
A Generalized Clustering Algorithm forPeer-to-Peer NetworksStefano Basagni Imrih Chlamta Andr�as Farag�oErik Jonsson Shool of Engineering and Computer SieneThe University of Texas at DallasE-mail: fbasagni,hlamta,faragog�utdallas.eduAbstratA greedy approah is investigated for eÆiently lustering the nodes of a mo-bile wireless network that has a \peer-to-peer" (i.e., non-ellular) organization.The onsidered algorithm is a generalization of di�erent solutions proposedto this problem so far in the literature. We de�ne the worst ase performaneratio � of the algorithm in a way that reets how the algorithm performs om-pared to the theoretial optimum. We show that � is nontrivially boundedfrom below by a ompatly expressed network parameter. Moreover, we provethat the algorithm is optimal in the sense that it annot be outperformed byany polynomial-time algorithm, provided P 6= NP: Simulation results are alsopresented to evaluate stability issues related to lustering in peer-to-peer net-works.1 IntrodutionPeer-to-peer networks are wireless radio networks that onsist of a set of geograph-ially dispersed nodes, stationary or mobile, in whih the nodes ommuniate witheah other diretly, without a wired network of base stations (ellular organization).These networks play an important role in situations where no �xed infrastruture isavailable or is not reasonable to build. These inlude, tatial battle�eld ommuni-ations, mobile omputing in areas without infrastruture, ad ho networking, lawenforement, disaster reovery, as well as administration and ontrol of large events(e.g., sports, entertainment), et.One of the most important organizational problems in peer-to-peer networks isthe redution of routing and other ontrol information overheads required for anautonomous organization mehanism in fae of node mobility. Reent researh inthe �eld shows that a solution to this problem an be obtained via the organization



of nodes in groups, or lusters (see, e.g., [11, 12℄). Therefore, an important designproblem in peer-to-peer networks is eÆient lustering of the mobile nodes. Sinethe network topology may hange rapidly, it is also important that lusters areformed quikly.In the present paper we address the lustering problem of peer-to-peer networks.The methods used so far for obtaining physial lustering in these networks allimplement some type of greedy algorithm for �nding a set of nodes that at aslusterheads. One the lusterheads are seleted, lusters are de�ned by assoiatingeah non-lusterhead node with, for instane, the losest lusterhead. To ahieveeasy organization it is desirable in this ase that this losest lusterhead is reahablein a single hop, that is, the lusterheads should form a Dominating Set in the graph,i.e., eah non-lusterhead node must have at least one lusterhead neighbor. On theother hand, it is also desirable that the network be overed by a \well sattered"set of lusterheads, so that they do not group in a small part of the network. Thisan be aptured by the requirement that the lusterheads form an Independent Setof nodes in the graph (i.e., we require that no two lusterheads are neighbors).Existing solutions all implement simple greedy algorithms for �nding suh dom-inating independent set of lusterheads. In the \largest degree �rst" approah ofGerla et al. [5℄, a node with maximum degree (i.e., with the maximum number ofneighbors) is seleted as a lusterhead, then removed from the graph, together withits neighbors. The same proedure is repeated in the remaining graph, until allnodes are removed. In the \lowest ID �rst" method, used in Ephremides et al. [1℄and in Gerla et al. [3, 4℄, node IDs are used to hoose the lusterheads. One an eas-ily de�ne similar greedy lusterhead seletion algorithms based on other parametersof the nodes, as well. Usually, however, these algorithms remain a purely heuristilevel solution, and no performane guarantee have been proven.The ommon model of all the above algorithms is the greedy searh for a Max-imum Weight Independent Set (MWIS) in a graph, where nonnegative weights areassoiated with the