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In this paper we present SIDEMAN, a service discovery algorithm that
exploits human mobility patterns in Mobile Social Networks (MSN).
SIDEMAN takes advantage of two aspects of MSN, namely, that users
tend to form communities, and that users in the same community share
interests for similar services. The performance of SIDEMAN has been
evaluated through simulations in real and synthetic scenarios: A set of
traces collected at IEEE Infocom 2006 and traces obtained from the
HCMM mobility model, respectively. We have compared our algorithm
to the social version of two popular discovery techniques, namely, flood-
ing and gossiping. We investigated the following key metrics: How
proactive an algorithm is in distributing services of interest (Recall);
how many services are already with a user when s/he needs them (Gain);
the energy cost necessary for service discovery; the time needed to
reply to a service query, and the average number of services stored
and exchanged. Our results show that in all considered scenarios SIDE-
MAN is remarkably effective in obtaining flawless Recall and a Gain
that is always comparable to that of the other algorithms. Furthermore,
most services are retrieved in reasonable time and at a remarkably lower
energy cost than that of flooding and gossiping-based solutions.
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1 INTRODUCTION

Social networking has being knowing increased notoriety thanks to the
widespread use of mobile devices, especially smart phones and tablets, whose
pervasive presence constitutes the vast majority of devices at the edge of
modern telecommunication networks. A new paradigm of networking has
emerged as a consequence, which capitalizes on the opportunistic nature of
human encounters to implement fundamental network services such as con-
tent distribution [23], routing [21], and service discovery [29, 30]. This new
paradigm is often called mobile social networking to emphasize the human
interaction on which it is based [43], or pocket switched networking, to indi-
cate the kind of devices of which it is made [37].

The key ideas of Mobile Social Networks (MSN) is that the end user can
actively participate in content distribution instead of just being a recipient of
information from the telecommunication infrastructure. For these reasons,
studies on the mobility of humans and on their social relationships have
flourished with the intent of investigating how people, through the increas-
ingly capable devices in their pockets, become actors in content distribution.
For instance, for opportunistic data forwarding it becomes important to know
how humans move and whether there are common patterns in their move-
ments [12, 45, 48]. Routing can take advantage of knowing that people tend
to visit a restricted number of locations, or that they prefer short paths instead
of longer ones [7, 13, 22].

In this paper we contribute to the problem of service discovery in MSN.
Service discovery concerns determining the existence of services in a net-
work by giving the service providers the possibility of announcing the exis-
tence of a service, and to those interested in a service the capability to find
the services they need. As a problem for general networking, service discov-
ery has been widely investigated [10]. Early solutions, including algorithms
such as Jini [41], UPnP [33], SLP [18] and Bonjour [2], concern service dis-
covery for infrastructure-based IP networks, and as such are not suitable for
mobile networks such as MSN. More recently, schemes have been proposed
for general mobile networks, such as ad hoc networks [17,44], and for perva-
sive communications [9]. These solutions concern general wireless networks,
describing centralized and distributed protocols and middleware that do not
take into account the peculiar characteristics of MSN. In particular they do
not consider the all-human tendency to keep visiting familiar places and to
form communities composed by people with similar interests. The contri-
bution of this work is a novel algorithm for service discovery in MSN. The
algorithm, named SIDEMAN for ServIce DiscovEry for Mobile sociAl Net-
works, has been designed by taking into account some aspects characterizing
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how people move and how people interact with each other. In particular,
SIDEMAN implements the two core operations of service discovery, namely:

� Service dissemination, i.e., the distribution of services to the MSN users.
This operation is realized by discovering and recognizing social commu-
nities and by a proactive diffusion of services among people with similar
interests.

� Service query, i.e., the process of requesting a needed service from a fel-
low user. This operation is implemented by a controlled query propagation
mechanism aimed at avoiding extensive use of indiscriminate flooding.

All devices running SIDEMAN are peers without any specific role, and
collaborate to disseminate services within their communities. Users proac-
tively exchange services with one another for avoiding, as much as possible,
that a query needs to be sent to obtain a needed service. One of the goals of
SIDEMAN is to anticipate the user needs by exchanging, in advance, ser-
vices that could be of interest to the user. If a user needs a service that is
not currently available to it, s/he reactively crafts a corresponding query and
sends it to the users currently in her/his own community.

In summary, the innovative aspects of SIDEMAN with respect to previous
solutions are:

� The use of both reactive and proactive approaches to service discovery for
actively submitting a query and for passively being notified with services
of interests.

� The use of a community-based diffusion strategy for the propagation of
queries and services. In particular, query and service messages are for-
warded selectively to the members of a community whose interests match
those of the message to be forwarded. Moreover, SIDEMAN keeps track
of communities visited in the past so to avoid keeping detecting commu-
nities already known.

The performance of SIDEMAN has been evaluated via simulations in sce-
narios where users move according to the HCMM [7] mobility model and
according to real traces collected at IEEE Infocom 2006 [19]. SIDEMAN
has been compared to two other algorithms used to propagate services, called
s-Flooding and s-Gossip. s-Flooding is a “social” version of common flood-
ing [26], where instead of broadcasting services and queries to all users, the
source sends them only to users in her/his own community. Similarly, in
s-Gossip [25] each user spreads the services and queries only to a random
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number of fellow user in her/his own community. Selected performance met-
rics include the goodness of SIDEMAN in proactively provide services that
a user might be interested in (Recall), its effectiveness in making available
to the user just the services in which s/he is interested (Gain), the average
energy consumed by a device for service discovery, the average time needed
to receive a response to a service query and the dimension of the cache and
the number of services exchanged. Our results show that SIDEMAN outper-
forms both s-Flooding and s-Gossip. In particular, in both synthetic (HCMM)
and real-world (Infocom 06) scenarios, we observed that SIDEMAN achieves
perfect Recall, being able to provide users with all and only the services
they want, whereas s-Flooding and s-Gossip provide users with many unin-
teresting services. Despite the greatest number of services disseminated by
s-Flooding and s-Gossip, which benefit the Gain of these two algorithms,
SIDEMAN achieves a comparable Gain at a much lower cost in terms of
overall energy consumption, number of services exchanged among nodes and
number of services stored locally to each node. In other words, when a user
running SIDEMAN needs a service, the probability of finding it in her/his
own cache is equivalent to those of the other two algorithms. The best query
response time is obtained by the algorithm that distributes the most services,
namely, s-Flooding. However, SIDEMAN response time is only at most 12%
higher than that of s-Flooding, and obtains this result by transmitting a con-
siderably lower number of queries. (Both algorithms greatly outperform the
query response time of s-Gossip.) Remarkably, all these SIDEMAN perfor-
mance results are obtained at a fraction of the energy cost required by service
discovery for users using s-Flooding and s-Gossip. In particular, devices run-
ning SIDEMAN are able to save up to 85.71% (84.61%) of their energy with
respect to s-Flooding (s-Gossip).

The rest of the paper is organized as follows. Section 2 surveys previous
works on algorithms and protocols for MSN. Section 3 introduces the refer-
ence scenario and provides a definition of the service discovery problem. In
Section 4 we introduce notations and definitions used to describe the algo-
rithm. Section 5 describes SIDEMAN in details. In Section 6 we evaluate
the performance of SIDEMAN and compare it to that of s-Flooding and s-
Gossip. Conclusions and future works are provided in Section 7.

2 RELATED WORKS

Traditional service discovery protocols have been investigated for over a
decade [10, 17, 44]. Most of them are designed for networks with a static
infrastructure or for mobile ad hoc networks. As mentioned, these proto-
cols do not meet the typical requirements and constraints of MSN [4, 49].
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Solutions to the problem of the service discovery in MSN can take advan-
tage of a recent new and emerging class of protocols for data forwarding
in social-based networks. In this section we illustrate the basic ideas behind
these protocols and highlight those aspects of SIDEMAN that are inspired by
those ideas and those who are instead a novel contribution.

