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(Received 19 March 1998) 

Causal Trees are a variant of Milner's Synchronization Trees which aims at reconciling two 
antagonistic views of semantics for concurrent systems: the interleaving models and the truly 
concurrent ones. The original model of Causal Trees provides us with an interleaving 
description of a concurrent system which faithfully expresses causaiity by enriching the action 
labels of a synchronization tree. These enriched labels supply indication of the observable causes 
of observable actions. In this note we revise the original model of Causal Trees, so that every 
action label bears the casual indication, and not only the observable actions. This permits to 
inherit all the results of Milner's original theory in a natural way. 

Keywords: Semantics of concurrent systems, interleaving models, truly concurrent models, 
causal trees, CCS 

C. R. Categories: D.1.3, D.2.1, D.3.1, F.1.2, F.3.2 

1. INTRODUCTION 

In this note, we are interested in revising the origin model of Causal Trees as 
introduced in [j]  so that they fit completely Milner's original theory on CCS 
and Synchronization Trees. Since many papers and books have been 
published so far on this seminal theory for representing concurrent systems, 
and since giving a survey on the theory itself is beyond the scope of this note, 
we refer the reader to basic publications like [8, 5, 101 for further details. 

It is well known that Synchronization Trees [8] do not convey enough 
information to express the causal relations among the actions of a 
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concurrent system. In order to overcome this problem, in [5] Darondeau and 
Degano presented a variant of Mimer's model in which the labels of the 
ohservnble actions carry additional information about causes: a label is now 
a pair consisting of (the name of) an action and a structure that indicates the 
actions which caused the current one. The causes are divided into direct and 
inherited ones and are encoded as integers which act as backward pointers to 
the earlier arcs (i.e., actions) which caused the action related to the current 
arc. 

The aim of this note is to simplify that original idea in two main 
directions: 

s We let also the invisible action bears the casual information; 
We redefine the original causa! transition system by simplifying the causa! 
part of the label to a set of integers, following [6]. In this way no dis- 
tinction is made between direct and inherited causes. 

The first choice is needed to follow as closely as possible Milner's 
original work. Indeed, in [8], in the definition of the Strong Bisimulation 
relation, the invisible action T is considered as every other action and so, 
in the causal setting, it has to bear its casual information. This easily 
allows us to obtain a "natural" definition for the Causal Strong Bisimu- 
lation relation (Section 2) and to define an operational semantics for the 
"causal" calculus (Section 3) which really shapes as Milner's, up to causal 
information. The second improvement simplifies the treatment of causes in 
order to clearly express their upgrading when applying the basic operators 
(Section 4). 

The example depicted in Figure 1 shows how the two CCS terms 
t l  = cr.p.nil+ P.a.nil and t2 = a.nilIlp.ni1 - which would be undistinguished 
in the model of Synchronization Trees and also in the original model of 

FIGURE 1 The causal trees T,, originated by the CCS terms r ,  (i = 1,2). 
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SEMANTICS OF CONCURRFNT SYSTEMS 139 

Causal Trees in the cdse that a = T or 3 = T - have different representa- 
tions in our model of Causal Trees. For the sake of readability, we have 
numbered the arcs and we have omitted the brackets when the causes are 
singletons. Arc 1 has label (a ,  0), thus it has no cause in the tree (just as for 
arcs 2, 5 and 6). More interesting, the same is true for arcs 7 and 8: since they 
have the empty set as causes, the corresponding events do not depend on 
their immediate predecessors. On the contrary, arcs 3 and 4 do depend on 1 
and 2, respectively, since they "point back" to them. Thus. the different 
causal relations originating from the above processes are completely 
reiiected in the corresponding causal trees. 

In this note we define a semantics fiir CCS fdnwing the paradig;r, 
described in [7]. Specifically. 

1. The evolution of a system represented by a CCS term is described in a 
syntax driven way (Section 3). Each computation, i.e., each path of the 
transition system, is assigned a tree. 

