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Abstract—This paper concerns the smart exploitation of multi-
modal communication capabilities of underwater nodes to enable
reliable and swift underwater networking. To contrast adverse
and highly varying channel conditions we define a smart frame-
work enabling nodes to acquire knowledge on the quality of
the communication to neighboring nodes over time. Following
a model-based reinforcement learning approach, our framework
allows senders to select the best forwarding relay for its data
jointly with the best communication device to reach that relay.
We name the resulting forwarding method MARLIN, for Multi-
modAl Reinforcement Learning-based RoutINg. Applications can
choose whether to seek reliable routes to the destination, or
whether faster packet delivery is more desirable. We evaluate
the performance of MARLIN in varying networking scenarios
where nodes communicate through two acoustic modems with
widely different characteristics. MARLIN is compared to state-of-
the-art forwarding protocols, including a channel-aware solution,
a machine learning-based solution and to a flooding protocol
extended to use multiple modems. Our results show that a smartly
learned selection of relay and modem is key to obtain a packet
delivery ratio that is twice as much that of other protocols, while
maintaining low latencies and energy consumption.

Index Terms—Underwater Wireless Sensor Networks, multi-
modal communications, reinforcement learning-based routing.

I. INTRODUCTION

In the past decade a marked shift in underwater sens-
ing and communication capabilities has produced a flurry
of research and development activities, and has propelled
underwater wireless sensor network technology to new levels
of possibilities and usage. Traditional applications, such as
underwater monitoring, surveillance, discovery, exploration,
and coastal protection, are becoming increasingly sophisti-
cated and produce more and more complex data in need
of reliable and swift delivery to collection points on the
surface. Examples include pictures and video streams from
underwater cameras, as well as data from sonars and other
high data rate sensors [1], [2]. In order to sustain the increasing
requirements of these applications in the face of adverse and
variable channel conditions, a recent trend is that of allowing
sensor nodes to communicate through multiple devices (multi-
modal communications). This best responds to the challenges
of underwater communications, which are beset by extreme
short-term channel variability and by environmental noise
at different frequencies. Switching among multiple devices
allows nodes to quickly adapt to these variations, changing

frequencies, and therefore power levels, bitrates, ranges, etc.,
online, avoiding noise and other sudden impairments. For
instance, endowing a node with acoustic and optical modems
provides a flexible ways to combine long range, low bitrate,
robust communication capabilities with short range, high bit
rate data transfer. Typical applications benefiting from this
multi-modal setting include networking with Autonomous
Underwater Vehicles (AUVs) visiting sensors to retrieve data
optically at high rate and coordinating with nodes and other
AUVs over long range acoustic links [3], [4], [5], [6], [7], [8].
Multiple acoustic modems also provide great adaptability to
channel variability and noise. In fact, acoustic modems with
widely different characteristics are already available whose
frequencies are centered from 24 kHz [9] to 100 kHz [10], up
to 160 kHz [11]. These devices obtain bandwidth, bitrates and
ranges that are at least one order of magnitude different. For
example, communicating on the 24 kHz band allows nodes to
transmit data at 4 kb/s to receivers up to 2 km away [9]. Higher
data rate modems, transmitting in the 100 kHz band at up to
28 kb/s, reliably deliver data to nodes no more than 100 m
away [10]. This wide variety of technologies promptly at
disposal of a node provides the per-link reliability unavailable
so far to underwater communication.

In this paper we aim at demonstrating how multi-modal
communications can be cleverly exploited for reliable and low
latency underwater networking, i.e., how the link reliability
afforded to a node by multiple devices can be extended to
network-wide routes. In particular, we explore how nodes
can acquire knowledge on the quality of the links to neigh-
boring nodes through each of their communication devices,
and how this knowledge can be used for selecting reliable
multi-link, multi-modal routes to the data final destination.
We define a model-based reinforcement learning framework
through which senders are able to select the best forwarding
relay for their data packets jointly with the best communication
device to reach that relay. We name the resulting forwarding
method MARLIN, for Multi-modAl Reinforcement Learning-
based RoutINg. MARLIN is flexibly defined to consider recent
channel quality over each communication device, as well as
information on routing reliability and delivery times from
neighboring nodes, thus addressing network wide performance
via local information exchange. It can also be configured
to support multiple soft Quality-of-Service (QoS) classes,



through which applications can seek reliable routes to their
data final destination, privileging packet delivery ratio, or
routes that provide faster packet delivery at the expense of
moderate packet loss.

The performance of MARLIN is evaluated through simula-
tions with SUNSET, an extension to the simulator ns-2 that
models a wide variety of details of the underwater channel
and environment realistically [12]. We consider compelling
underwater scenarios, with different network size, varying
traffic and data packet sizes, which represent the variety of
settings suitable to a large number of applications. Nodes
are endowed with two underwater acoustic modems with
very different characteristics. We investigate metrics such as
the packet delivery ratio (PDR), the end-to-end latency, and
the energy spent to deliver data. We also consider protocol
fairness and the overhead due to data packet collisions. In
these settings we compare MARLIN to the following state-
of-the-art protocols: (i) CARP, a cross-layer solution designed
to be reliable, channel aware and energy efficient [13], and
(ii) QELAR, a machine learning-based protocol designed for
minimizing and balancing node energy consumption [14]. We
choose CARP and QELAR as they have been shown to outper-
form previous solutions for underwater routing and machine
learning-based routing, respectively. Finally, to demonstrate
that multi-modality alone does not lead to superior perfor-
mance, i.e., to validate the need of our smart framework
for route determination, we benchmark the performance of
MARLIN to that of MFlood, a multi-modal version of the
common flooding protocol enhanced to reduce collisions and
increase reliability, where a packet is broadcast on one of the
modems selected randomly.