Mei et al. introduce SANE, a social-aware, stateless algorithm for rout-
ing in Pocket Switched Networks [32]. According to SANE, movements
of individuals are driven by interests. Information is therefore disseminated
among users with similar interests (interest-cast diffusion model). When two
users meet, they first exchange their interest profiles. As soon as a user has
information to send to a destination, it forwards this information to the user
whose interests match those of the destination. Similarly to SANE, SIDE-
MAN adopts an interest-based strategy. However, our algorithm relies on
a community detection algorithm to select which nodes will receive both
queries and services.

The authors of [36] defines the BehaviourCast problem for the diffusion of
information in MSNs. BehaviourCast is based on four key-features. Validity
concerns forwarding a message to a subset of the interested device. Effec-
tiveness concerns forwarding the message so to achieve total coverage of
interested devices. Efficiency concerns involving the smaller number of rely-
ing devices. Finally, termination has to do with interrupting the forwarding
of a message after a given time. The authors also propose two interest-based
strategies for the BehaviourCast problem, namely the basic InterestCast and
the weighted InterestCast. With the basic InterestCast every device i exe-
cutes a utility function that counts the total number of devices encountered
that also share the same interests of i . The authors argue that such basic strat-
egy has no memory of past encounters. For this reason the authors propose
an enhanced version, namely, the weighted utility function. This last strat-
egy, based on Shannon’s entropy principle, counts separately the number of
encounters that device i had with device j in the past. The weighted utility
function, hence, keeps track of the number of encounters with every single
devices met. The authors simulate the two strategies proposed both with real
and synthetic mobility traces and they compare the results with those of two
similar works, ProfileCast and SocialCast. The forwarding rule of SIDEMAN
is similar to the (weighted) InterestCast algorithm. However SIDEMAN also
implements a mechanism for recognizing communities already visited in the
past, which reduces the community detection-imposed overhead.

The SocialCast [11] algorithm implements a publish/subscribe
paradigm [5]. SocialCast relies on the observation that people with
similar interests tend to meet more frequently than people without overlap-
ping interests. The data forwarding strategy is implemented by observing
the mobility patterns of people and also the interests of the devices running
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SocialCast. SocialCast uses an interpolation function based on Kalman filters
to predict the movement of people by tracking their previous movements.
The SocialCast algorithms is implemented in steps: (i) Dissemination of user
interests: asks to each device to broadcast the list of its interests to its 1-hop
neighborhood. Then (ii) every device computes the utility function for all its
interests, and (iii) every device checks the contents it carries with respect to
the subscriptions of the devices, and eventually the contents are forwarded to
the subscribers.

Nguyen and Rouvrais propose a socially-inspired resource discovery ser-
vice for delay tolerant networks that exploits the Community-based Mobility
Model (CMM) [34]. Resources and users are classified by interests, and the
search is performed by first sending a query to neighbors with similar inter-
ests. If the resource is not found, the query is sent to every node within trans-
mission range. SIDEMAN adopts a similar strategy for service query dis-
tribution. However, SIDEMAN also implements a proactive strategy for the
diffusion of the services, aimed at providing users with services they might
want to use. This strategy reduces the number of service queries, since once
a user needs a service, s/he first check whether s/he has that service already,
and sends a query only if that service is missing.

In [46] the authors address the problem of service discovery in delay tol-
erant networks. The scheme uses a proactive propagation of services, where
each service provider announces periodically its own services to the entire
network. The service is composed by a list of keywords, and all the devices
in the network cache the received services and associate them to their latest
time of reception. When a client looks for a service, it first checks into its
local cache. If there are no matches, then it starts a reactive service discovery
by broadcasting a service query message. Each device receiving the query
looks for matches in its internal cache. As a consequence, the query can
receive an early response even from intermediate devices. The client then
selects matching replies to its query based on the latest time of reception.
This solution is evaluated by means of NS-2-based simulations for assess-
ing the efficiency and the overhead of service discovery. Differently from
SIDEMAN, this scheme does not consider social aspects in the services and
query distribution. We argue that the basic architecture of service discovery
presented in [46] is also valid for MSN, and its mechanisms of diffusion of
services and service queries can be easily combined with knowledge about
the communities and user interests to be adopted in MSN.

OLFServ (Opportunistic and Location-aware Forwarding protocol for Ser-
vice delivery) considers a scenario in which geo-localized devices that are
deployed in a mobile ad hoc network [24]. The authors explicitly consider
a sparse application scenario where the network may become disconnected
for some time. It assumes that any device can advertise a service, by using
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a multicast-based scheme that limits the area of propagation of the service
itself. Services have an expiration time and they contain information about
the position of the emitter (the service provider) and the geographic area
where the service can be accessed. Furthermore, services also include a list of
potential recipients (service clients), although the paper does not discuss how
this list is created and maintained. Beyond publicizing a new service, the pur-
pose of the service is also to make more efficient the access to the service by
providing geographical information about the service provider. The authors
evaluate the efficiency of OLFServ in distributing the services against their
rate of success (in terms of number of clients that find correctly a service
provider).

The authors of [1] present a service discovery protocol for mobile ad hoc
networks (MANET) with low mobility. The protocol is based on a reliable
broadcast scheme. Services are not described by identifiers or by a service
type. Rather, they are labeled with input/output parameters. The parame-
ters of the services available in the network are spread using a proactive
exchange of the local tables stored locally by each device. Such tables con-
tain a mapping between the service and the I/O parameters needed. More-
over, the protocol is supposed to be embedded with the neighbors discov-
ery protocol of the underlying MANET. In this way, the services are adver-
tised together with the discovery of devices found in proximity. Queries are
diffused reactively by flooding the neighborhood, i.e., as soon as a device
needs to access to a specific service. The queries are described with a set
of parameters. The use of parameters are described using a common taxon-
omy, that includes the possibility of hierarchies of parameters. The authors
classify the queries within two categories, namely exact or generic. The pro-
tocol is evaluated via NS2-based simulations that investigate metrics such as
the delay of service discovery and the amount of overhead generated by the
protocol.

The authors of Delegation Forwarding [14] describe strategies for the dif-
fusion of information in social-based networks. These strategies are all based
on the idea of forwarding the information from the sender to the receiver only
if the receiver is “better” than the source, where “better” is with respect to
selected metrics. For instance, a receiver is deemed worth of receiving from
the source, if the number of social contacts of the receiver is bigger than that
of the contacts of the sender. SIDEMAN adopts a similar approach for the
dissemination of services, allowing a sender to share a services only if the
receiver is interested in it.

Socio-aware is a publish/subscribe strategy that relies on a overlay struc-
ture based on communities [50]. Communities are detected by means of two
algorithms proposed by the same authors [20]. The overlay structure assumes
that devices can play different roles: The brokers, the subscribers and the
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publishers. The brokers have high centrality degree inside the community.
The brokers receive all the subscriptions and un-subscriptions from other
devices as well as the list of the centrality values form the devices in contact
with a time stamp. The broker device evaluates the centrality values previ-
ously received in order to decide which device should take the role of the
broker. If a change is needed, then the broker transfers the subscription list to
the new broker with the highest centrality degree. Then, an update message
is sent to all the brokers in the network. During the gossiping stage, sub-
scriptions are propagated towards the community broker. When a publication
reaches the broker, it is propagated to all other brokers, and then each broker
checks its own subscription list. In case there are members in its community
that must receive the publication, the broker floods the community with the
information.