2. The arcs of the trees are labeled by an observation which takes care of 
causality (Causal Trees). 

3. Causal trees are compared via bisimulations which are now defined 
according to the new labe!ing (Section 6). 

Furthermore, in Section 4, we introduce a new algebra of causal trees 
(CI )  and an interpretation for CCS which will allow us to consider CT as a 
convenient semantic domain. In this sense, we meet the requirement 1') of 
[7], that asks for the definition of a causal denotational model for CCS. The 
"spirit" of Causal Trees relies on the interpretation of the parallel command 
which yields an expansion law which is interleaving in its shape, though 
causal in its essence, thus reconciling the two classical antagonistic views of 
semantics for concurrent systems. 

In Section 5, C'T is proved fully adequate with respect to the operational 
setting. This result allows us to closely follow the classical theory [9, 101 in 
achieving a sound and complete system of equational axioms for causal 
observational congruence over (finite) CCS programs (Section 6). 

As a final note, we point out that the new model of Causal Tress 
introduced in this note can be considered a truly concurrent model for 
concurrent systems, despite its "interleaving structure." Indeed, in [I] the 
equivalence of CT with three truly concurrent operational models for CCS 
(namely, the model of Flow Event Structures [3], the Flow Nets model [2], 
and the model of Proved Transition Systems [4], which are compared in [4]) 
is established. This is naturally obtained due to the new definition of causal 
trees given in this note. 
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2. CAUSAL TREES 

We start by defining the class of Causal Trees. In what follows, N ' wiii be 
the set of non-zero natural numbers and K will range over the finite sets of 
P(N ' ). We let N = N +v{o) and assume as given a fixed set of actions A 
made up of names, conames and the silent action r, as in standard CCS (i.e., 
A = A u n u (TI). 

DEFINITION 2.1 (Causal Trees) Let L = ( ( p ,  K ) l p  c A) and ST(Aj be 
the set of synchronization trees labeled on A. A causal tree T E CTJA) is the 
synchronization tree E s l ( f ) .  The empty tree is NZL, 0 

If n and n' are nodes of a causal tree T, the notation n --% n i  means that 
there exists an arc labelled by z = ( p , K )  from n to n'. Thus we can introduce 
a notion of equivalence over Causal Trees [6]. 

DEFINITION 2.2 (Causal Strong Bisimulation) Two causal trees T and T'  
are causally strongly bisimilar if and only if there exists a relation -, on the 
nodes of T and T' such that: 

i. if r and r' are the roots of T and T', then r-,r'; 
ii. nN,m if and only if 

1. when n f, n' then there exists a node m' such that rn 5 m' and 
d m s  m'; 

2. symmetric of 1 0 

As usual, we will consider the maximal causal strong bisimulation only, also 
denoted by -J,. 

Causal strong bisimulation, -,, on finite causal trees is a congruence and 
its inducing axiomatization is completely standard, providing that x, y and z 
are in CT(A). Indeed, the four axioms listed below reflect the tree structure 
of computations and are straightforwardly label independent. 

(Alj x + y = y + x; (A2) x + ( y  + z )  = (x + y )  + z;  

(A3) x + x = x; (A4) x + NIL = x. 

Clearly, causal strong bisimulation allows one to make less identifications 
than the interleaving strong bisimulation [8], because the latter ignores 
causes. Indeed, terms t l  and t2 in the Introduction are strongly bisimilar but 
they are not causally bisimilar (the two notions only coincide when the 
considered trees represent sequential non-deterministic processes). It is 
worth noticing that the same is true f a t  least one of the actions is the silent 
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SEMAhTICS O F  COiLCLRREhT SYSTEMS 141 

action r. This was not the case for the model discussed in 151, in which the 
two processes were causally identified (see also [6]). 

It is easy to define a "cause erasing" morphism between causal trees and 
synchronization trees, 9 : L"7jAj -t ST(A).  Tine kernel of this mapping 
operates on labels leaving untouched the structure of trees, and will be the 
function y: : G -+ A such that q((p,K)) = p. 