Our results show that MARLIN obtains remarkable packet
delivery ratio, outperforming the other three protocols in
all scenarios. In particular, in challenging settings—networks
with 40 nodes, high traffic and large packets—MARLIN
obtains a PDR that is twice as much that of the second
best performing protocol. It also achieves remarkable fairness,
delivering packets from all nodes in the networks, even those
further from the destination. Because of the clever definition
of the cost optimization function of its core framework,
despite delivering a higher number of packets MARLIN is the
fastest of all considered protocols, with improvements over the
second fastest of up to 58%. Finally, energy consumption is
also well kept at bay, showing performance at par with that
of CARP, which uses channel reservation and save energy
on packet retransmission. The results in this paper confirm
that the trend of using multi-modal communication for link
reliability extends to network-wide performance provided that
route selection is driven by a smart choice of best relays and
communication devices. This makes MARLIN a solution for
future underwater networking, achieving performance levels
needed by key underwater applications.

The rest of the paper is organized as follows. Section II
introduces notation and preliminaries on model-based rein-
forcement learning, the core of MARLIN routing. Section III
defines MARLIN in details. Section IV reports results from

our comparative performance evaluation of MARLIN, CARP,
QELAR and MFlood. In Section V we survey previous works
on multi-modal communications and on underwater reinforce-
ment learning-based routing. Section VI concludes the paper.

II. PRELIMINARIES AND NOTATION

This section is intended to introduce notation and concepts
that are preliminary to the protocol description. We also
provide a brief introduction to model-based reinforcement
learning, whose methods constitute the core of MARLIN.
Multi-modal scenario. We consider a multi-hop underwater
wireless sensor network (UWSN) made up of N static nodes
whose sensors produce data packets p that need to be routed
to the network data collection point (the sink). Each node
is equipped with multiple wireless communication devices
(modems) operating on different frequencies, at different band-
widths, obtaining different bitrates, and with various communi-
cation ranges and power consumptions. Nodes are generically
indicated as i and j. A specific modem is denoted by m,
andM indicates the set of all modems available at each node.
With Midle we indicate the subset of the modems of a node
that are idle at a certain point in time, i.e., that are ready to
be used for transmission.
Quality-of-Service classes. MARLIN can be configured to
support different QoS classes. In particular, in this work we
consider a reliability class r, and a low latency class l. If it
is configured to support class r, MARLIN seeks to deliver
the highest number of packets to the sink. Otherwise, if it is
configured to support class l, it does its best to be fast, at the
expense of tolerating some packet loss.
Use of implicit ACKs. In order to reduce overhead—and la-
tency, and energy consumption—each packet is acknowledged
implicitly, leveraging the broadcast nature of the wireless
channel. Specifically, after transmitting a packet, the sender
starts listening to the channel on any of its modems. If
it overhears the packet being retransmitted by the chosen
relay within a given time, it considers the packet transmitted
successfully. If it does not, the packet is considered lost. (Only
the sink sends explicit ACKs back to its senders, as it does not
forward the packet further). The node behavior after packet
loss depends on the QoS class of the packet that has been
transmitted, as described in details below.
A brief primer on reinforcement learning. Reinforcement
learning concerns how some agents take actions in a given
environment so as to optimize some notion of cumulative
cost [15]. To this purpose, agents learn and optimize policies
online through direct experience rather than compute them a
priori. Given the set S of possible states of an agent, and
the set A(s) of the actions available at each state, a policy is
a function π that associates each state s ∈ S with the action
a ∈ A(s) that the agent should take towards cost minimization.
In the context of our work, agents correspond to underwater
nodes handling packets, while the policy corresponds to the
forwarding strategy.

In order for an agent to establish how good it is to be in a
given state, a value function V π(s) is defined as the expected



infinite-horizon discounted cost starting from s as initial state
and using a given policy π as follows:

V π(s) = Eπs

{ ∞∑
t=0

γtc(st, at)

∣∣∣∣∣s0 = s

}
, (1)

where 0 ≤ γ < 1 is the discount factor, st and at are
the system state and the action taken at time t, respectively,
and c(st, at) is the expected cost associated to state st and
decision at. For each state s ∈ S , the optimal policy π∗

minimizing the value functions satisfies the Bellman optimality
equation:

V π
∗
(s) = min

a∈A(s)

{
c(s, a) + γ

∑
s′∈S

P as→s′V
π∗(s′)

}
, (2)

where P as→s′ represents the transition probability from state s
to state s′ after action a has been taken. Equations (2) highlight
that the policy π∗ that minimizes the cost depends on the
immediate cost of taking the action a from state s and on the
expected discounted cost from the next state s′ onward.

In order to measure the costs of taking different actions a
from state s to different states s′ we define the function Q
as the expected infinite horizon discounted cost of taking an
action a in state s and then following the policy π:

Qπ(s, a) = c(s, a) + γ
∑
s′∈S

P as→s′V
π(s′), ∀s ∈ S. (3)

For each state s ∈ S the Bellman equation and the
function Q allow us to greedily compute the optimal policy
as π∗(s) = argmina∈A(s)Q

π∗(s, a).
Solving the Belman equations (2) depends on knowing the

cost c(s, a) and the transition probabilities P as→s′ . In scenarios
where these parameters are not known a priori, models can be
provided for their estimation, so that functions V and Q can be
learned online, by interacting with the agent environment. This
interaction usually takes the form of exploiting the knowledge
acquired so far by the agent, and of exploring the agent
environment to gain new knowledge. Learning techniques
following this methodology are called model-based [15].