nodes. These weights are, of ourse, the degree of a node in the\largest degree �rst" approah, and the nodes' IDs in the \lowest ID �rst" approah.In the present paper, after the de�nition of a natural model for peer-to-peer net-works (Setion 2), we generalize the existing solutions by assoiating eah node witha generi nonnegative weight (Setion 3). For the resulting generalized lusteringalgorithm we show that it is possible to prove a nontrivial performane guarantee.Suh a guarantee, of ourse, also applies to the speial versions mentioned above.Spei�ally, in Setion 4, we de�ne the quality of a lustering algorithm as a mea-sure, �, of how the algorithm performs ompared to the theoretial optimum. Weshow that � has a nontrivial lower bound that depends on a global network param-eter. Furthermore, in Setion 5, we show that, despite its extreme simpliity, thegreedy algorithm here is essentially the best we an do, given that P 6= NP. Morepreisely, we show that for any lass of graphs for whih the Maximum ardinalityIndependent Set (MIS) problem is NP-hard, it is also NP-hard to outperform the2



greedy MWIS searh in a well de�ned sense.Note that by assoiating generi weights with the nodes of a peer-to-peer net-work, we obtain more than a simple uni�ation of existing solutions in a ommonframework that allows us to prove theoretial properties. Indeed, the proposed gen-eralized algorithm makes it possible to express preferenes through the hoie ofweights. This mehanism, not available in previously proposed solutions, an bepratially used to hoose the lusterheads depending on the motion rate of eahnode, its power, its degree, or a ombination of these parameters. As an exam-ple of its appliation, in Setion 6 we demonstrate by simulations that, when theweights reet the speed of the nodes, our proposed algorithm ahieves a substantialimprovement over the \lowest ID �rst" approah.2 PreliminariesIt is natural to model a peer-to-peer network by an undireted graph G = (V; E) inwhih V, jVj = n, is the set of (radio) nodes and there is an edge fu; vg 2 E if andonly if u and v an mutually reeive eah others' transmission. In this ase we saythat u and v are neighbors. Due to mobility, the graph an hange in time.The set of the neighbors of a node v 2 V will be denoted by �(v) and itsardinality, Æ(v), is said to be the degree of v. The degree � of the entire network isde�ned as the maximum among all the degrees in the graph, namely, � = maxfÆ(v) :v 2 Vg. We do not onsider networks with no edges, so that we always have � > 0.Every node v in the network is assigned a unique identi�er (ID), denoted by thenumbers 1; : : : ; n. For simpliity, the node is identi�ed with its ID and both aredenoted by v. Finally, we onsider weighted networks, i.e., a weight wv (a realnumber � 0) is assigned to eah node v 2 V of the network. The weights areolleted in the weight vetor w = hw1; : : : ; wni. As an example, the topology of asimple peer-to-peer network is shown in Figure 1.Given a graph G = (V; E), an Independent Set (IS) is a set V 0 � V suh that notwo nodes in V 0 are joined by an edge in E. It is well known that it is omputationallydiÆult to deide whether a graph has an IS of a given ardinality, namely, thefollowing deision problem:Independent SetInput: A graph G = (V;E), and a positive integer k � jVj.Question: Does G ontain an independent set of size k or more?is NP-omplete. Thus, the searh for an IS of maximum ardinality (a MaximumIndependent Set, MIS) is NP-hard. (For a lear introdution to the theory of NP-ompleteness the reader is referred to the lassial book of Garey and Johnson,[2℄.) In the ase of (node) weighted graphs, the Maximum Weight Independent Set3