If we consider causal trees up to causal strong bisimulation, we can denote 
them as terms of a language with operations (p, K ) .  of prefixing and + of 
non-dete~~inis t ic  choice (with the empty tree NIL = CiE s(pi,  &).Ti as 
seutra! element). Thus: we abtai:: norma!forms far causal treesj which have 
the following pattern: 

A causal tree bears in itself (in each of its paths) all the information needed 
to derive a partial ordering of events. An event e, labeled by p, will be 
generated in correspondence to every arc e, labeled by (p, K) ,  of the given 
path. The event e will be greater than all the events corresponding to arcs 
pointed back by the pointers in K. Thus, every arc of a causal tree may be 
interpreted as the incremental description of a partially ordered multiset of 
actions. 

Example Consider the causal tree T in Figure 2(a) originated by the CCS 
process i defined by a.(~.~.~.niljl~.G.nil)\~ + [.a.B.nil according to the 
CCS algebra C I  for Causal Trees (see below). Paths pl, pz and p3 generate 
the partial ordering depicted in Figure 2(b), where events are identified with 
their labels. Branches p,  and p2 give rise to the two isomorphic partial 
orderings in the left side. Indeed, consider the left path made of arcs from 1 
to 5. It originates five events labeled by a ,  8, p, r and y partially ordered by 
(the reflexive and transitive closure of) 1 1 2  (because the label of 2 is (P, 1) 
and arc 1 immediately precedes 2 in the given path), I I 3, 1,2,3 5 4 and 
1,2,3,4 1 5. Isomorphically for the path p2. The right hand side of Figure 
2(b) is self-explanatory. 0 

A tree with arcs (or nodes) labeled by partial orderings can be thus 
immediately recovered from a causal tree, though such a tree would provide 
us with an integral description of a concurrent system, while a causal tree 
gives a dzfferential one, the latter being more economic. This approach 
allows us to define truly concurrent bisimulations in the standard way 
(Section 6). 
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P1 P2 

(4 (b) 

FIGURE 2 The causal tree T originated by the process t and the partial ordering represented 
by T. 

3. A CAUSAL CALCULUS OF COMMUNICATING SYSTEMS 

In this section we aim at defining causal trees induced by CCS programs via 
the method of Structured Operational Semantics [ll]. To this purpose we 
embed CCS into a wider set of terms: CCCS (a Causal CCS, C 3~ for short). 
The transition system defined on C 3 s  is a direct extension of the original 
system for CCS: the definition of CCS is retrieved from the definition of C 3~ 

by merely erasing all indications about causes. 

DEFINITION 3.1 Let C = UiEN Ci be the signature of CCS, where 

Co = {nil}; 

Xi = ( p . 1 ~  E A} U {\aJa E A} u {@lala, @ E A} ;  

C2 = { + ,  1 1 ) ;  
Cn = 0, n > 3. 0 

Each Xi, contains functional symbols having arity i. Let REC(C, X )  be the 
set of recursive C-terms over x (a set of variables) which satisfy the Greibach 
condition of well-guardedness (with respect to guarding operators p). Terms 
have possible forms X(E X) or rec x.t or f (t i , .  . .,t, for f E C,, (n 2 0). The 
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SEMANTICS OF CONCURRENT SYSTEMS 143 

CCS programs are the elements of CREC (C, x), the subset of the closed 
terms in REC(C, x). 

A generic C 3~ tenn is created from a CCS term by means of the binary 
(infix) operator + which prefixes terms t E CREC(C, X) by a finite set K of 
natural numbers whose intended meaning is to indicate, at each step of a 
C3S derivation, the activating causes of all the active terms and subterms, 
given by backward references to the past of the derivation. By CCREC(C, X) 
we will indicate the set of CCS terms t prefixed by a set of causes K by means 
of operator + : K d  t. These wili be the generators of C'S, 

DEFINITION 3.2 The C ~ S  signature is given by C * = U,, C r ,  where 

Thus, c 3 S  is the family of C\({nil} U {p.Ip E A))-terms over generators 
K+ t. (From the definition of the signature of classical CCS we have 
dropped the prefix operator and the inactive process nil.) A typical C 3 s  
term, with causes K,(i = 1,2), attached to all outermost occurrences of 
guarding operators and recursion symbols, is K1 + X.nilll K2 + rec x.t .  We 
assume henceforth that operator + distributes over all operators in 
C\({nil} U (p.1.p E A}), so that C 3~ terms are reducible to that canonical 
form. 

