initially simulated/measured channel model.
Therefore, with this approach, we utilize all the channel char-
acteristic information obtained from simulation/measurement
and apply them in the approximation process with the objective
of minimizing the approximation error.

The K-means algorithm takes the initial number of clus-
ters K as a priori knowledge and finds cluster centroids
by iteratively optimizing the position of the centroids and
grouping the data points. This is done by minimizing the sum
of distances between the cluster data points to the respective
cluster centroid. Mathematically, the algorithm solves the
multi-dimensional optimization problem of Equation 1. In this
equation, K is the number of clusters, Si is the set of data
points in the ith cluster, x represents the multi-dimensional
data points, ci is the ith cluster centroid, and d(·) denotes the
distance function between the data points in cluster Si and the
ith cluster centroid ci.

arg min
S

K∑
i=1

∑
x∈Si

d(x, ci) (1)

We note that the K-means algorithm is sensitive to the
initialization of the centroids [33]. Many prior works have
focused on finding an optimum initialization centroid for K-
means with the goal of improving the quality of clustering and
speeding up the convergence of the algorithm. These include
random Forgy, MacQueen, and Kaufman, among others [34]–
[36]. In this work, we use the random restart method, which
relies on running the algorithm several times from different
random starting points and choosing the best solution [37].

Generally, the K-means algorithm uses squared Euclidean
distance as the distance function for the clustering metrics.
However, in the context of wireless channel applications, this
distance function cannot address the angular periodicity and
the scale difference between angles and the delays. Although
this function was extended to cope with the angular period-
icity [38], it still cannot provide the same scale between the
data point dimensions. As K-means is biased in favor of feature

parameter with greater magnitude, data is normalized ahead of
clustering to avoid this undesired effect [39]. Consequently,
an alternative solution is Joint Squared Euclidean Distance
(JSED), which is a straightforward extension of the Squared
Euclidean Distance (SED) that normalizes the delays with the
variance of the delays from all considered MPCs.

The JSED distance function makes the delay and angular
distance values roughly in the same scale and provides joint
3-dimensional clustering [40]. However, the ultimate solution
is Multi-path Component Distance (MCD) as it can effectively
improve the clustering performance of channel data over the
Euclidean distances [28]. MCD is an intermediate metric
to quantify the multi-path separation of the radio channel
by jointly considering the distance between angles of ar-
rival/departure and the time of arrival of multiple paths. It rep-
resents the distance between two angle of arrivals/departures
on the unit sphere, and scales the delay distance with the
normalized delay spread. It also introduces a delay scaling
factor, ζ to give the delay domain more “importance” when
necessary for different technologies in wireless communica-
tion. This, for instance, has advantageous effects on automatic
clustering for real world data [40]. The MCD distance between
two paths i, j is written in Equation 2 and consists of the
distances in TOA and angular dimensions (Equations 3 and 4,
respectively), where ∆τmax = maxi,j{|τi − τj |} and τstd is
the standard deviation of the MPC TOAs. Geometrically, the
MCD distance represents the radius of a hyper-sphere in the
normalized multi-path parameter distance space.

MCDij =√
‖MCDAOA,ij‖2 + ‖MCDAOD,ij‖2 +MCD2

τ,ij

(2)

MCDτ,ij = ζ.
τi − τj
∆τmax

.
τstd

∆τmax
(3)

MCDAOA|AOD,ij =

1

2

∣∣∣∣∣∣
sin(θi).cos(φi)
sin(θi).sin(φi)

cos(θi)

−
sin(θj).cos(φj)
sin(θj).sin(φj)

cos(θj)

∣∣∣∣∣∣ (4)

Algorithm 1 shows the steps to cluster the MPCs into K
groups and output the cluster centroids using the K-means
algorithm. It takes the MPCs data points and the number of
taps K as input, and prunes the paths with powers lower than
the noise level. By doing this, it ensures the resulting channel
is realistic. In line 5, the centroids are randomly initialized
from the set of data points. Then, the MCD distances between
all the paths and the K centroids are calculated. Next, each
path is assigned to a cluster such that the distance from
the cluster centroid is minimum. Finally, the position of the
cluster centroids are updated to the mean value of the multi-
dimensional parameters of the paths assigned to that particular
cluster. The algorithm iterates until it reaches a maximum
number of iterations or until it converges to a negligible update
in the centroids displacements.