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Figure 1: A peer-to-peer network with nodes v and their weights (wv), 1 � v � 8.(MWIS) problem onsists in �nding an independent set of nodes, the sum of whoseweights is as big as possible. It is lear that, being the MIS problem a speial aseof the MWIS problem, this latter one is NP-hard as well. Finally, a Dominating Set(DS) of nodes of a graph G = (V;E) is a set V 0 � V suh that for all u 2 V n V 0there is a v in V 0 fro whih fu; vg 2 E. The searh for a DS in general graphs is alsoan NP-Hard problem.3 The Clustering AlgorithmAs already mentioned in the Introdution, existing pratial lusterhead seletionalgorithms do a greedy searh for a Maximum Weight Independent Set (MWIS) inthe network (see, e.g., [1, 3, 5℄). They di�er only in terms of the basis used for thegreedy hoie, suh as \largest degree" or \lowest ID," et. To provide a ommonanalysis for all these algorithms, we examine the following natural generalization.The proposed algorithm is similar to the \larger degree �rst" and to the \lowestID �rst" approahes, but instead of the degree or the node's ID, the greedy hoieats on the basis of arbitrary nonnegative weights assoiated to the nodes. (Tiesare broken arbitrarily, e.g., by using nodes' IDs|we hoose to take the node withthe lowest ID.) Thus, through the hoie of appropriate weights, we an express ina ompletely general way the preferene to have a given node as a lusterhead. Itis easy to see that both the \largest degree �rst" and \lowest ID �rst" approahesare speial ases of the algorithm.1 Being a ommon generalization of previouslusterhead seletion algorithms, we all the proposed algorithm the GeneralizedClustering Algorithm (GCA), de�ned as follows.Proedure GCA(input: G = (V;E): network, w: weights; output: fCigi2I�V: lustering);1 For eah v 2 V, it is enough to de�ne wv = Æ(v) and wv = 1, respetively.4



begini := 0;while V 6= ; dobegini := i+ 1;(* Pik the node with the lowest ID among those with maximumweight: *)v := minfu 2 V : wu = maxfwz : z 2 Vgg;Ci := fvg [ �(v);V := V n Ciendend;It is evident that the set of all the nodes v seleted in eah iteration of the mainloop is a dominating independent set and that, as far as V 6= ;, its ardinality isthe �nal value of i. The appliation of the proedure to the network of Figure 1 isillustrated in Figure 2 (where the squared nodes are the lusterheads).
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3Figure 2: The lustering obtained by applying the GCA to the network of Figure 1.
4 Performane GuaranteeThis setion investigates the question of whether it is possible to prove a nontrivialperformane guarantee about the proposed algorithm. We propose to measure thequality of an algorithm in the following way. Let A be any lusterhead seletionalgorithm and run it on a network (graph) G = (V;E), jVj = n, with node weightingw. (We use the terms network and graph interhangeably). Denote by A(G;w) theweight of the obtained independent set. Further, let �(G;w) be the weight of a5



MWIS, whih would be the ideal solution. The ratio�A(G;w) = A(G;w)�(G;w) (1)haraterizes how well algorithm A performs on the network G with weighting w,ompared to the ideal optimum. Sine the result of A annot exeed the maximum,therefore, �A(G;w) annot exeed 1, and generally the higher, the better.The ratio (1) for a given network G depends, of ourse, on the weighting athand. To provide a performane guarantee for a given network, i.e., a value of (1)that is always guaranteed when running algorithm A on G, we de�ne the worst aseperformane ratio �A(G) of algorithm A on network G by taking the minimum of(1) over all possible hoies of the weighting. Sine the number of possible weightvetors is in�nite, this an be expressed by the in�mum operator:�A(G) = infw�0 A(G;w)�(G;w) : (2)This assigns a unique number to the algorithm on eah network. If we an boundit from below, then a performane guarantee is provided for the algorithm. In theremaining part of this setion, we show that it is possible to bound the worst aseperformane ratio of the GCA from below by a network parameter, thus providing anontrivial performane guarantee. To do this, we need to introdue some onepts.If G = (V;E) is a network, and v 2 V is a node of G, let us denote by Gvthe neighborhood graph of v. This is the indued subgraph spanned by v and itsneighbors. In other words, Gv is obtained if all nodes are deleted from G, exept vand its neighbors (Figure 3).