A natural way to embed CCS in C 3~ is by prefixing a generic term with 
the empty set, thus indicating that the actions o f t  have no activating causes, 
0 =+ t. The transition rules for c3S  define formally this intuition, and show 
exactly how, in the various cases, the sets of causes have to be updated. For 
such an upgrade we introduce the followaing operators: 

6: P ( N f )  -, P ( N t ) ,  S ( K )  = {k + Ilk E K } ;  

The operator S(K) simply increases by one every element of a nonempty set 
K. The operator q(H, K )  joins the sets H and K  only if 1 E K. We extend 6 
and p on c 3 S  terms as follows: 
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The C ~ S  labelled transition system relation, defined in the S.O.S. style [l I], is 
denoted by -2, where z = (p ,  K )  is a label from the set C. For such a 
relation we understand that the restriction and relabeling operators act only 
on the first component of the label (p ,  K ) ,  as in standard CCS, e.g. (a,  K)\$ 
is defined as (a. K )  only when a # 0. 

In what follows, e , f ,  el and f' will range over c 3 S  terms and t  will be a 
generic CCS term. 

e 5 e 1  
Asyn 1 Asyn2 f 5 f '  

ellf '-t e1I l6(f )  ellf --% 6(e)l lY 

Rec 
( K  * ( t [ r e c x . t / x ] ) )  e  

( K  * ( recx . t ) )  -2 e  

Some comments are in order. 

- Axiom Act allows for the autonomous firing of a guard p of a CCS term 
1.1.1: the direct cause of activation (of the actions) of the residual term I 

will be 1 (referring to p). This is obtained by adding the singleton { I )  to 
the set of the activating causes o f t  (i.e.,  the action that directly causes all 
the possible actions of the subterm t is only a step behind in the 
"execution"). The hereditary causes, i.e., the references to actions that are 
"causes of the direct cause", are all incremented by 1 (we have to do a 
further step in the past of the derivation to retrieve those causes, after p 
occurred): this is the task of 6  which is applied to the set of activating 
causes of p.t. 

- Rule Asynl allows a C ~ S  term e, which acts in parallel with a termf, to 
autonomously evolve in a term e' by an action labelled by (p ,  K ) .  The 
whole term ell f  will evolve with the same action in a term, e1ii6(f) ,  in 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

3:
22

 0
8 

Ju
ne

 2
01

5 



SEMANTICS OF COXCURRENT SYSTEMS 143 

CCS programs are the elements of CREC (C, x), the subset of the closed 
terms in REC(X, x). 

A generic C 3~ term is created from a CCS term by means of the binary 
(infix) operator e- which prefixes terms t E CREC(C, X) by a finite set K of 
natural numbers whose intended meaning is to indicate, at each step of a 
C 3 s  derivation, the activating causes of all the active terms and subterms, 
given by backward references to the past of the derivation. By CCREC(C, X) 
we will indicate the set of CCS terms t prefixed by a set of causes K by means 
of operator *lA,=i [, 7.' - - - 

I nest: wiii be the generators of C %. 

DEFINITION 3.2 The C ~ S  signature is given by c * = Ui,, c r ,  where 

Thus, C 3~ is the family of C\((nil) U (p .1 ,~  E A))-terms over generators 
K+ t. (From the definition of the signature of classical CCS we have 
dropped the prefix operator and the inactive process nil.) A typical C3S 
term, with causes K,(i = 1,2), attached to all outermost occurrences of 
guarding operators and recursion symbols, is K1 + X.nilllK2 * recx.t. We 
assume henceforth that operator =+ distributes over all operators in 
C\({nil) U C F . I p  E A)), so that C ~ S  terms are reducible to that canonical 
form. 

A natural way to embed CCS in C 3~ is by prefixing a generic term with 
the empty set, thus indicating that the actions o f t  have no activating causes, 
0 =+ t. The transition rules for C3s define formally this intuition, and show 
exactly how, in the various cases, the sets of causes have to be updated. For 
such an upgrade we introduce the followaing operators: 

S :  P ( N + )  -+ P ( N + ) ,  S ( K )  = { k  + 1 lk E K) ;  

77:P(NC) x P ( N + ) - + P ( N f ) ,  q ( H , K )  = 
otherwise. 