The BUBBLE Rap algorithm implements a social-based forwarding strat-
egy in delay tolerant networks [19]. Users are given a global ranking and
a local ranking, computed according to their “importance” in the network.
Information is first forwarded from the sender through users with higher
global ranking, until it reaches a user in the same community of the receiver.
It is then forwarded only among users in the same community according to
the local ranking, until the information reaches its destination. SIDEMAN
makes no use of hierarchical organization. Services and service queries are
forwarded from the sender to the receiver only if the latter is interested in
it. Furthermore, SIDEMAN implements a mechanism for recognizing com-
munities already visited, which reduces the time and the resources spent for
forwarding.

In proposing DIFFUSE, Lin et al. provide a solution for data dissemina-
tion in pocket switched networks [27]. The forwarding strategy is based on
computing the contribution of each user, a parameter indicating the frequency
and duration of contacts that a user has with other users. This parameter is
used to select the relay to which data is forwarded. Both SANE and DIF-
FUSE make no use of the concept of community, thus saving in operations
that have to do with community detection and recognition. SIDEMAN ser-
vice dissemination and discovery instead makes use of community member-
ship in that services and service queries are exchanged only between mem-
bers of the same community that share the same interests. In order to reduce
the overhead of community management, SIDEMAN implements an efficient
mechanism for recognizing communities a user has visited in the past. This
mechanism is shown to reduce the number of transmissions among users and
therefore their device energy consumption.

Table 1 summaries the papers presented in this section according to three
main categories: (1) Interest-based, (2) flooding-based, and (3) social-based
strategies. The table also reports if the strategy described adopts a community
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Paper Discovery Strategy Real-world Synthetic Community 
Detection

Delivery 
Delay

Delivery 
Ratio

Message 
Sent

[32] similarity among node 
Interests infocom 06 SWIM not addressed 

[36] similarity among node 
Interests PMTR HCMM Louvain algorithm

[11] interest-based CMM Girvan-Newman

[34] interest-based CMM, RWP not addressed

[46] flooding-based ad hoc simulation not addressed
[24] location-based ad hoc simulation not addressed

[1] flooding-based ad hoc simulation not addressed

[14] general-purpose 
framework

infocom 06, 
MIT Reality, 

UCSD
not addressed not addressed

[50] publish/subscribe 
within communities 

MIT Reality, 
UCDS, CAM, 
WirelessRope

not addressed K-Clique, SIMPLE

[19] centrality degree of 
nodes

infocom 06, 
MIT Reality, 
Cambridge, 
Hong-Kong

not addressed K-Clique, Newman 
WNA

[27]

measure of the 
duration of the 
enconters among 
nodes

NUS, infocom 
06  MIT Reality no yes, assume the 

existence

Mobility Traces

So
ci

al
Fl

oo
di

ng
In

te
re

st

Evaluation Metrics

TABLE 1
Comparative tables of discovery strategies.

detection algorithm, the kinds of mobility traces used for the experimenta-
tion, and the metrics investigated.

3 REFERENCE SCENARIO AND PROBLEM DEFINITION

We consider an application scenario typical of opportunistic networking,
where communications among people happens unpredictably, if and when
they meet. As in Delay Tolerant Networks (DTN [15]) a person that has infor-
mation to transmit carries it stored in the device cache until a communication
opportunities arise, i.e., a wireless link with the device of another person can
be established. At that point, the information is transferred (store-carry-and-
forward). Because of the unpredictable nature of opportunistic encounters,
these communications are frequently subject to high delays. Furthermore,
differently from more general ad hoc networking [3], links are often asym-
metric.

People move according to objectives and activities arising from their
social relationships [7, 31]. In particular, human mobility is characterized
by three key-aspects: (i) The mobility of a user is determined by her/his the
social relationships [39]. For example, people with acquaintances located in a
large urban area tend to move more frequently than more solitary individuals.
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FIGURE 1
Example of the structure of the communities during a day.

(ii) The number of visited location is fairly limited (e.g., home, the office, a
park or the supermarket) [22], and (iii) people tends to travel short paths
instead of long routes [38]. Furthermore, people engaging in common activi-
ties tend to meet (i.e., tend to be in physical proximity) for longer periods of
time: These people form a community. Examples of communities include col-
leagues who meet at the work place during regular working hours, or family
and/or friends who meet after hours, at a local bar, pub, or at home.

Figure 1 shows three communities to which the person Alice (depicted
as a full black circle) belongs. Throughout the day, Alice joins three differ-
ent communities: Office (from about 8AM to about 5PM), pub (after hours)
and home (night hours). Within each community, Alice meets colleagues and
friends (indicated by hollow circles). At some times she is able to commu-
nicate with some of them (wireless links indicated by undirected lines), and
not able to exchange information with some others (people outside of Alice’s
device transmission range).

People in the same community share similar interests. For example, the
office community shares interests in working activities; members of the pub
community are interested in sport, news and drinks; people at home share
interests for recreational events, TV programs, etc.
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Reminiscent of the smart environments of Weiserian memory [16, 47] a
MSN enabling members of a community to communicate, also provides a
wide range of services that people might want to access. Services are pro-
vided by the very people carrying mobile devices, such as smart phones and
tablets. Examples include tethering for Internet access, sharing of photos and
videos, of news, alert dissemination and weather forecast. A service is classi-
fied according to the features it provides.∗ As an example, services providing
news, forecasts or stock market performance can be classified as informative
services. Services providing music and video streaming contents are classi-
fied as entertainment services. The classification of a service is used by mem-
bers of a community for discovering and querying for services matching with
their interests.

4 PRELIMINARIES AND DEFINITIONS

In this section we provide notations and definitions used in the description of
SIDEMAN.

4.1 Mobile social networks and community detection
A MSN is seen as a set of mobile nodes, each representing an individual
moving within a bounded region. Nodes move driven by one or more objec-
tives, e.g., traveling to the office, going back home or meet friends out. Occa-
sionally, a nodes establishes a contact with another node by using a wireless
communication interface (e.g., Bluetooth or WiFi). We model the connec-
tions among the nodes at time t as a directed graph Gt = (V, Et ), where
V = {n1, n2, . . . , nv} is the set of the v nodes of the MSN and Et = {ei j =
(ni , n j ) : ni , n j ∈ V } is the set of links among the nodes at time t . Links in Et

can be directed, indicating one-way communications, typical of opportunis-
tic networks. The neighborhood Ni

t of node ni at time t is the set of nodes
n j ∈ V such that e ji ∈ Et . In other words, the neighborhood of node ni is
made up of all nodes that can communicate with ni at time t .

As a node ni moves and comes into contact with other nodes, it keeps a
contacts history for every node it connects with. The contact history stores
some temporal properties regarding the node encountered, for example the
average time between two consecutive encounters, the last time a node has
been encountered or the average duration of an encounter. The contact history
of node ni is represented by the table T i , used to detect communities.

∗ There are well-known methods for service classifications, relying on syntactical or ontology-based
techniques [35]. This kind of classifications is beyond the scope of this work. For the purpose of
demonstrating SIDEMAN, we use a simple syntactic association between services and interests, and
interests and users.
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In order to determine the community C where node ni resides, at time t
node ni executes a community detection algorithm A using its contact history
T i

t and its neighborhood Ni
t at time t as input. The community C is a subset

of node ni current neighborhood Ni
t . The selection of which neighbors are

part of the community of node ni depends on algorithm A. SIDEMAN is
independent of the specific algorithm used to detect communities, and can
use any of the detection algorithms proposed for MSN [8, 20].