III. THE MARLIN PROTOCOL

In this section we define MARLIN. The protocol is intro-
duced as configured for QoS class r. Section III-C describes
the details of MARLIN when configured for QoS class l.

The operations of MARLIN are quite simple: When a node i
has a packet p to forward, it chooses the most suitable relay
among its neighbors together with a suitable modem. Then
node i transmits p to that relay using the chosen modem. After
transmission node i awaits to overhear the forwarding of p by
the relay (implicit ACK). If that does not happen within a pre-
defined time, the node retransmits p till success, for at most
K − 1 additional times, K ≥ 1. If all retransmission attempts
fail, the packet is dropped.

This simplicity of operations is supported by quite a so-
phisticated reinforcement learning-based framework for the
selection of the relay and of the modem. In this framework,

each node i acts as an agent that, for each packet p, determines
the best among a set of forwarding decisions (action a, i.e.,
a relay and a modem). The optimal routing policy π∗ is
determined by learning the function V π

∗

i (s) = minaQ
π∗

i (s, a)
for each state s of node i handling p. This function V plays the
role of routing table providing the forwarding decision a that
minimizes the cost of sending p to the sink. In the following
we describe the details of how function Vi(s) is computed over
time by learning the values of Qi(s, a) following a model-
based reinforcement learning approach.1 We start by defining
the model for routing packets in MARLIN, i.e., the state space,
the actions, the state transition dynamics and the cost function.
Then we describe how nodes in MARLIN learn how to route
by determining optimal forwarding decisions.

A. A model for forwarding packets

States. A node i handling a packet p is associated with a
state s defined as the number of times k ≤ K − 1 that it has
transmitted p unsuccessfully. The state space S is therefore
the following: S = {0, . . . ,K − 1} ∪ {rcv, drop}, where rcv
identifies successful packet transmission, and drop identifies
the case when the maximum number K of transmissions has
been exceeded and the packet is discarded.
Actions. Actions concern forwarding decisions, i.e., the joint
selection of a relay among the sender neighbors and of the
modem to that relay. Let us denote with Nm

i the set of nodes
that a node i can reach using modem m. Using different
modems results in different sets, although a neighbor can be
reached by multiple modems.

For each node i, state s and set of modems M ⊆ M, the
set AMi (s) of available actions is:

AMi (s) = {a = 〈j,m〉 | m ∈M, j ∈ Nm
i }, (4)

where a = 〈j,m〉 is the action of forwarding a packet to
neighbor j using modem m. Since no action can take place
when s ∈ {rcv, drop}, it is AMi (rcv) = AMi (drop) = ∅.
Transitions. The transition from one state to another depends
on the current state s and on the performed action a = 〈j,m〉.
Let us denote with Pmi,j the probability of correct packet trans-
mission on the link from node i to node j using modem m.
When the transmission of p succeeds after k unsuccessful
attempts, node i transitions from state s = k to state s′ = rcv.
The transition probability is the following:

P
〈j,m〉
i,s→rcv =

{
Pmi,jP

m′

j,i if 0 ≤ k < K − 1

Pmi,j if k = K − 1.
(5)

When p can be (re)transmitted, i.e, when the number k of
retransmission is < K − 1, successful transmission depends
on the following probabilities: (i) The probability Pmi,j that the
packet is received by node j on modem m. This probability is
computed by node j and broadcast in the header of its packets.
(ii) The probability Pm

′

j,i that the packet p, forwarded by node j
on best modem m′, is successfully overheard by node i. This

1 From now on we will omit the superscript π∗ for ease of notation.



probability is computed by node i based on overhearing node j
transmissions on modem m′.2 When the number of possible
retransmissions has reached its last value K, there is no need
for i to listen for an ACK, and the state transition depends
only on the link from i to j.

When the transmission of p fails, we have two possible
transitions. If k < K − 1 we just increase the number of
retransmissions, and the next state is s′ = k + 1. Otherwise,
if k = K − 1, the packet p is dropped and the next state is
s′ = drop. In both cases, the transition probability can be
defined simply as P 〈j,m〉i,s→s′ = 1− P 〈j,m〉i,s→rcv.
Costs. In a reinforcement learning approach, the inner logic of
a protocol resides in the structure of the cost function ci to be
optimized. MARLIN focuses on minimizing the network-wide
time needed by node i to deliver packet p to the sink, i.e., to its
final destination. In order to express the whole routing time,
we associate each state-action pair (s, a) with a cost reflective
of the time needed to forward the packet by one hop, to a
selected relay, and of the time needed to forward it from that
relay to the sink. Equally important, we increase reliability by
associating a high penalty time to transitions to the drop state.
As we seek to minimize time, this discourages packet loss.
More formally:

ci(s, a) =

{
ti(s, a) + di(s, a) if 0 ≤ k < K − 1

ti(s, a) + di(s, a) + li(s, a) if k = K − 1,
(6)

where ti(s, a) is the time needed for p to be delivered to
neighbor j, di(s, a) is the time from node j to the sink, and
li(s, a) is a large value that we use to encourage nodes to
deliver a packet (this penalty make sense only when the packet
has no other changes to be retransmitted, i.e., k = K − 1).
The cost ti(s, a) is defined as follows:

ti(s, a) = tm + pi,j +

{
wi k = 0

bi otherwise,
(7)

where tm is the time needed to transmit p on modem m, pi,j is
the propagation time between the two nodes, wi is the average
time spent by packet p in the queue of node i (before the first
transmission of the packet), and bi is the time spent waiting for
the implicit ACK (subsequent retransmissions). The di(s, a)
component of the cost is given by:

di(s, a) = Vj(0)P
m
i,j , (8)

where Vj(0) is the value of the function V associated to the
state s = 0 of relay node j. This cost is, by definition, a
measure of the minimum time needed to reach the sink starting
from node j. (It is available to node i as it is broadcast
by node j in the header of its packets.) The cost Vj(0) is
multiplied by the probability Pmi,j as node j will forward the
packet only in case it correctly receives it from node i. Finally,
in case a packet has been unsuccessfully retransmitted for
k = K − 1 times, we associate to the action a = 〈j,m〉

2 The determination of best modems and probabilities is described in details
in Section III-B.

of the last retransmission the penalty time li(s, a) aimed at
discouraging node i to drop the packet. We can think of
dropped packets as packets that are delivered to the sink
arbitrarily late in time. As such, the cost li(s, a) associated
to “delivering the packet that late” is defined as:

li(s, a) = L(1− Pmi,j), (9)

where (1 − Pmi,j) is the probability of dropping the packet,
and L is set to a value greater than the highest cost of
delivering the packet to the sink through any of the neighbors
of node i (i.e., L > maxj∈

⋃
mNm

i
Vj(0)). In other words, as

node i approaches the maximum number K of transmission
attempts, its actions tend to favor the reliability of the trans-
mission to the next hop.

B. Learning to route

To compute optimal forwarding decisions, every time a
packet p is ready to be transmitted, node i executes an
algorithm for learning the value of the function Qi and update
its function Vi. Based on this value node i determines the
optimal forwarding action a = 〈j,m〉 for p, i.e., the best
relay j and the best modem m to reach it. Each node starts with
no knowledge of its surrounding environment. Interacting with
its neighbors, it iteratively acquires and updates its knowledge
over time. In particular, function Qi is approximated relying
on current estimations of the transition probabilities P ai,s→s′ ,
and on the estimated value of the functions Vj(0) from
neighboring nodes j, needed to estimate the cost ci(s, a).3

Algorithm COMPUTER&M describes the learning process of
node i and the corresponding determination of the best relay
and modem (R&M) for packet p.

Algorithm COMPUTER&M(k, Midle)
1: for all (s ∈ S) do
2: for all a ∈ AMi (s) do
3: Qi(s, a) = ci(s, a) + γ

∑
s′∈S P

a
i,s→s′Vi(s

′)
4: end for
5: Vi(s) = mina∈AMi (s)Qi(s, a) #Update
6: end for
7: τ = random number(0, 1)
8: if τ < 1− ε then #Exploitation
9: 〈j,m〉 = argmin

a∈AMidle
i (k)

Qi(k, a)

10: else #Exploration
11: m = random modem in Midle

12: 〈j,m〉 = argmin
a∈A{m}i (k)

Qi(k, a)

13: end if
14: return a = 〈j,m〉 #Forwarding decision

The algorithm takes as input the current state k and the set of
idle modemsMidle. When packet p is ready for transmission,
node i updates the model and computes the new value function
(line 1 to 6). Once the model has been updated, a forwarding
action can be selected. To balance between exploitation of the
acquired knowledge and exploration of new one, we use the
ε-greedy heuristic, because of its well-known robustness and

3 From now on, all values of the transition probabilities, and of functions
V , Q and c are to be intended estimates changing over time.



effectiveness [15]. Specifically, each time, the best neighbor
on the best idle modem is selected with probability 1 − ε
(line 9), exploiting the knowledge just updated. Conversely,
with probability ε we explore new solutions by selecting
a random modem among those available (line 11), and we
forward the packet to the best relay we can reach using
that modem (line 12). Even if exploration may produce a
suboptimal choice of modem and relay, the broadcast nature
of the transmission to this relay allows nodes to acquire key
statistics about their neighbors.

The execution of Algorithm COMPUTER&M relies on the
knowledge of the transition probabilities P ai,s→s′ and on the
packet forwarding cost ci(s, a), which in turn depends on the
value function Vj(0) of each neighbor j of node i. In the
rest of this section we describe how these probabilities and
function values are determined.

The estimation of the transition probabilities is based on the
estimation of the link probabilities Pmi,j (Equation (5)). Nodes
estimate link quality upon receiving a packet. In particular, a
receiver j keeps count of the number of packets nmi,j received
from each neighbor i on modem m, regardless of whether
node j is the packet intended destination. The incoming link
probability is estimated as Pmi,j = nmi,j/n

m
i , where nmi is the

total number of packet sent by node i, an information that
node i broadcasts in the header of its packets. These estimates
are then broadcast by node j into its packet headers, to be
overheard by its neighbors. In order to keep track of the
varying link conditions, the counts nmi and nmi,j are computed
over a sliding window. If node i fails to overhear transmissions
from a neighbor j within a given time it automatically update
its own link transmission probability. In particular, node i
“degrades” Pmi,j to (nmi /(n

m
i + 1))Pmi,j . If node i does not

hear packets from node j for a given time, it removes node j
from the list of its neighbors until node j is heard again. The
determination of ci(s, a) is based on information available
locally at node i and on values broadcast by node j in the
header of its packets.