The operator S(K) simply increases by one every element of a nonempty set 
K. The operator v(H, K )  joins the sets H and K  only if 1 E K. We extend 6 
and p on c3S terms as follows: 
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The C ~ S  labelled transition system relation, defined in the S.0.S. stylc [Il l ,  is 
denoted by L, where z = (p, K )  is a label from the set C. For such a 
relation we understand that the restriction and relabeling operators act oniy 
on the first component of the label (p, K) ,  as in standard CCS, e.g. (a ,  K)\@ 
is defined as (a,  K )  only when a -f O. 

In what follows, e ,  f ,  el and f' will range over c 3 S  terms and t will be a 
generic CCS term. 

DcF:N:T:G:; 3.3 ( C ~ S  transitions) 

f e -7 e YAY 
Sum 1 Sum2 

e t f A e l  e + f A f '  

e -2 e f  e A e f  
Res , z\a defined Re1 

z\= z[P/.i e\a ---, el\a e[PIaI -+' e1[P /a I  

Rec 
(K * (t[recx.tlx])) e 

(K =+ (rec x. t ) )  -5 e 
0 

Some comments are in order. 

- Axiom Act allows for the autonomous firing of a guard p of a CCS term 
p.t: the direct cause of activation (of the actions) of the residual term t 

will be 1 (referring to p )  This is obtained by adding the singleton {I)  to 
the set of the activating causes o f t  (i.e., the action that directly causes all 
the possible actions of the subterm t is only a step behind in the 
"execution"). The hereditary causes, i.e., the references to actions that are 
"causes of the direct cause", are all incremented by 1 (we have to do a 
further step in the past of the derivation to  retrieve those causes, after p 
occurred): this is the task of 6 which is applied to the set of activating 
causes of p.t. 

- Rule Asynl allows a c3S term e, which acts in parallel with a termf, to 
autonomously evolve in a term e1 by an action labelled by (p, K ) .  The 
whole term ell f will evolve with the same action in a term, e f l l S ( f ) ,  in 
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SEMANTICS OF CONCURRENT SYSTEMS 145 

which f has all its causes incremented by 1, as it has "lost a tick." Indeed, 
the action performed by e  and labeled by (p,  K):  

does not cause any of the actions that f can fire (and then the actim 
label has to be skipped by the backward references in f), and 

e increases by 1 the number of "back steps" required to retrieve the 
actions that are causes of the possible transitions off. 

Notice that, when K = 0, the definition of the S operator is such that K  is 
siiii $3. T'nis corresponds to the intuition that if all possible actions of a 
(szlD)tem: are independent of any other action, they remain autonomous 
when such an action occurs and then they continue to have no activating 
causes ( K  = 0). Rule Asyu2 is symmetric. 

- In the case of a synchronization (Syn rule) the causes of the invisible 
action will be the union of the causes of the terms involved in the 
communication. We must take particular care to realize the inheritance 
of causes: the causes K  of an action performed by e  and labeled by (A, K )  
(see Syn rule in the previous definition), increased by 1 to keep track of 
the T ,  must be merged with the causes of the action labeled by (X, K' ) .  
Henceforth, if there is a parallel command in f then S(K) will be added 
ody  to the set of causes of the subterm offwhich acruaiiy evoived with 
the action labeled by ();, K' )  (this set will be S(K t )U{ l ) ) .  This is reflected 
by the operator q which permits such a kind of "cross inheritance'' of 
causes. The argument on J is symmetric. 