Node ni keeps track of the communities it has been a part of in a table
CT i . Such table contains all the communities visited in time. Every time a
community C is detected (by running algorithm A) it is inserted in CT i only
if there is no other community C ′ in CT i that is similar to C . To determine
similarity among communities, we use the Jaccard index [40] J , as com-
monly done by community detection algorithms [8]. Observe that J ∈ [0, 1];
if J = 1 then the intersection among community members coincides with the
union of C and C ′, and hence C and C ′ are identical. If J ≥ τ then C and
C ′ are similar in the sense that they share a certain number of nodes. In both
cases (J ≥ τor J = 1) node ni already visited C and it does not need to store
C in CT i again. Differently, if J < τ then community C is new and ni has
to store C in CT i .

4.2 Service discovery
Nodes in a MSN provide services or collect information that they can share
as services. In time, they need to announce these services in order to allow
other nodes to discover and invoke them. We denote with S = {s1, . . . , sm}
the set of all services provided by the nodes in the MSN, |S| = m. Each
service s j ∈ S has a set of service features describing some functional or non-
functional properties of s j . For instance, a feature may describe the interests
associated to a service (e.g., sport, entertainment or news), another concerns
Quality of Service (QoS) parameters such as latency or average response
time, and another provides information regarding how to invoke the service
provider. We assume that every service comprises at least the following:

A service identifier I D j , which is the unique identifier of s j .
Service interests S I j , which is the set of interests associated to service s j . The
interests are labels tagging a service in terms of a common classification. For
example the interests associated to a service for sharing media contents might
be: Media, entertainment, social, etc. We assume that the set of all interests in
the MSN is denoted with the set I = {t0 · · · tk} where |I| = k. The interests
of service s j are such that SI j ⊆ I.

Node ni stores the services received by other nodes in its service cache Ai .
When searching for services matching some of its interests, node ni checks its
service cache. If the cache does not contain any service matching its interests,
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ni forwards a service query to the members of its community. A service query
q contains a set of interests tagging the service s j ∈ S needed by node ni .
Queries from node ni that are still unanswered are kept in a pending query
set P Qi . Finally, we stipulate that every node ni in the MSN is assigned some
interests. The interests of node ni are denoted by the set Ii ⊆ I.

5 THE SIDEMAN ALGORITHM

5.1 Overview of the algorithm
SIDEMAN is an algorithm used by a node ni for discovering services avail-
able in a MSN. To this purpose, SIDEMAN enables nodes (i) to reactively
disseminate queries for services they do not currently have, (ii) to proactively
exchange services they might be interested in, so that a node has that service
when it needs it, and (iii) to manage the reception of queries and services.
The design of SIDEMAN exploits a typical feature of MSNs: People tend
to form communities made of similar individuals (Section 3). In particular,
SIDEMAN relies on the detection of communities for optimizing operations
(i) and (ii) as follows:

� The dissemination of queries is realized only among members of the same
community, thus avoiding their indiscriminate flooding through the whole
neighborhood.

� The exchange of services is performed only inside a community. The ratio-
nale of this choice is that since a community is often formed by similar
individuals, it is more likely to find services of interest inside the commu-
nity.

To the best of our knowledge, these are innovative aspects informing the
design of SIDEMAN that are not considered in previous works.

Whenever a node needs a service (reactive phase of SIDEMAN), it crafts
the query q and it checks if its cache stores a services matching with q (Fig-
ure 2(a)). If the node finds a service matching q then it accesses the service
provider and it invokes the service (the service access phase is out of the
scope of this work, since it can be implemented with specific protocols for
service access). To this purpose, we define the function f (q) that given a
query q it returns all services matching q that are stored in the service cache
of the node running f . Otherwise, ni runs an algorithm for detecting the com-
munity to which it belongs. Once a community is detected, ni checks for a
similar community in its community table. If such a community exists, i.e., if
ni has already visited that community in the past, ni recognizes it. Otherwise,
ni stores the new community in its community table.
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FIGURE 2
Overview of SIDEMAN.

After the community detection phase, ni builds a forwarding set from
members of its current community whose interests match those in q. In other
words, the query q is forwarded only to the members of the community of
ni sharing at least one interest with q . At this point, node ni stores the query
q in the set of its pending query, such set represents the queries that are still
waiting for an answer.

At regular intervals, node ni executes the proactive component of SIDE-
MAN, for exchanging services with members of its community (Figure 2(b)).
If ni carries a service whose interests match those of at least one member of
its community, then ni exchanges such service. During this phase, node ni

also forwards the queries left in P Qi to the member of the community previ-
ously detected.

Figure 2(c) depicts the situation in which node ni receive a message (either
query or service) from another node. If the message received is a query q,
node ni checks if it can provide an answer to q. If this is the case, node ni

replies to the requester node with the set of services matching q. Otherwise,
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if the message received is the service s j , then ni stores s j in Ai and removes
all the pending queries answered by the service s j .

5.2 SIDEMAN
Before describing the reactive and proactive phases of SIDEMAN (Figure
2(a) and 2(b)), the following algorithm describes how ni recognizes the com-
munity C .

A community C is determined by running any community detection algo-
rithm A [20] (line 1). A community C is recognized if there is a community
C ′ in CT i (the community table of node ni ) that is similar to C according
to a given similarity index. As mentioned, we used the Jaccard index with
threshold τ [40]. If a community C ′ is found that is Jaccard-similar to C
(i.e., J (C, C ′) ≥ τ,whereJistheJaccardindex) then the set of interests IC

of community C are those of community C ′ (line 3). If no such a commu-
nity exists, the interests of the members of the community must be collected
by asking to every community member its interests. This set of communica-
tion is performed through executing the function get I nterests(·) (line 5). In
particular the get I nterests(·) function iterates over the members of C and
asks to every member the list of its interests. The recognized community C
is finally returned (line 7).

We stipulate that Algorithm 1 returns the pair < C, IC >, where C is the
community (the set members of the community) and IC is the list of inter-
ests shared by the members of the community. We recall that the community
table CT i is used for storing the communities visited by ni and the interests
of the community members. Through this table we can drastically reduce the
number of times the function get I nterests(·) is invoked by ni . Our experi-
ments show that communities are recognized always over 50% of the times,
and that, at steady state, the function get I nterests(·) is called in about half
of the cases.

The reactive phase of SIDEMAN is implemented by Algorithm 2.
Node ni starts by checking whether it has a service matching the query q

(line 1). If f (q) �= ∅ (where f is the function for checking the existence of

Algorithm 1 Community detection
1: C = A(T, N )
2: if ∃ C ′ ∈ CT | J (C, C ′) ≥ τ then
3: IC = interests of C ′ from CT
4: else
5: IC = get I nterests(C)
6: CT = CT ∪ C
7: return < C, IC >
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Algorithm 2 Reactive phase
1: if f (q) �= ∅ then
2: s j = f (q)
3: access s j

4: else
5: < C, IC >= RecognizeCommunity(T i , Ni , CT i , τ )
6: Vq = {n j ∈ C | ∃ tk ∈ Iq s.t. tk ∈ I j }
7: Forward q to Vq

services matching with q), then ni accesses the service matching with q. Oth-
erwise, ni recognizes the local community to which it belongs (Algorithm 1).
Node ni then computes the set Vq ⊆ C of nodes that can potentially answer
query q (line 6). (Set Vq is composed by nodes in C that share at least one
interest with q.) Finally, the query is forwarded to nodes in Vq (line 7). We
observe that a naı̈ve implementation of the creation of the set Vq (based on
checking that the interests in q also belong to the interests I j of node n j ) may
require an order of complexity O(|C | · |I j | · |Iq |), due to the need for find-
ing a match, for each community member, between its interests associated
to the query. We significantly reduce this complexity by using Bloom Filters
to implement the set I j [42]. A Bloom Filter is a data structure along with
two core operation for checking whether or not an element belongs to the
data structure (membership), and for adding an element to the data structure
(addition). Both operations are performed in constant time thanks to use of h
distinct hash functions [42]. In our case, we used Bloom Filters to check if tk
is in Iq and to check if tk is in I j (line 6 of Algorithm 2). The complexity of
creating Vq can be reduced to O(|C |).