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Figure 3: The neighborhood graph G1 of node 1 in the network of Figure 1.The independene number (sometimes also alled stability number) �(G) of thenetwork G is the maximum size of an independent set (also alled stable set) in G.6



(It is the speial ase of �(G;w), obtained by setting eah weight to 1.) Let usintrodue the loal independene number of G by�(G) = maxv2V �(Gv):The loal independene number tells what is the maximum possible size of an inde-pendent set that ours in the neighborhood of any node. It is obvious that �(G)annot be larger than the size of the entire neighborhood, that is, �(G) � �.Using the loal independene number, it is possible to state a ompat result onthe worst ase performane ratio of our GCA.Theorem 1 For any network G and for any nonnegative weighting w, the worstase performane ratio of the GCA is bounded from below as�GCA(G) � 1�(G) : (3)Remark. It is worth notiing that, sine �(G) � � always holds, it is obtained asa diret orollary that �GCA(G) � 1�: (4)We also notie that both (3) and (4) are nontrivial beause the bounds hold forarbitrary weighting, while both �(G) and � are independent of the weights.Proof of Theorem 1. We use results on the analysis of general independenesystems from [7℄. An independene system onsists of a �nite set S (the base set),and a family F of subsets of S. The family F is assumed losed under taking subsets.That is, A 2 F and B � A implies that B 2 F . The independent sets of nodes in agraph G = (V;E) learly satisfy this property (any subset of an independent set isindependent), so this is a speial independene system with base set V.The greedy heuristi for �nding a \heavy" independent set in a general indepen-dene system with nonnegative weights on the elements works as follows:� Order the elements of the base set S aording to nondereasing weight (tiesare broken arbitrarily). Let s1; : : : ; sn be suh an ordering, with w(s1) � : : : �w(sn).� Find a set F 2 F iteratively by the following algorithm:F := ;;for i = 1 to n doif F [ fsig 2 F then F := F [ fsig.7



The result we use from [7℄ an be stated as follows. Let Fg be an independent setfound by this greedy algorithm and let F0 be a maximum weight independent set(the optimum). Then, for any independene system, we have:1 � w(Fg)w(F0) � r(F); (5)where w(F) indiates the weight of the independent set F and r(F) is the rank ratioof the independene system. The rank ratio is de�ned by using the upper rank andlower rank of subsets of the base set S. For any non empty S 0 � S the upper rankur(S 0) is the maximum size of an independent set that ours in S 0. The lower ranklr(S 0) is the size of the smallest suh independent set in S 0 whih already annot beextended in S 0. (In other words, suh a set is the smallest dominating independentset in S 0.) Then the rank ratio is de�ned asr(F) = minS 0�S lr(S 0)ur(S 0) ;where the minimum is taken over all nonempty subsets of S.Let us ompute now the rank ratio of the speial independene system formedby the family F of independent sets of nodes in a graph G = (V;E). Let V 0 � V beany (non empty) subset of nodes. Let A be a maximum size independent set in V 0and let B be a minimum size dominating independent set in V 0. Let us de�ne thefollowing funtion f : B! 2A:f(v) = 8<: fvg v 2 A;�(v)\A v 62 A:We have: [v2B f(v) = (A \ B) [ [v2BnA(�(v)\A) = (B [ [v2BnA �(v))\A:Now, for eah v 0 2 A, either v 0 2 B or, if v 0 62 B, then v 0 2 [v2BnA�(v) (otherwise,v 0 not having any neighbor in B, B[ fv 0g would be an independent set, ontraditingthe maximality of B). Thus: A � (B [ [v2BnA �(v));whene A = [v2B f(v):8



Therefore, we have:jAj = �����[v2B f(v)����� = ����� [v2A\B f(v)�����+ ������ [v2BnA f(v)������ � Xv2A\B jfvgj + Xv2BnA j�(v)\Aj:Sine A is a maximal independent set in V 0, therefore, for eah v 2 BnA, j�(v)\Aj>0must hold, otherwiseA ould be extended in V 0without violating its independene.Moreover, sine �(v)\A is an independent set, we have j�(v)\Aj� �(Gv), yieldingXv2A\B jfvgj + Xv2BnA j�(v)\Aj � jA \ Bj + (jBj - jA \ Bj) maxv2BnA�(Gv)� (jA \ Bj + jBj - jA \ Bj)maxv2V 0 �(Gv)� jBj�(G):Thus, by �(G) > 0, we have: lr(V 0)ur(V 0) = jBjjAj � 1�(G) ;whih yields r(F) = minV 0�V lr(V 0)ur(V 0) � 1�(G) :This, using (5), implies �GCA(G) � 1�(G) ;whih proves the theorem. �5 OptimalityHere we show that our GCA is optimal in a sense de�ned