We are now able to establish in an obvious way a correspondence between 
C ~ S  and CCS derivations. It may be observed that C3s transitions e  2 e' 
are connected to CCS transitions t 2 t 1  by the following implications: 

f& K P e  ---, e ' t  ' t 1  
P P,  K ( e )  ( 3 e , e 1 : Q ( e )  = t ,  Q ( e l )  = t 1 A 3 K : e - - + e l  

in which the cause erasing function 9 : C 3~ -+ CCS is easily defined starting 
from P(K+ t)  = t and proceeding homomorphically by induction on 

c \({~ll  u {PIP dl). 
For e  in C ~ S ,  the operational meaning of e  is standard. It is the causal 

tree [el,, obtained by unfolding from root e  the transition system 
{e' 5 e'llz E C), written as 
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146 STEFAN0 RASAGNI 

For example: 

[K + nil],, = NIL and 

[K* (a.P.nil + P.cr.nil)],p = ( a ,  K )  . (8, {I )  U S(K)) . NIL 

+ (P, K )  . (a ,  (1) U S ( K ) )  . NIL. 

For t in CCS, the corresponding causal tree will be [@+t],,. 
iii order defliie the st-rong eyiiiv.aleni;e we otvio.usly 

Milt;+r's ~ppr-a& so 2s t.:, causes. As for the interleaving case, in ..-- 
the causal strong bisimulation the invisible actions (labeled by (7, K ) )  are 
considered in the same way as the others ((A, K ) ,  X # 7) .  

DEFINITION 3.4 (Causal strong bisimulation) Two C ~ S  terms e and f are 
causally strongly bisimilar, written e-,f, if and only if for each z E C, 

i. whenever e 5 e' then there exists f' such that f 5 f' and el-, f', 
ii. whenever f 5 f' then there exists e' such that e 5 el and e ' ~ ,  f'. 0 

It is worth noticing that by "erasing causes" (i.e., applying the function 9 to 
the derivations of the previous definition) we will obtain the definition of the 
interleaving case. 

Causal strong equivalence will be the maximal causal strong bisimulation, 
also denoted by N,. Two CCS terms will be causally strongly bisimilar if the 
corresponding c3': terms are s x h :  

DEFINITION 3.5 Let t l  and t2 be two CCS terms. Then 

tl -, t ' ~  if and only if (0 * t l )  -, (0  * t 2 ) .  0 

Once provided the right methods to treat causes, causal strong equivalence 
can be proved to satisfy all the properties that hold for interleaving case 
(e.g., the property of being a congruence, etc.). Tools and detailed discussion 
are in [I]. 

4. CT: A NEW ALGEBRA OF CAUSAL TREES 

4.1. Combinatory Operators 

In order to upgrade the set CT(A) of causal trees into an interpretation for 
cis(i = 2, 3) programs we introduce via axiomatic definition three indexed 
families of basic combinatory operators on causes and causal trees. These 
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SEMANTICS OF CONCURRENT SYSTEMS 147 

auxiliary operators will be used to upgrade, in an inductive way, the causes 
after an algebraic operation has been performed. 

The first operator serves primarily to manipulate causes in prefixing trees 
by actions. Every arc at depth p of a causal tree T prefixed by a new arc will 
be caused by the newly added one and therefore the set K of its causes has to 
be augmented of a pointer (the non-zero natural p) to the new arc. This 
results in K U b). The family of operators a . ~ ,  : P ( N  + ) + P ( N  + ), indexed 
on N, will take care of such an updating of causes and is defined as the 
iiiiique family of unary operators or, CT(A') satisfying the foilowing well- 
guarded recursive formu!a: 

where 

if n = 0, 
BHD, K = 

a 6 ( H ) D n - 1  otherwise. 

a H D, K can be operationally interpreted as increasing the elements of H by 
n and taking the union of the resulting set with K. 

The parallel composition of two trees is a bit involved. As for the 
expansion law on synchronization trees, it can be divided into three parts: 
the first (the second, respectively) when an arc from the first (the second, 
respectively) tree is taken, the third when a communication occurs. The 
structure of the resulting causa! tree is again easy tn def;,ne, but upbzting the 
causes requires attention. In the first case, the second tree has "lost one 
tick," therefore 1 is to be added to its causes (similarly for the second case). 
However not all the pointers must be incremented, but only those that point 
to arcs already "consumed in the inductive step;" the causes "inside" the 
tree must instead be left untouched. As an example, take an arc at depth n: 
its causes greater than or equal to n will become n + 1 for they refer to arcs 
belonging to the prefix of the result, while the others remain as they are for 
they point to arcs in the residual part of the tree. This task is performed by 
the auxiliary operator [n] : P ( N  + ) -+ P(N + ), defined as follows: 

where 

[n]K = {k + 1Jk E K, k 2 n}U{klk E K, k <  n}. 