C. Configuring MARLIN for QoS class l

MARLIN can be configured to support faster packet for-
warding to the sink. This is obtained by avoiding multiple
retransmissions of a packet, i.e., by setting the retransmission
threshold K to 1, and by adopting a collaborative transmission
strategy. More precisely, when a sender transmits a packet p,
it selects a neighbor (the main relay) and a modem, as before,
but it also adds to the packet header a prioritized list of backup
relays. These are the nodes that, upon realizing that the main
relay is not forwarding p, will forward it themselves. Upon
receiving the packet, the backup relays set a backup timer
and store the packet in their queues. The timer is set to a
time that is inversely proportional to the node position in the
prioritized list of backup relays: The higher its position, the
shorter the time. When the timer goes off, the node checks
if it has overheard the packet transmission by higher priority
nodes. If so, it discards the packet; otherwise it transmits it. For
example, the first backup relay forwards p only if it does not

overhear its transmission by the main relay; the second backup
relay transmits p only if it does not overhear its transmission
from either the main relay or the first backup node, and so on.
By not retransmitting a packet for which there is no implicit
ACK, the original sender keeps transmitting other packets,
whose queuing delay is thus shorter. This is a key feature of
MARLIN, enabling overall faster packet delivery to the sink.

The learning Algorithm COMPUTER&M described above
can be easily extended to output also the prioritized list
of backup relays. Specifically, let us assume that Algo-
rithm COMPUTER&M outputs node j as the main relay to
be reached using modem m. Let us also assume that node j
uses modem m′ to forward the packet p. The first backup
relay h is selected by node i using the following rule:

〈h,m〉 = argmin
a∈A{m}i (0)\{〈j,m〉}

Qi(0, a)

Pm
′

j,h

. (10)

This rule aims at selecting a node that is not only a good for-
warder (low Qi(0, a)) but also a node that is “well connected”
to the main relay j, i.e., with high chances of overhearing j
forwarding p (high Pm

′

j,h ). In so doing, node i tries to avoid
redundant retransmissions that would increase network traffic
and waste energy. Applying rule (10) with h in place of j
produces the second best backup relay, and so on.

The length of the list is set to a number `i ≤ |Nm
i |, which

may vary dynamically, depending on the network load. In
fact, we keep adding backup relays to the list until either the
probability that none of them receives the packet is lower than
a given threshold Plost or the size of the list `i is reached.

IV. PERFORMANCE EVALUATION

We demonstrate the effectiveness of our reinforce-
ment learning-based approach to multi-modality through a
simulation-based comparative performance evaluation of our
protocol and three other protocols for underwater routing.
In particular, we compare the performance of MARLIN,
configured for reliability (MARLIN-r in the following) and for
low latencies (MARLIN-l), to that of the following protocols:
(i) CARP, a state-of-the-art cross-layer solution designed to
be reliable, channel aware and energy efficient. CARP is
characterized by a channel reservation phase through control
packets (named PING and PONG) that also carry routing
information [13]. (ii) QELAR, a machine learning-based pro-
tocol designed for minimizing and balancing node energy con-
sumption [14]. (iii) MFlood, a multi-modal enhanced version
of the common flooding protocol designed to reduce collisions
and increase reliability, where a packet is broadcast on an
idle modem selected randomly. All routing protocols have
been implemented in SUNSET [12], an extension of ns-2
connected to the Bellhop ray tracing tool via the WOSS
interface [16]. The environmental data input to Bellhop refer
to an area located in the Norwegian fjord off the coast of
Trondheim, with the coordinate (0, 0, 0) of the surface located
at 63◦, 29′, 1.0752′′N and 10◦, 32′, 46.6728′′E. Sound speed
profiles, bathymetry profiles and information on the type of
bottom sediments of the selected area are obtained from the



World Ocean Database, from the General Bathymetric Chart
of the Oceans (GEBCO), and from the National Geophysical
Data Center’s Deck41 data-base, respectively [17].

A. Simulation scenarios and settings

We consider three UWSNs with 6, 20 and 40 nodes
randomly and uniformly placed in rectangular regions with
surface of 1 km2, 2 km2 and 4 km2, respectively. This allows
us to investigate networks with size ranging from that of
current deployments (6 nodes) to that of larger (20) and
desirable (40) networks. In all scenarios nodes are deployed
at different depths, ranging from 10 to 240 m, while the sink
is located at one of the corners of the deployment area, 10 m
below surface. Topology construction ensures that each node
has at least one route to the sink.

We consider underwater nodes equipped with two acoustic
modems with different characteristics. The first modem carrier
frequency is set to 25.6 kHz for a bandwidth of 4 kHz,
resulting in a bitrate of 4000 b/s. The second modem carrier
frequency is higher, 63 kHz, for a bandwidth of 30 kHz and a
bitrate of 9000 b/s. We assume a BPSK modulation for both
modems. For the selected value of the bandwidth and of the
carrier frequency the transmission power of the two modems is
set to 2.8 W and 5.5 W. Their reception power is set to 0.5 W.
These values are consistent with those of commercial modems
by Teledyne Benthos [9] and Evologics [11].