The proactive component of SIDEMAN that takes care of service
exchange and forward of pending queries is performed at node ni by exe-
cuting the following Algorithm 3.

Node ni starts with recognizing its community. To this purpose it uses
Algorithm 1 described above that returns C as well as IC .

For every interest t ∈ IC node ni performs the following actions.

1. It computes the set Vt ⊆ C of nodes in C also interested in t and the set
St ⊆ Ai of services matching t (lines 3 and 4). If Vt is empty, ni removes
t from IC (line 6). In this way, if the same community is recognized at
a later time, a node can avoid considering interests that are no longer
shared by the members of C .

2. It forwards the set St to nodes in its community sharing the same interests
(line 7).
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Algorithm 3 Proactive phase

1: < C, IC >= RecognizeCommunity(T i , Ni , CT i , τ )
2: for all t ∈ IC do
3: Vt = {n j ∈ C | t ∈ I j }
4: St = {s j ∈ Ai | t ∈ SI j }
5: if Vt = ∅ then
6: IC = IC \ {t}
7: Forward St to Vt

8: for all q ∈ P Qi do
9: if t ∈ q then

10: Forward q to Vt

3. It selects those pending queries from P Qi that concern interest t , and for-
wards them to members of its community sharing that interest (line 10).

As for Algorithm 2, the constructions of sets Vt and St in Algorithm 3 are
implemented through Bloom Filters. In this way, the complexity of comput-
ing Vt and St is O(|C |) and O(|Ai |), respectively.

Whether reactively sending out service queries (Algorithm 2) or proac-
tively exchanging services and disseminating pending queries (Algorithm 3),
some of the node in the neighborhood of ni might transmit responses. The
following Algorithm 4 describes node ni reaction to receiving response m.

Upon receiving response m, node ni checks whether it is a query or a
service. If m is a query then the node determines all its services that answer
that query, if any. These services are then sent directly (i.e., through a unicast
transmission) to the node nr requesting the query m. If m is instead a service,
node ni updates its service cache Ai . Specifically, the function Update(Ai ,
m) checks whether m is already in Ai . If this is the case, the corresponding
entry is updated. Otherwise, m is added to the cache.

Algorithm 4 OnMessageReception(m)
1: if m is a query then
2: nr is the requester of q
3: D = f (m)
4: Forward D to r
5: else
6: Update(Ai , m)
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6 PERFORMANCE EVALUATION

We evaluate the performance of SIDEMAN through Java-based simulations
that take into account characteristics of MSN. We implemented SIDEMAN
as well as two algorithms for service discovery in MSN, namely, the “social”
version of algorithms for flooding [26] and gossiping [25]. In this section
we describe in detail the mobility model and mobility traces we used for
node mobility, the simulator and its parameters, the metrics of interest chosen
for comparing the performance of the three algorithms, and the simulation
results.

6.1 Simulation scenarios
We consider two MSN scenarios where v = 78 nodes move in a square area
of given side. The scenarios differ depending on the mobility of the nodes.

In the first scenario nodes move according to the Home-cell Community-
based Mobility Model (HCMM) [7], defined to mimic human mobility. We
consider three different deployment areas, small, medium and large, with side
of 800m, 1400m and 2000m, respectively. Each area is configured as a grid
made up of 5 cells [7]. Every node is associated to a home cell. Nodes in the
same home cell share social ties. Some nodes also have social ties with other
nodes from different cells. These nodes are called traveler nodes. The strength
of the social ties of the travelers is determined by the so-called rewiring prob-
ability. The rewiring probability models the relationship between nodes of
different cells and drives the mobility of nodes. The mobility speed is typical
of pedestrian walking, i.e., from 1 to 1.86m/s [7]. We call this scenario the
HCMM scenario.

The second scenario we consider is based on real traces gathered from
participants to the IEEE Infocom conference from April 24 to April 27
2006 [19]. In that scenario 78 conference attendants were given Intel iMote
devices equipped with a Bluetooth transceiver with a transmission range of
about 30m. Traces were collected each day from 7.00AM to 9.00PM. Each
participant filled a survey about her/his interests, nationality, language spo-
ken, etc. (We use this survey to assign interests to the nodes). This second
scenario is referred to as the Infocom 06 scenario.

6.2 Simulator and parameters
Our Java-based simulator implements three important components of service
discovery in MSN: (i) Contact history maintenance, (ii) community detec-
tion, and (iii) the service discovery algorithms. (i) Contact history mainte-
nance concerns the contact history at each node, storing parameters such as
those described in Section 4. (ii) Community detection is implemented by a
well known solution, called AD-SIMPLE [8]. AD-SIMPLE is an enhanced
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version of SIMPLE, an algorithm for community detection that has been
shown to outperform previous solutions such as k-CLIQUE and MODULAR-
ITY [20]. The reasons for this choice are multi fold: First of all, AD-SIMPLE
is a distributed algorithm, thus being suitable to run in mobile networks of
small, resource-constrained devices such as MSNs. Secondly, despite being
distributed, the communities it detects are very similar to those detected by
SIMPLE [8]. In fact, the similarity index between the communities detected
by AD-SIMPLE and SIMPLE is far higher than that of the communities
detected by k-CLIQUE and MODULARITY and their distributed counter-
parts. Finally, AD-SIMPLE implements an effective mechanism for remov-
ing nodes from a community that they have not joined for a while. In our sim-
ulation we stipulate that two communities are recognized as the same com-
munity is their similarity index τ is ≥ 0.8 (Section 4). Finally, (iii) service
discovery is implemented by SIDEMAN (Section 5). This last point is very
significant since SIDEMAN, s-Flooding and s-Gossip all are community-
based.

Node behavior is determined by considering query generation rate, service
generation rate and the distribution of interests to nodes. The query genera-
tion rate determines how many queries are generated by the nodes. We mod-
eled this rate as a Poisson process of intensity λ queries per second. In our
simulations we set λ = 3. In particular, every second a number q of query is
generated and assigned to q nodes selected randomly and uniformly among
all nodes. The service generation rate concerns the services the nodes store in
their service cache without using the service discovery algorithm. Initially, a
node cache is empty. In time, services are assigned to the nodes. The service
generation rate is also a Poisson process of intensity μ services per second.
The value of μ is set to 3. Every second a number r of services is generated
and assigned to r nodes selected randomly and uniformly among all nodes.
Each time the r services are drawn randomly and uniformly from a set S of
m services. The value of m is set to 10000.

Interests distribution depends on the scenario. In the HCMM scenario
interests are given to nodes as follows. Every cell x is assigned kx interests
according to a Zipf’s distribution (with parameter skew = 1). The parameter
kx is the ratio between the total number n of interests in the simulation (set
to 35 in our simulations) and the number of cells in the HCMM grid. In our
experiments kx = 35

5 = 7. The interests assigned to cell x are denoted with
the set Īx . Node ni is assigned |Ii | interests from Īx proportionally to the
time it spends in cell x . In this way, nodes visiting the same cell for a long
time share similar interests. The values of λ and μ, as well as that of m, n and
kx have been selected consistently with those of similar scenarios in previous
works [5, 6, 28].
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Infocom 06 HCMM

Simulation area side conference room 800m, 1400m, 2000m
Transmission range 30m 30m
Node speed n.a. from 1 to 1.86m/s
Simulated time t = 201600s t = 300000s
Number of nodes v = 78
Service interests n = 35
Services m = 10000
Query rate λ = 3
Service rate μ = 3
Community similarity τ = 0.8
Community recognition AD-SIMPLE
Frequency of proactive phase 600 s

TABLE 2
Simulator parameters.