Algorithm 1 The K-means MCD clustering algorithm.
1: Input: MPC data of a specific Receiver Point
2: Input: K = number of taps
3: Input: PTh = Noise power level
4: Select xl from MPC data with power ≥ PTh
5: Initialize centroids c0k, k=1..K randomly selected from xl
6: for i = 1 to MaxIteration do
7: for each path x of xl do
8: . Compute distances MCD(x,ci−1k ), k = 1..K
9: . Assign path x to the nearest centroid c

10: Lx = arg min
k
{MCD(x, ci−1k )}

11: for each cluster k = 1 to K do
12: . Update centroids positions cik
13: . cik ← mean of all paths assigned to cluster k
14: cik = E{xl|(Lx = k)}
15: if E{∆(cik, c

i−1
k )} ≤ Threshold then

16: break
Output: ck

For the channel approximation, our goal is to utilize the K-
means algorithm to find similar paths in a multi-path model
and form them into K clusters that represent a K-tap channel
model (in the case of Colosseum K = 4). As the K-means
algorithm satisfies this goal, we feed the number of supported
non-zero FIR coefficients as the number of clusters to the
algorithm. The output of the algorithm is the label of each
MPC, which represents the approximated positions of the taps
and the position of the cluster centroids. The next required
information to reconstruct the approximated taps is the tap
gain that can be calculated by coherent summation of the
MPCs gain of each cluster. This can be written as shown in
Equation 5, where |hx| and ϕx are the magnitude and the
phase of the MPC gain in the cluster k, respectively.

hck =
∑
x∈k

|hx| .ejϕx , k = 1..K (5)

By extracting the TOAs from the cluster centroid and the
approximated tap gains from Equation 5, we can reconstruct
the CIR from the MPC data at each Receiver Point (RP) that
includes only K non-zero taps. This step satisfies the limited
number of taps constraint of time-domain FIR filter-based
channel emulators.

B. Channel impulse response re-sampling

Time-domain FIR filter-based channel emulators have nu-
merous FIR filter taps separated by a sampling interval to emu-
late channels with practical maximum excess delay. However,
the number of non-zero taps is constrained by design. For
example, Colosseum supports 512 taps with a 10 ns sampling
interval, only 4 of which can assume non-zero values [41].
In this regard, our clustering approach (as explained in Sec-
tion III-A) approximates the CIR to satisfy the number of non-
zero taps; however, there is no guarantee that the approximated
taps will have delays aligned to the resolution of the channel

Algorithm 2 The CIR re-sampling algorithm.
1: Input: taps = Approximated taps
2: Input: fs = FIR filters sampling frequency
3: Input: N = Number of FIR filters
4: Sampling interval: ds = 1/fs
5: for n = 1 to N do . Initialization
6: d̂[n] = n ∗ ds
7: h̃[n] = 0 + 0j

8: for k = 1 to size(taps) do
9: i = round(taps[k].delay/ds)

10: h̃[i] = h̃[i] + taps[k].h
Output: h̃, d̂

emulator filter taps. Therefore, we need to re-sample the
approximated CIR to match the approximated taps’ TOA to
the channel emulator FIR filter indices.