Traffic is generated according to a Poisson process with ag-
gregate (network-wide) rate of λ packets per second, where λ
ranges in {0.02, 0.09, 0.16}, corresponding to low, medium
and high traffic, respectively. Once a packet is generated,
it is associated with a source selected randomly among all
nodes (but the sink). The destination of all packets is the
sink. The data packet payload size (in bytes) varies in the
set {250, 500, 1000}. The total size of a data packet is given by
the selected payloads plus the headers added by the different
layers. The physical header overhead changes according to
the data rate but is dominated by a 10 ms synchronization
preamble. At the MAC layer, the header size depends on
the protocol. QELAR and MFlood use CSMA, whose header
contains the sender and the destination addresses, and the
packet type. Its length is 3 B. QELAR also needs 6 B extra
for information on the residual energy and for the state space
of the node. Being a cross layer protocol, CARP implements
its own MAC, and the header of its MAC packets also carries
routing information. As such, the size of its PING and PONG
control packets is 10 B and 6 B, respectively. Its ACK and
HELLO packets are 6 B long. The CARP MAC data packet
header is 4 B long. Finally, as MARLIN carries a number of
information in the packet header, including the value function,
Pi,j estimates, list of backup relays, etc., its size varies with
the network size. In our implementation the MARLIN header
size were 7 B, 15 B and 30 B, depending on the network
size. In our experiment, we have set the parameter ε of
Algorithm COMPUTER&M to 0.1, as typical [15]. The number
of retransmissions K used by MARLIN-r, QELAR and CARP
is set to to 4 (low traffic), 3 (medium traffic) and to 2 (high

traffic). In the implementation of MARLIN-l, the value of K
is set to 1, the maximum length `i of the prioritized list of
backup relays of node i is set to 4 (low traffic), 3 (medium
traffic) and to 2 (high traffic), and Plost is set to 0.05.

B. Simulation metrics

Routing performance is assessed through the investigation
of the following metrics.
• Packet delivery ratio (PDR), defined as the fraction of

packets correctly received by the sink with respect to
those generated by the nodes.

• End-to-end latency, defined as the time between packet
generation and the time of its correct delivery to the sink.

• Energy per bit, defined as the energy consumed by the
network to correctly deliver a bit of data to the sink.

C. Performance results

In this section we illustrate the results from simulations
in the described scenarios. For QELAR and CARP we show
figures obtained by using the modem that produces their best
performance. We consider a packet size of 1000 B, as those for
a packet size of 250 B and of 500 B show similar trends and
no further insights. All results are obtained by averaging over
data from 150 simulation runs, which achieves a statistical
confidence of 95% within a 5% precision.

1) Packet delivery ratio: Fig. 1 shows the PDR for different
network sizes and traffic rates. Independently of the QoS
class, MARLIN obtains the highest PDR in all scenarios.
Its advantage over the other protocols increases with the
traffic load, indicating higher scalability. At the highest traffic
rate, MARLIN delivers even more than twice the packets
delivered by all other protocols (Fig. 1c). The reason does
not stem solely from the use of multiple modems. In fact, the
performance of MFlood, which is well below that of MARLIN
in all scenarios, shows clearly that just spreading packets
randomly onto multiple devices is no game changer, and
obtains results that are only slightly better of common flooding
over a single modem (not shown here). QELAR obtains its best
performance by using different modems in different scenarios.
For instance, at low traffic, its best PDR is obtained using one
modem, while at medium and high traffic QELAR delivers
more packets using the other one. This suggests that there is
no winning choice for all scenarios. The fact that MARLIN is
able to choose the best modem on a per-link basis, switching to
the device that provides the best forwarding conditions, obtains
values of PDR that are up to 160% higher than those produced
by QELAR. Finally, we observe that the PDR performance
of CARP suffers from difficulties in gaining channel access,
especially at high traffic. This results in a PDR that is even
54% worse than that of MARLIN.

2) End-to-end latency: Fig. 2 shows results concerning the
packet end-to-end latency. In spite of a packet delivery ratio
significantly higher than that of other protocols, MARLIN
exhibits always the lowest latencies. This is because the rout-
ing model explicitly take latency and robustness into account
in its cost function (Section III-B). This clearly points out



 0.2

 0.4

 0.6

 0.8

 1

6 20 40

P
D

R
 

Number of nodes

MARLIN-r
QELAR

MARLIN-l
CARP

MFlood

(a) Low traffic: λ = 0.02

 0.2

 0.4

 0.6

 0.8

 1

6 20 40

P
D

R
 

Number of nodes

MARLIN-r
MARLIN-l

QELAR
CARP

MFlood

(b) Medium traffic: λ = 0.09

 0.2

 0.4

 0.6

 0.8

 1

6 20 40

P
D

R
 

Number of nodes

MARLIN-r
MARLIN-l

QELAR
CARP

MFlood

(c) High traffic: λ = 0.16

Fig. 1: Packet Delivery Ratio.
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Fig. 2: End-to-end latency.

the effectiveness of MARLIN in forwarding packets on the
best available routes. Not surprisingly, CARP experiences the
highest latencies because of the handshake phase needed prior
to packet transmission. The latency gap between our protocol
and the others decreases with traffic as MARLIN is able
to deliver much more packets, and from the furthest nodes.
The comparison between the performance of MARLIN-l and
MARLIN-r shows the effectiveness of the design of MARLIN
when configured to obtain lower latencies (Section III-C).
MARLIN-l delivers packets up to 60% faster than MARLIN-r,
sacrificing a mere 10% drop of the PDR.