In the Infocom 06 scenario we use the association between interests and
nodes that comes with the traces.

The number of messages exchanged by a node upon encountering another
node, and the corresponding energy consumption, is computed according to
the data sheet of the WiFi/ Bluetooth chip Broadcom®BCM4330 of the Sam-
sung Galaxy S III smart phone.

Our simulation results for the first scenario are obtained by averaging the
outcomes of 1000 runs, each running for 300000s (around three days and
a half), each time on a different HCMM trace. This number of experiments
achieves a statistical confidence of 95% within a 5% precision. Since we
are interested in steady state performance, all metrics have been collected
after 10000s from simulation start, when we observed that nodes have made
a consistent number of contacts and the node cache size stabilizes. Table 2
summarizes the simulation parameters.

6.3 Benchmark algorithms
To demonstrate its effectiveness in discovering and advertising services, we
compared the performance of SIDEMAN against that of two algorithms for
service discovery in wireless networks, which we modified to work in MSNs.
The two algorithms, termed s-Flooding and s-Gossip, are the ”social” version
of traditional flooding [26] and gossiping [25] algorithms. By using tradi-
tional flooding a node would spread queries and services among all its neigh-
bors. Through gossiping a node would instead send those queries and services
only to a random subset of its neighbors. The social component is introduced
in s-Flooding and s-Gossip by having nodes exchanging services and queries
within communities, rather than within their neighbors.
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Select
forwarding set

Select
services and queries

SIDEMAN

Members of the
current community
with interests
matching the query.

Services and queries whose
interests match those
of the community members.

s-Flooding
All members of its
current community.

All services and queries
to all community members.

s-Gossip
Random number of
members of its
current community.

Services and queries
to a random number of
members of the
current community.

TABLE 3
Benchmark algorithms.

The behavior of s-Flooding and s-Gossip is similar to the one given for
SIDEMAN (see Figure 2), in particular the two algorithms are composed by
a reactive phase or discovering the service matching with a given query, a
proactive phase whose is disseminating queries ad services stored at a node,
and a message management phase for managing the reception of queries and
services. The main differences of s-Flooding and s-Gossip with respect to
SIDEMAN are the implementations of the select forwarding set of the Reac-
tive phase (Figure 2(a)) and select services and queries phase of the Proac-
tive phase (Figure 2(b)). Table 3 shows the main differences among the three
algorithms.

We choose s-Flooding and s-Gossip for three reasons: (i) They represent
useful performance benchmark for service dissemination in MSNs, (ii) they
implement a simple but effective strategy for the propagation of informa-
tion, being both designed to maximize the number of queries and services
exchanged among nodes, and (iii), similarly to SIDEMAN, they are imple-
mented for propagating messages (either queries and services) only inside a
community, without flooding the whole network.

6.4 Evaluation metrics
We compare the performance of SIDEMAN, s-Flooding and s-Gossip with
respect to the following metrics.

� Recall, defined as the ratio between the number of services stored in the
cache of node ni that are of interest to ni and the total number of services
stored in its cache. This metric measures the effectiveness of a service
discovery algorithm in propagating only those services that are of interest
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to nodes and in avoiding to disseminate services that a node would not use.
In this way, traffic overhead as well as energy consumption are minimized.
Clearly, the value of R is in [0, 1]. A value of 0 means that none of the
services in which node ni is interested are in its service cache (worst case).
A value of 1 indicates the best case: Node ni stores only services in which
it is interested.

� Gain, defined as the ratio between the number of times a node finds ser-
vice s already in its service cache and the number of times a node has
to query for it. This metric indicates the effectiveness of a service dis-
covery algorithm in reducing the number of queries to obtain a service.
Clearly, the value of G is in [0, 1]. A value of 0 means that every time a
node needs a service it has to query for it (worst case). A value of 1 indi-
cates the best case: Every time a node needs a service, that service is in its
cache.

� Energy Cost (EC) per node, defined as the average energy consumption
incurred by each node during network operations. This metric provides
an indication of the impact of running a service discovery algorithm on
a device batteries. The lower the EC, the better the energy savings and
the performance of the algorithm. EC is expressed in Joules. Its compu-
tation does not consider the community detection algorithm, thus indicat-
ing only the energy consumption imposed by running a service discovery
algorithm.

� Query Response Time (in seconds), defined as the average time elapsed
between when a query is sent and the reception of the first service match-
ing that query. This metric informs us about how effective a discovery
algorithm is letting a node receive the service it needs swiftly.

� Service Cache (SC), defined as the average number of services that a node
stores in its service cache in time. This metric informs us about the mem-
ory space needed by a node for running the discovery algorithm.

� Services Exchanged (SE), defined as the average number of services that
are exchanged by a node with other nodes. This metric indicates the num-
ber of interactions that every node performs in time.

� Network Overhead, defined as the average number of packets that a node
exchanges by running each of the discovery algorithms. This metrics pro-
vides an indication of the overhead introduced by each of the discovery
algorithms in terms of network operations.

6.5 Simulation results
This section shows the performance of the service discovery algorithms that
we compare: SIDEMAN, s-Flooding and s-Gossip. We depict the results for
each algorithm as time progresses, to provide an indication of their effec-
tiveness in letting nodes converge to a state in which most of the services
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FIGURE 3
Recall in the HCMM scenario.

they need are in their cache. We start with results for the HCMM scenario,
followed by those for Infocom 06.

HCMM scenario
Results concerning the investigated metrics are shown in figures 3 to 6. The
figures refer to 78 nodes roaming in a 800 × 800m2 area. (Results for nodes
traveling in bigger areas show similar trends. Their values are commented in
details at the end of the section.)

Recall. Results concerning Recall are shown in Figure 3. SIDEMAN
always obtains a Recall equal to 1, meaning that throughout network opera-
tions nodes store in their caches all and only services that they are interested
in. This is a consequence of the very nature of SIDEMAN service exchange
according to which a service is sent to a node only if that node is interested
in it.

The recall of s-Flooding and s-Gossip instead decreases in time, reaching
a value as low as 0.5 by the end of the observation period. In other words,
half of the services stored in the service cache of nodes running s-Flooding
and s-Gossip will never be used by those nodes. This is because s-Flooding
and s-Gossip service exchange is not interest-based. We notice that s-Gossip
slightly outperforms s-Flooding. This is because a node running s-Gossip
sends services to a number of nodes that is lower than the number of nodes
involved in service exchange in s-Flooding.
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FIGURE 4
Gain in the HCMM scenario.

Gain. Results for the Gain achieved by the three algorithms are shown in
Figure 4. The trend is similar for SIDEMAN, s-Flooding and s-Gossip. In
particular, with passing time the Gain increases and tends to its maximum 1.
(By the end of the observation period it is 0.96 for each of the three algo-
rithms.) As expected, the Gain increases rapidly during the initial time inter-
val [0, 0.5 · 105]s because nodes start with no services in their cache and then
they begin moving and exchanging services as they meet and form commu-
nities.