below, i.e., that it is thebest possible heuristis we an use, given that P 6= NP. To make this preise, weneed to de�ne the method for omparing two algorithms (by algorithm we refer herean algorithm that �nds a dominating independent set).De�nition 1 Let G be any lass of graphs. Algorithm A outperforms algorithm Bon the lass G if A(G;w) � B(G;w) holds for any (G 2 G; w) and, furthermore,the inequality is strit whenever B(G;w) < �(G;w).Informally speaking, algorithm A outperforms B on G if the result of A is neverworse than that of B, and A has a stritly better result whenever B does not �ndthe optimum. Of ourse, in ases when B does �nd the optimum, the inequalityannot be strit, sine in those ases there is already no room for improvement.Now we an state what it is meant by the optimality of the GCA heuristis.9



Theorem 2 Let G be any lass of graphs in whih it is NP-hard to �nd a Maximumardinality Independent Set. Then, assuming P 6= NP, no polynomial-time algorithman outperform the GCA on G in the sense of De�nition 1.Proof. Let us assume that there is a polynomial-time algorithmA that outperformsthe GCA on G. Let us onsider now the following algorithmA 0 with any input graphG = (V; E) 2 G, jVj = n. In the de�nition of A 0, we use the notation �A for theharateristi vetor of a set A � V, i.e., the jAj oordinates of �A orresponding tothe elements of A are set to 1, and the remaining n- jAj are set to 0.Algorithm A 0Step 1. Set w = hn; : : : ; ni.Step 2. Run the GCA on G with weighting w to �nd a dominating independentset. Let A be the obtained independent set.Step 3. Run algorithm A on G with weighting w. Let B be the obtained indepen-dent set. If jBj = jAj then STOP.Step 4. Set A = B and w = hn; : : : ; ni+ �B;Go to Step 3.We laim that algorithm A 0 works in polynomial time and when it halts the lastvalue of the set B is a Maximum ardinality Independent Set (MIS) in G.Let us prove �rst the seond statement, assuming the algorithm halts after a�nite number of steps. Let B0 be the last value of B, and let B1 be the previousvalue of B. Then after the last exeution of Step 4 the value of w is hn; : : : ; ni+�B1and A = B1. Under the weighting w eah element of the dominating independentset B1 has weight n + 1, while all other nodes have weight n. Observe that thisweighting diretly implies the following speial properties:(i) For any two sets X; X 0 � V the inequality w(X) > w(X 0) an hold if and onlyif jXj > jX 0j.(ii) The GCA on G with this weighting would return B1 as its result.Now, in the last exeution of Step 3 algorithm A returns the set B0. Sine,by assumption, A outperforms the GCA, therefore, by (ii) w(B0) � w(B1) musthold. If w(B0) > w(B1) is the ase, then by (i) it implies jB0j > jB1j, whih byA = B1 ontradits to the assumption that this is the last exeution of Step 3.Thus, w(B0) = w(B1) must hold. Then B1 must be a MWIS (otherwise A wouldreturn a set with stritly larger weight) and then by (i) it is also a MIS and A 0 haltswith jB0j = jB1j, implying that B0 is a MIS.10



It remains to show that A 0 halts after a polynomial number of steps. This is aonsequene of the fat that, as diretly implied by the above onsiderations, in eahexeution of Step 3, exept the last one, we must always obtain an independent set ofstritly larger weight than the previous one. Sine eah node has weight at most n+1and eah weight is an integer, therefore, Step 3 an be exeuted only polynomiallymany times. Sine, by assumption, algorithm A runs in polynomial time and theother parts of algorithmA 0 learly run in polynomial time, too, therefore, the wholealgorithm A 0 halts after a polynomial number of steps.Thus, we have shown that the assumption that there exists a polynomial-timealgorithm A that outperforms the GCA on G implies that algorithm A 0 an �nd aMIS in any graph G 2 G in polynomial time. This, however, if P 6= NP, ontraditsto the ondition that �nding an MIS is NP-hard in G, whih proves the theorem. �Theorem 2 shows that the GCA (i.e., the greedy heuristis) is the best possiblealgorithm in the de�ned sense, whenever we have to deal with a lass of graphs forwhih the MIS problem is NP-hard. Interestingly, for these lasses, there is nothingthat lies between the trivial greedy heuristis and the non-polynomial algorithms inthe sense that, aording to Theorem 2, it is impossible to outperform the GCA bya polynomial-time algorithm