3) Energy per bit: Fig. 3 concerns results on the energy
needed to deliver a bit of data. The worst performance is shown
by MFlood, which spends more than any other protocols
independently of the scenario. By choosing relays and modems
smartly, MARLIN always exhibits excellent performance. For
instance, it consumes up to 71% less energy per bit than
QELAR, as it delivers packets by using shorter routes and
experiencing a lower number of retransmissions. CARP is as
efficient as MARLIN in routing packets to the sink because
of its channel reservation phase, which results in few packet
collisions. However, the energy spent for control packets raises
its energy per bit up to 36% more than that spent by MARLIN.

We end this section by providing further evidence of the
effectiveness of the learned exploitation of multi-modality.
Fig. 4 shows the four topologies of a network with 40
nodes running the protocols MARLIN-r, MFlood, QELAR
and CARP. The sink is depicted as a black triangle. Each

other node is depicted as a circle whose radius is proportional
to the number of packet collisions experienced at that node (in
this pictures, smaller is better). The color of the node indicates
its PDR i.e., the fraction of its packets that are successfully
delivered to the sink: The darker the color the higher the PDR.

We notice that the nodes running MARLIN-r are all fairly
small, and that all nodes, including those far away from the
sink, are colored in the shades of the darkest color (Fig. 4a,
top). In other words, MARLIN-r is always successful in
selecting relays and modems that obtain high PDR, even from
node further away from the sink, suffering from few collisions.
Similarly to MARLIN, MFlood also uses multiple modems.
However, the random selection of the modem does not yield
high PDR and the high number of packets transmitted incurs
many collisions, with detrimental effects also on latency and
energy consumption. As depicted in Fig. 4a (bottom), nodes
running MFlood are quite large, and their color is on the lighter
side throughout the network. The figure concerning QELAR
(Fig. 4b, top) reveals an evident problem with fairness, as the
protocol is able to deliver very few packets from nodes away
from the sink, incurring a high number of collisions. The small
size of the nodes confirms that collisions are not a problem for
CARP, because of its channel reservation mechanism (Fig. 4b,
bottom). However, nodes experience problems in reserving
the channel, independently of their distance from the sink. In
fact, because of the sink-induced traffic funnel effect, channel
contention is higher in the region of the sink, which results in
some nodes with lower PDR even in that region.
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Fig. 4: A joint snapshot of the PDR and collisions per node in networks with 40 nodes and medium traffic.

V. RELATED WORK

Multi-modal communications have emerged as a means to
enhance UWSN reliability and performance in a variety of
scenarios. Existing works concern combining acoustic com-
munication for the long haul, more robust, low data rate
exchanges, with short-range, high data rate optical packet
transfer [3], [4], [5], [6], [7], [8]. While these works show that
using multiple communicating devices overcomes engaging
challenges of underwater data transfer, they do not concern
data routing, as we do in this paper. The only previous work
on multi-modal routing is the MUlti-level Routing protocol
for Acoustic-Optical UWSNs (MURAO), by Hu and Fei [6].
MURAO concerns partitioning the network nodes into two
layers. Lower layer nodes are responsible for multi-hop data
forwarding over optical channels. Nodes in the upper layer
use long range/low bandwidth acoustic communication to
coordinate the routing of the lower level nodes. Actual data
routing within the two layers is performed by QELAR, a
machine learning-based routing protocol for single-modem
UWSNs (described below). MURAO requires nodes to be
deployed densely enough to obtain a connected topology over
the optical links. Given the short range of these links, MURAO

can be costly and even impracticable for applications requiring
coverage of large areas.

While multi-modal routing is still an unexplored topic, rout-
ing protocols for UWSNs with single-mode acoustic modems
have been proposed for over a decade now, and include
remarkably effective solutions, including [13], [18], [19], [20],
[21], [22] and those surveyed by Ayaz et al. [23] and by Li
et al. [24]. A solution that stands out in terms of enhanced
performance is the Channel-aware Routing Protocol (CARP)
by Basagni et al., which exploits link quality information for
data forwarding [13]. Nodes are selected as relays based on
their link quality, hop count and residual energy. CARP utilizes
a channel reservation mechanism à la RTS/CTS for channel
access and for selecting packet relays (cross layer design). For
this reason, while achieving reliability and suffering from few
packet collisions, it incurs remarkable latencies.

The use of reinforcement learning techniques for UWSN
routing has been explored in [6], [14], [25], [26]. Solutions
presented in [25], [26] concern the specific scenario of net-
works with intermittent connectivity. The QELAR protocol
by Hu and Fei has been introduced for routing in scenarios
similar to those considered in this paper. QELAR is based on



a model-based Q-learning approach aimed at maximizing the
residual energy among nodes [14]. The learning cost function
accounts for the residual energy of each node as well as for
the energy distribution among neighboring nodes, and relays
are chosen depending on the energy they can save. This makes
QELAR a solution that compares well with previous protocols,
especially in terms of network lifetime. MURAO, cited earlier
in this section, uses QELAR as intra-layer routing, both optical
and acoustic [6].

VI. CONCLUSIONS

This paper concerns UWSNs with nodes with multi-
modal communication capabilities. We present a reinforcement
learning-based framework that instructs senders to select the
best forwarding relay for its data and the best communication
device to reach that relay. The resulting forwarding method,
named MARLIN, can be configured to seek reliable routes
to their final destination, or to provide faster packet delivery.
Through a SUNSET-based performance study we show that
MARLIN always outperforms state-of-the-art underwater for-
warding protocols by delivering more packets (up to twice
as much than anybody else), remarkably reducing packet
collisions, showing fairness throughout the network, maintain-
ing latencies that are up to 58% lower that those of other
solutions, while saving considerable energy. Our results clearly
show that the smart use of multi-modal communications takes
underwater networking to levels of reliability and low latencies
long demanded by the majority of key underwater applications.
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[5] S. Basagni, L. Bölöni, P. Gjanci, C. Petrioli, C. A. Phillips, and
D. Turgut, “Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle,” in
Proceedings of IEEE Infocom 2014, Toronto, Canada, April 27–May 2
2014, pp. 988–996.