By the end of the observation time they have exchanged enough services
to find the service they need in their cache. Results about this metric show
clearly how effective the strategy followed by SIDEMAN is for service dis-
tribution. The Gain of SIDEMAN is never noticeably lower than that of s-
Flooding and s-Gossip, two algorithms that are designed to maximize the
diffusion of information (i.e., services, in our case). In fact, we notice that the
Gain of SIDEMAN is always (slightly) better than that of s-Gossip through-
out the network operation time. This is because, despite the number of ser-
vices distributed by s-Gossip is far higher that that of those distributed by
SIDEMAN, most of these services are not of interest to the querying node.
Energy cost. In terms of energy cost SIDEMAN remarkably outperforms s-
Flooding and s-Gossip (Figure 5). The energy consumption of SIDEMAN is
at least 7 times lower than that of s-Flooding, and 6 times lower than that of s-
Gossip. (The energy cost of s-Gossip is slightly lower than that of s-Flooding
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FIGURE 5
Energy cost in the HCMM scenario.

because, as mentioned already, for its very nature s-Gossip exchanges less
services that s-Flooding.) To show the impact on device lifetime of running
the three algorithms, we considered nodes powered by a standard battery
pack with an average consumption of 7.9Watt/hour (i.e., a battery pack with
a capacity of 2100mAh and voltage of 3.8V). By the end of the observation
time devices running s-Flooding have consumed an average of 87.7% of their
initial battery charge, devices running s-Gossip have consumed 80.2% of it,
while devices running SIDEMAN have consumed only 12.5% of the initial
battery charge.
Query response time. Results for the query response time of the three algo-
rithms are shown in Figure 6. We notice that the time needed to respond
to a query grows in time. This is because as time progresses, nodes tend to
visit roughly the same communities all over again, and if a node does not
find a service in its cache right away, and has to query for it, it is unlikely
that it will receive this service from the nodes that it has already met and
keeps meeting. In time, it might enter a new community whose member might
have the required service, but that happen with low probability. (These prob-
abilities are confirmed by an in-depth study of community properties, not
shown here.) The performance of SIDEMAN is sandwiched between that of
s-Flooding and s-Gossip. Since s-Flooding distributes the largest number of
services inside a community, nodes carry more services around, increasing
the probability of being able to respond to a query. That is why its query
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FIGURE 6
Query response time in the HCMM scenario.

response time is the lowest. The nature of s-Gossip is to distribute services
to a subset of the nodes in a community selected randomly. The effect is that
nodes exchange a lot of services in which they are not interested, and there-
fore the probability of a node to respond to a query decreases, increasing the
response time. We observed that by the end of network operation, SIDEMAN
has exchanged 84.32% (82.84%) less services than s-Flooding (s-Gossip).
However, since nodes running SIDEMAN exchange only those services in
which they are interested, the probability of a node to find a service in its
cache is fairly high, as confirmed by checking the number of queries sent by
nodes throughout the observation time: The average number of queries sent
by a node running SIDEMAN is 9, while it is 54 and 63 for nodes running
s-Flooding and s-Gossip, respectively. As a consequence the query response
time for SIDEMAN soon becomes lower than that of s-Gossip.
Service Cache. Results on the average size of the service cache are shown in
Figure 7. We observe that the dimension of the service cache for the three
algorithms grows rapidly in the time interval [0, 0.5 · 105]s because nodes
start with empty caches and then they begin moving and exchanging services
as they meet and form communities. After the initial phase the behavior of
the algorithms are quite different. In particular, nodes running s-Flooding and
s-Gossip keep increasing the dimension of the service cache as the simula-
tion time passes. Nodes running SIDEMAN instead, show a better control
of the size of the cache. The nature of s-Flooding and s-Gossip is to always
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Service cache size in the HCMM scenario.

maximize the number of services exchanged, without considering if a service
matches the interests of the node receiving it. By the end of network opera-
tion, nodes running s-Flooding and s-Gossip store respectively an average of
71 and 69 services, while nodes running SIDEMAN store an average of 35
services.
Services Exchanged. Results concerning the average number of services
exchanged are shown in Figure 8. The number of exchanges grows in time,
but the performance of the three algorithm is quite different. Nodes running s-
Flooding and s-Gossip exchange a number of services that grows sub-linearly
with respect to the observation time, while the exchange of services of nodes
running SIDEMAN is always bound within a limited interval. The curves
shown in Figure 8 are tightly coupled with those of the size of the service
cache (Figure 7) and of the energy cost (Figure 5). In particular, lowering the
number of exchanges also reduces the services stored in the cache and the
energy cost due to exchange of services.

It is worth to notice that, by the end of the observation time, nodes running
s-Flooding and s-Gossip exchange an average of 2.57 × 104 and 2.42 × 104

services. Considering that we considered scenarios with 104 services (Table
2), this shows that nodes running s-Flooding and s-Gossip exchange more
than twice the number of services available. Conversely, nodes running
SIDEMAN exchange an average of 430 services, which are those to which
the nodes are really interested in.
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Network Overhead. Results concerning the network overhead are shown in
Figure 9. We observe that the average number of packets needed for a sin-
gle run of SIDEMAN (comprising the reactive and proactive phases and the
management of incoming messages) is lower than that of s-Flooding and s-
Gossip. During the first part of the simulation [0, 0.5 · 105]s the network over-
head of the three algorithms is comparable, because nodes start with empty
caches. As time progresses, nodes begin exchanging queries and services and
the algorithm performance differ. In particular, we observe that s-Flooding is
the algorithm with the highest network overhead because its flooding strat-
egy (Table 3) requires to forward each query and each service to every mem-
ber of the node community. Differently, s-Gossip incurs lower complexity
than s-Flooding because queries and services are forwarded to a number of
community members less than or equal to the size of the node community.
SIDEMAN achieves the lowest network overhead along with perfect Recall
and comparable Gain, which makes it suitable for application scenarios with
nodes that are resource constrained have constrained.
Performance in larger deployment areas. We have also evaluated the perfor-
mance of the three algorithms in larger deployment areas, namely, 1400m
×1400m and 2000m ×2000m. We observed that by increasing the dimen-
sion of the scenario without increasing the number of nodes they tend to
travel shorter routes and restrict their mobility to few locations. Such a more
limited mobility implies that a node enters in contact with a small sub-set
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FIGURE 9
Network overhead in the HCMM scenario.

of the other nodes. In particular, we observe that nodes tend to form smaller
communities with respect to scenarios in smaller areas Performance results
are affected as follows: The Recall of SIDEMAN is equal to 1, irrespective of
the size of the scenario. s-Flooding and s-Gossip show a Recall that decreases
slower than that in the original scenario (Figure 3). This is because nodes
encounter fewer nodes and therefore exchange fewer services. As a result the
probability of storing services not of interests to the nodes decreases. The
Gain of the three algorithms is slightly lower than that shown in Figure 4
(less than 2%). This is due, again, to the lower mobility of the nodes, which
decreases the probability of exchanging services with other nodes, and there-
fore of the probability of a node of finding a service in its cache. As expected,
the energy cost for larger scenario decreases, because of the lower number of
services exchanged: The fewer the nodes exchange services and queries, the
lower the energy consumption. The query response time increases with the
size of the scenario, since decreased mobility leads to a slower propagation
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FIGURE 10
Recall in the Infocom 06 scenario.

of the services. Therefore, as soon as a node queries for a service it has to
wait a longer time before receiving the matching service. Lastly, the average
size of the service cache also decreases with increasing the size of the sce-
nario, since low mobility reduces the probability of exchanging services and
therefore also the probability of storing services in the cache.