on these lasses. This relies, of ourse, on the strongde�nition of outperforming.Although there are several lasses of graphs for whih the MWIS problem an beeÆiently solved (see, e.g., the survey in [9℄), nevertheless, for general networks theproblem is not only NP-hard, but even hardly approximable (see, e.g., [6℄). Sine wetypially deal here with a mobile radio network environment, therefore, we annotrealistially assume that the more or less arbitrarily hanging network topology anbe fored to remain within a lass in whih the onsidered NP-hard algorithmiproblem is polynomially solvable. This is why the greedy approah plays a entralrole here, taking into aount its simpliity and speed. Moreover, its goodness ishighlighted not only by the analysis we have provided, but also by other results in[10℄ (where several greedy solutions are devised and ompared) and in [8℄.6 Simulation ResultsWe onlude this paper with a simulation example that shows the pratial im-portane of node weight setting in a mobile network. We demonstrate that, withproperly hosen weights, the GCA an ahieve substantial improvement over the\lowest ID �rst" approah with respet to the stability of the network lustering.We simulate the lustering algorithm by plaing n = 40 nodes randomly ona grid of size 100 � 100, and two nodes are neighbors if they are within a �xeddistane to eah other. We are interested in measuring the stability of the lusteringalgorithm in a hanging network. We ount how many nodes move to a new luster11



(\reaÆliations") within a time-unit and how many ordinary nodes (i.e., nodes thatare not lusterheads) beome lusterheads in eah time-unit (\eletions"), after re-lustering to adjust for random node movements in eah tik. At on�dene levelof 99% , all simulation results are in the on�dene interval of less than 1%. Eahnode moves in a random diretion de�ned by an angle that is independently anduniformly distributed over the interval (0; 2�). The speed of a node is a randomlyand uniformly hosen integer in the interval [1; k℄, where k is the maximum speed ofall nodes, 1 � k � 100. The simulation is run for di�erent values of the maximumspeed.We ompare two lusterhead seletion algorithms in this model with respet tothe de�ned stability parameters. One algorithm is the \lowest ID �rst" approahpresented in [3, 4, 5℄. (As in [5℄ and [4℄ it is shown that this algorithm is more stablethan the \largest degree �rst" approah, we do not onsider the latter one.)The other algorithm is our GCA with weights that depend on the speed of thenode. If s(v) is the (randomly hosen) speed of a node v, we de�ne its weight aswv = k+1-s(v). That is, for any �xed maximum speed, the nodes that are movingat a lower speed are assigned higher weight, beause these \more quiet" nodes aremore likely to yield higher stability.Figures 4 and 5 show the average number of eletions (new lusterheads) andreaÆliations per time-unit, respetively, as funtions of the maximum speed, for bothalgorithms. It an be seen from the �gures that the GCA with speed dependentweighting outperforms the other algorithm. The perentage gain is in the range25 : : : 45%, as shown in Figure 6.7 ConlusionIn this paper we examined the greedy approah for the lustering of peer-to-peerradio networks. We have proven a performane guarantee for the GCA, a generaliza-tion of previous algorithms that have been applied for this problem. Moreover, wehave also proven the optimality of this greedy approah in the sense that it is NP-hard to outperform it by a polynomial-time algorithm. The pratial importane ofthe general setting is that, as opposed to other solutions, suh as \lowest ID �rst"or \largest degree �rst," the GCA makes it possible to express preferenes throughthe hoie of the weights. For instane, we have demonstrated by simulation thatproperly hosen speed-dependent weights result in less likely hange of lusters, thusreduing the amount of reon�guration overhead and the time when nodes are notavailable for ommuniation due to reorganization. To ahieve even more re�nedresults, a ombined weight of node degree, motion and power an be set to aountfor multi-parameter optimization, not available in existing pratial solutions.12
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Figure 6: GCA vs. \lowest ID �rst": perentage gain for eletions and reaÆliations.
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