Our re-sampling algorithm is shown in Algorithm 2. First,
we initialize the FIR filter coefficients and delays (lines 5-
7). This is done by constructing two series representing the
filter taps’ delays as well as the corresponding taps’ gains
initialized to zero. Then, we find the FIR tap delay closest to
the approximated CIR taps given as input (i.e., the centroid
of the associated cluster), and coherently sum up the gains of
the MPCs in that cluster. In doing so, we ensure to assign all
the approximated taps to their associated FIR filter coefficient
indices. In case of multiple taps close to the same index,
we sum up the gains of such taps (see equation 5), and
assign a single tap index and gain that represents all the
associated cluster centroids. As a result, all the approximated
taps are matched with the FIR filter tap indices imposed by
the channel emulator and represent the corresponding delays.
Our approach also guarantees that the resulting approximated
channel model has equal to or less than K taps, i.e., maximum
number of taps allowed by the channel emulator.

IV. CASE STUDIES

We provide a demonstration of our framework on Coloseum
(Section II, [5]). We consider Line of Sight (LOS) and Non-
line of Sight (NLOS) stationary scenarios in and around the
Krentzman Quadrant of the NU Boston campus (Fig. 1).

We start by modeling the scenarios in Wireless InSite
(WI) [9]. We choose the LTE D2D technology for the wireless
channel with the parameters as shown in Table I. To keep the
ray-tracer computational complexity at bay we configured it to
simulate the channels using the reflection ray model for up to 3
orders of reflection. Accordingly, WI finds the paths between
the transmitter and receiver locations and calculates the TOA,
received power, and the phase of the received signal for each
path. This is done by taking into account the path trajectory
distance and the reflection coefficient of the materials at each
reflection point. The simulation output include all paths with
power greater than -250 dBm.

To obtain a realistic channel, we prune the paths with
received power lower than the noise level. This is computed
using Equation 6, where No, B and F are the ambient



Fig. 2. NLOS scenario propagation paths, color-coded by received power.

noise density [dBm/Hz], the receiver bandwidth [Hz], and
the receiver noise figure [dB], respectively. We set the noise
level to -89.1 dBm according to a nation-wide measurement
campaign for urban scenarios [42].

Noise[dBm] = No + 10 ∗ logB + F (6)

In addition, as explained earlier in Section III, a time-
domain FIR filter-based channel emulator takes the FIR filter
coefficients, i.e., the gain of the channel taps, as its input.
Since WI does not directly report this parameter, we calculate
the gain of the paths as complex numbers using Equation 7.
In this equation, PTx is the transmit power in dB, and PRxi

and ϕi are the received power and signal phase per each path
i ∈ {1..N}, respectively.

h̃i = 10(PRxi
−PTx)/20 ∗ ejϕi , i = 1..N (7)

Non-line of Sight Scenario. The NLOS scenario is depicted
in Fig. 2, in which the propagation paths between the UEs are
color-coded by the received power strength. In this scenario,
after the pre-processing steps, we have 13 paths with the
received power above the noise level. The path gains repre-
senting the CIR of this scenario are plotted in Fig. 3 We apply
our clustering method (see Section III) to cluster the paths, and
approximate the gain of the cluster centroids using Equation 5.
The MCD distance is configured with ζ = 3 and K = 4, i.e.,
the number of taps supported by Colosseum. Then, we run
the algorithm 10000 times with the random restart method

Fig. 3. NLOS scenario CIR.

Fig. 4. NLOS scenario clustered paths, color-coded by cluster.

and report the best solution, i.e., the one with the minimum
Mean Squared Error (MSE).

Fig. 4 shows the clustering algorithm results for the NLOS
scenario. In this figure, paths in the same cluster are rep-
resented with the same color. (We omit the UE markers to
improve the figure visibility.) The compactness of the clus-
tering solution in terms of angles and path trajectory, which
represents the path TOA, can be visually inspected in Fig. 4.
The approximated CIR is shown in Fig. 5, where the thicker
stems show the approximated taps for each color-coded cluster.
These approximated taps are re-sampled using Algorithm 2,
which we leverage to derive the matched index of the channel
emulator FIR filter for each tap. The derived complex-value
taps have I and Q components that can be readily used as
the input to any FIR filter-based channel emulator. Finally,
Fig. 6 depicts the re-sampled taps, FIR filter indices, and
corresponding tap delays for the four non-zero taps prepared
for the Colosseum channel emulator with 512 FIR filters and
10 ns sampling interval.