Infocom 06 scenario
Figures 10 to 13 depict the results of SIDEMAN, s-Flooding and s-Gossip in
the Infocom 06 scenario.
Recall. Results concerning Recall are shown in Figure 10. The Recall of
SIDEMAN is 1, as expected. The Recall of s-Flooding and s-Gossip rapidly
decreases to 0.2. This depends on the nature of the Infocom 06 traces, where
users in the same community share a low percentage of interests (this per-
centage in time is as low as 0.8%). For instance, there are times when all
participants are at a common event, such as a meal break, or a plenary ses-
sion. In this case, the community is very large. The interests shared by the
community members are instead very few. This is in contrast with the results
from the HCMM scenario, where nodes in the same community would share
instead up to 80% of their interests. This explains why, eventually, in the
HCMM scenario s-Flooding and s-Gossip show value of Recall higher than
those in the Infocom 06 scenario (i.e., around 0.5 vs. 0.2). In the Infocom 06
scenario, nodes running s-Flooding and s-Gossip are more likely to exchange
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FIGURE 11
Gain in the Infocom 06 scenario.

services in which they are not interested. As a result, the Recall decreases
more rapidly than that in the HCMM scenario.
Gain. Results for the Gain of the three algorithms are shown in Figure 11. The
trend is the same for all algorithms and by the end of the observation time the
Gain reaches the value 0.94. Similarly to Figure 4, the Gain increases rapidly
in the interval [0, 1 · 105]s because nodes start with no services in their cache
and then they begin moving and exchanging services as they meet and form
communities. By the end of the observation time, the nodes have exchanged
enough services to find the service they need in their cache. Although show-
ing the same trend observed for the HCMM scenario, the values of the Gain
in the Infocom 06 scenario are lower than that for the HCMM one. This is
because the communities at Infocom share fewer interests than those shared
by the HCMM communities. As a consequence, when a node queries for a
service, the probability of receiving a response to its query is low, and conse-
quently the Gain grows more slowly.
Energy Cost. Figure 12 shows the energy cost incurred by running the three
algorithms. As in the HCMM scenario, SIDEMAN outperforms s-Flooding
and s-Gossip. In particular, the energy cost of SIDEMAN is far lower than
that of the other two algorithms. If we consider a standard battery pack
as described for the HCMM scenario, we observe that devices running s-
Flooding and s-Gossip deplete their battery approximately after 1.5 · 105s
(half of the observation time), while at the end of the observation time devices
running SIDEMAN have consumed only 12% of their energy.
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FIGURE 12
Energy cost in the Infocom 06 scenario.

Query Response Time. Results for the query response time of the three algo-
rithms are shown in Figure 13. The time needed to respond to a query grows
in time. As in the HCMM scenario, nodes tend to keep visiting the same com-
munities. As such, if a node has to query for a service, it is unlikely that it will
receive this service from the nodes that it has already met and keeps meet-
ing. In time, a node might enter a new community whose members have the
required service. As mentioned, this happen with low probability. The perfor-
mance of SIDEMAN is similar to that observed in the HCMM scenario: The
query response time is sandwiched between that of s-Flooding and s-Gossip.
The reasons are the same explained in Section 6.5. However, the values of
the query response time in the Infocom 06 scenario are far higher that those
of the HCMM one: In fact, they double. As discussed for Recall (Figure 10)
nodes in the same community share few services, and therefore if a node does
not find a service in its service cache, it is unlikely that it will receive it from
another node currently close.
Service Cache. Results for the average size of the service cache are shown in
Figure 14. The service cache grows similarly to what observed in the HCMM
scenario. In particular nodes running s-Flooding and s-Gossip have the high-
est dimension of the cache. In this simulation scenario, nodes running the
three algorithms (s-Flooding, s-Gossip and the SIDEMAN) store a number
of services higher than that in the HCMM scenario. For example, in the
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FIGURE 13
Query response time in the Infocom 06 scenario.

Infocom 06 scenario nodes running s-Flooding and s-Gossip store an average
of 600 and 530 services, respectively, and an average of 71 and 69 services
with the HCMM scenario. This behavior depends on nature of the mobility
traces used in the Infocom 06 scenario, where nodes tend to encounter many
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FIGURE 14
Service cache size in the Infocom 06 scenario.
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other nodes and as a consequence to exchange and store more services. In
particular, in the Infocom 06 scenario nodes meets with the 91% of the other
nodes, while nodes in the HCMM scenario meet only 65%.
Services Exchanged. The average number of services exchanged is shown
in Figure 15. The number of exchanges grows in time and, and by the end
of the observed network operation, nodes running s-Flooding and s-Gossip
exchange the highest number of services. Nodes in the Infocom 06 scenario
exchange more services than those in the HCMM one. In particular, nodes
running s-Flooding and s-Gossip exchange respectively 16.6 and 14.5 times
the total number of services available (104), while nodes running SIDEMAN
exchange an average of 3200 services, i.e., only 32% of the services available.
Network Overhead. The network overhead of the three algorithms in shown
in Figure 16. The number of packets exchanged grows similarly to what
observed in the HCMM scenario. In particular, s-Flooding and s-Gossip
incur the highest network overhead, while SIDEMAN obtains the lowest net-
work overhead. Since in the Infocom 06 scenario nodes tend to encounter
more nodes that in the HCMM scenario, the number of services and queries
exchanged is higher, which explains the higher network overhead in this case.
By the end of the simulation time nodes running SIDEMAN incur a network
overhead 77.88% lower than that of s-Flooding and 75.71% lower than that
of s-Gossip.
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Network overhead in the Infocom 06 scenario.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented SIDEMAN, a service discovery algorithm for the
users of a mobile social network. Differently from previous solutions, SIDE-
MAN exploits knowledge about the existing communities in the MSN to
restrict the propagation of messages concerning services to the nodes that
are most likely interested to them. In this way, it reduces the overhead and
the energy consumption of the nodes due to query and service transmissions.
The performance of SIDEMAN has been evaluated through simulations in
synthetic scenarios based on a mobility model for MSN (HCMM) and in a
scenario based on traces collected at the IEEE conference Infocom 2006. In
particular, we have compared our algorithm with s-Flooding and s-Gossip,
the social version of two popular data dissemination techniques. Metrics of
interest include Recall (measuring how proactive a algorithm is in distributing
services of interest), Gain (finding services in cache when needed), Energy
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Cost, the time needed to reply to a service query, the size of the service cache
and the number of services exchanged. Our results show that in both HCMM
and Infocom 06 scenarios SIDEMAN is remarkably effective in obtaining
flawless Recall, a Gain that is always comparable to that of s-Flooding and
s-Gossip, providing most services to a node in reasonable time and at an
incredibly lower energy cost than that required by the two other algorithms.
Moreover, SIDEMAN effectively controls the size of the service cache and
the number of services exchanged as well as the network overhead. The most
noticeable achievement of SIDEMAN is obtaining values of Gain that are
always comparable to those of s-Flooding and s-Gossip, incurring a signifi-
cantly smaller network overhead and energy consumption. This suggests that
SIDEMAN is a valuable algorithm for application scenarios in which nodes
are resource constrained.

We plan to extend SIDEMAN by allowing nodes to collaborate for the
diffusion of queries and services requested by other nodes. For instance, sup-
pose Alice asks Bob for an information. If Bob has an answer, then he replies
immediately, as currently with SIDEMAN. Otherwise, Bob starts asking to
his own friends about it, and reports the information back to Alice at a later
time. The Gain and, especially, the Query Response Time, are expected to
be beneficially affected by this collaborative behavior of the nodes. We will
also investigate data off-loading techniques to move part of the computa-
tion performed by a node to a cloud-based service to measure possible gains
in performance, especially on the energy cost. In particular, since commu-
nity detection can have quite a toll on the performance of service discovery,
community detection could be delegated to a cloud-based service instead of
being executing locally, with the added benefit that the cloud service could
use centralized community detection algorithms, notoriously more effective
and faster than distributed ones.
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