[6] T. Hu and Y. Fei, “MURAO: A multi-level routing protocol for acoustic-
optical hybrid underwater wireless sensor networks,” in Proceedings of
SECON 2012, Seul, Korea, June 18–21 2012, pp. 218–226.

[7] N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, “An integrated,
underwater optical/acoustic communications system,” in Proceedings of
the MTS/IEEE OCEANS 2010, Sydney, Australia, May 24–27 2010, pp.
1–6.

[8] N. Farr, J. Ware, C. Pontbriand, T. Hammar, and M. Tivey, “Optical com-
munication system expands CORK seafloor observatory’s bandwidth,” in
Proceedings of the MTS/IEEE OCEANS 2010, Seattle, WA, September
20–23 2010, pp. 1–6.

[9] “The Teledyne Benthos SMART product SM-975,”
http://teledynebenthos.com/product/smart products/sm-975.

[10] E. Demirors, G. Sklivanitis, T. Melodia, S. N. Batalama, and D. A.
Pados, “Software-defined underwater acoustic networks: Toward a high-
rate real-time reconfigurable modem,” IEEE Communications Magazine,
vol. 53, no. 11, pp. 64–71, November 2015.

[11] Evologics, “Evologics S2C acoustic modems.” [Online].
Available: https://www.evologics.de/files/DataSheets/EvoLogics S2CR
Modems a4 WEB.pdf

[12] C. Petrioli, R. Petroccia, and D. Spaccini, “SUNSET version 2.0:
Enhanced framework for simulation, emulation and real-life testing of
underwater wireless sensor networks,” in Proceedings of ACM WUWNet
2013, Kaohsiung, Taiwan, November 11–13 2013, pp. 1–8.

[13] S. Basagni, C. Petrioli, R. Petroccia, and D. Spaccini, “CARP: A
channel-aware routing protocol for underwater acoustic wireless net-
works,” Ad Hoc Networks, vol. 34, pp. 92–104, November 27 2015.

[14] T. Hu and Y. Fei, “QELAR: A machine-learning-based adaptive routing
protocol for energy-efficient and lifetime-extended underwater sensor
networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 6, pp.
796–809, June 2010.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[16] F. Guerra, P. Casari, and M. Zorzi, “World Ocean Simulation System
(WOSS): A simulation tool for underwater networks with realistic prop-
agation modeling,” in Proceedings of ACM WUWNet 2009, Berkeley,
CA, November 3 2009, pp. 1–8.

[17] “WOD, GEBCO, and Deck41.” [Online]. Avail-
able: http://www.nodc.noaa.gov/OC5/WOA05/pr\ woa05.html,http://
www.gebco.net,http://www.ngdc.noaa.gov/mgg/geology/deck41.html.

[18] Y. Noh, U. Lee, P. Wang, B. S. C. Choi, and M. Gerla, “VAPR:
Void-aware pressure routing for underwater sensor networks,” IEEE
Transactions on Mobile Computing, vol. 12, no. 5, pp. 895–908, 2013.

[19] G. Toso, R. Masiero, P. Casari, O. Kebkal, M. Komar, and M. Zorzi,
“Field experiments for dynamic source routing: S2C EvoLogics modems
run the SUN protocol using the DESERT underwater libraries,” in
Proceedings of MTS/IEEE OCEANS 2012, 2012, pp. 1–10.

[20] X. Xiao, X. P. Ji, G. Yang, and Y. P. Cong, “LE-VBF: Lifetime-
extended vector-based forwarding routing,” in Proceedings of CSSS
2012, Nanjing, China, August 2012, pp. 1201–1203.

[21] D. Shin, D. Hwang, and D. Kim, “DFR: An efficient directional
flooding-based routing protocol in underwater sensor networks,” Wire-
less Communications and Mobile Computing, vol. 12, no. 17, pp. 1517–
1527, December 2012.

[22] D. Pompili and I. F. Akyildiz, “A multimedia cross-layer protocol for
underwater acoustic sensor networks,” IEEE Transactions on Wireless
Communications, vol. 9, no. 9, pp. 1536–1276, September 2010.

[23] M. Ayaz, I. Baig, A. Abdullah, and I. Faye, “A survey on routing
techniques in underwater wireless sensor networks,” Journal of Network
and Computer Applications, vol. 34, no. 6, pp. 1908–1927, November
2011.

[24] N. Li, J.-F. Martnez, J. M. Meneses Chaus, and M. Eckert, “A survey on
underwater acoustic sensor network routing protocols,” Sensors, vol. 16,
no. 3, pp. 1–28, March 22 2016.

[25] R. Plate and C. Wakayama, “Utilizing kinematics and selective sweep-
ing in reinforcement learning-based routing algorithms for underwater
networks,” Ad Hoc Networks, vol. 34, pp. 105–120, 2015.

[26] T. Hu and Y. Fei, “An adaptive routing protocol based on connectivity
prediction for underwater disruption tolerant networks,” in Proceedings
of IEEE Globecom 2013, Atlanta, GA, December 9–13 2013, pp. 65–71.