Line of Sight Scenario. Similarly, we repeat the process
for the LOS scenario (shown in Fig. 7). In this scenario, the
LOS path is the dominant path with significant gain and lower
TOA. Therefore, it should be clustered in a separate group on
its own, or with few paths, to have a desirable approximated
channel. To do so, we increase the delay scaling factor of K-
means MCD and set it to ζ = 6 to augment the importance of
the TOA over the angles. For the sake of conciseness, we
only include the clustered CIR and the approximated CIR
for the LOS scenario, which are shown in Fig. 8. We notice
that the dominant approximated tap is close to the LOS path,

Fig. 5. NLOS scenario clustered CIR and approximated CIR.



Fig. 6. NLOS scenario in Colosseum. Approximated vs. re-sampled CIR.

which preserves the LOS channel characteristic. An alternate
approach would be using K-power-means algorithm that shifts
the cluster centroids in favor of the higher gain paths. However,
this is outside of the scope of this paper.

Fig. 7. LOS scenario propagation paths, color-coded by received power.

Fig. 8. LOS scenario clustered CIR and approximated CIR.

Lastly, we evaluate the performance of our ML-based ap-
proximation process using the path loss and RMS delay spread,
which quantify the large-scale channel characteristics [43].
Following these criteria, we benchmark the approximated
channels of our proposed method and the baseline method,
namely, the K-strongest path approximation against the orig-
inal ray-tracer channels in the LOS and NLOS scenarios
previously shown for Colosseum. The K-strongest path method

TABLE II
CHANNEL APPROXIMATION: CLUSTERING VS. STRONGEST PATHS.

NLOS scenario Path Loss [dB] Delay Spread [nS]

Ray-tracer 72.80 44.80
Strongest paths 75.49 0.10
ML Clustering 72.80 20.28

LOS scenario Path Loss [dB] Delay Spread [nS]

Ray-tracer 69.88 60.21
Strongest paths 67.31 16.85
ML Clustering 69.88 53.28

approximates the channel by simply considering only the
strongest paths for the K limited non-zero taps of the channel
emulator. As shown in Table II, for both LOS and NLOS sce-
narios our process delivers the same path loss as estimated for
the original ray-tracer channel. This is because our proposed
method considers all the paths to approximate the tap gains. In
contrast, the K-strongest path method imposes roughly 3 dB
approximation error in path loss for both scenarios, which
is a significant error. Furthermore, our process approximates
the LOS channel with a delay spread close to the ray-tracer
channel. In the NLOS scenario, the delay spread shows that the
proposed method is able to capture the channel characteristic
to some extent. However, the K-strongest path method fails
to deliver reasonable delay spread since it just outputs the K
first strongest paths, which are not representative of the delay
spread of the channel. These results reveal the key role of the
ML-based clustering algorithm in our channel approximation
process to deliver a reliable channel model within the scope
of the channel emulator.

V. CONCLUSIONS

In this paper, we propose a framework for creating RF
scenarios for real-time time-domain FIR filter-based emulators
like Colosseum. We start from an RF rich input as that
provided by professional-grade ray-tracers to obtain realistic
and present a method for optimally scaling down the input
RF data to the fewer parameters of the emulator by using
efficient clustering techniques and channel impulse response
re-sampling. We showcase our method by generating wireless
scenarios for Colosseum by using the commercial ray-tracer
Wireless InSite. Examples are provided for LTE D2D-based
LOS and NLOS scenarios on portions of the Northeastern
University main campus. For these scenarios we show the
effectiveness of our method by computing the channel path
loss and delay spread and comparing them to those of the
ray-tracer. Our results show that the proposed method results
in 0 dB error path loss, and in a significantly improved
approximation of the delay spread with respect to baseline
techniques. Future work includes checking the integrity of
the emulated scenarios via channel sounding and spectrum
analyzers, and by modeling emulated scenarios with user
mobility.
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