When a communication occurs, its causes should be the union of the causes 
of both the communicating arcs, say a and b. Recursively, all the arcs 
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depending on either a or b, should contain the causes of both (properly 
upgraded). The auxiliary operator rK/n] : P ( N  + ) -+ P ( N  + ), implements 
such a "cross ~nheritance" of causes: 

where 

{ELIH if n E H> 
jK/njH = otherwise. 

4.2. The Algebra CT: Axioms and Morphisms 

We now turn the set C?(A) of causal trees into an interpretation of c3S and 
CCS terms. The algebra of causal trees, C?, is the unique model of the 
following axioms on carrier C I (A) ,  with + interpreted as sum of trees: 

Znit K+cTT = a K b o  T; 
ia'il nil = NIL; 

The causal tree [Z] T 

The causal tree [{I, 21/11 T 

FIGURE 3 The application of the auxiliary operators to the causal tree T. 
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SEMANTICS OF CONCURRENT SYSTEMS 

where Cr = Em, M ( ~ m ,  Kmj.Lr,,,. 

Some comments are in order. 

- The first axiom is used to add the set K, properly upgraded, to the causes 
of each arc of the causal tree T. 

- The third axiom concerns prefixing: by the operator a .  DO applied to 11) 
we add the pointer to the new arc to the sets of causes of all arcs of T. 
The new arc is now the first of T and it "has no cause." 

- Axiom Interleave merges two trees by interleaving their actions (the first 
two sumniands) or by synchronizing them when complementary (last 
summand). In the first case if the action is p (respectively v) then the 
czus.! tree T )  is delayed ';y operato; [I] which incre- 
ments by 1 all backward references pointing outside U (respectively T). If 
complementary actions are synchronized A, = p,, resulting in T ,  its 
causes result from the union of the causes of A,, and p, and by the fK/n] 
operator the causes of p,(A,), properly updated, are passed down to the 
descendant of A,(p,). This axiom may be seen as the causal counterpart 
of Milner's expansion theorem. 

We now interpret C ~ S  terms in C'T. 
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where 1: (CCS: Cccs) + (C?, CCT) is the C-homomorphism defined as 
follows: 

[nil] = nilc7; 

b, TI = P . c T [ ~ ] ;  

I[tCPI41 = Itl!Plc7~1; 

[ t \ , ~ ]  = [ t ] ' \ cT~;  

[ i t  + i l l ]  = + c ~  [i"]; 

1 l l 1  - T I '  r r ! n  
i L  u - ut U I I C T U L  U .  0 

The algebra (C?, Ccl) may be used as an intrepretation for CCS letting rec 
x.t be interpreted as the fixed point at x of the functional interpretation [t] 
of t. Indeed, it will be: 

rec x. t = t[rec x.t/x] , hence 

[recx.t] = [t[recx.t/x]b 

The existence and uniqueness of fixed points are guaranteed by the 
assumption of the well-guardedness of recursive definitions and by the 
metric continuity of all operators in XU{+). (Those operators are distance 
preserving, due to the form of the defining axioms, letting the distance 
between pairs of trees he the maximal distance between trees.) 

Since it is easy to show that for each t in CCS and for the corresponding 
c 3 S  term 0 + t the two mappings i[ ] and [ IcT coincide, in the sequel we 
denote the both of them with [ I c T  

5. FULL ADEQUACY 

Here the equality is established between the operational meaning [el,, and 
the algebraic meaning [elo of an arbitrary C 3~ expression, i.e., the relation 
[el,, = [elc,- which expresses the full adequacy of the model C7. 

THEOREM 5.1 (Full adequacy) The algebraic model C 7  is fully adequate for 
c3s. 0 

A quick comparison between the algebraic axioms for CI and the logical 
axioms set for C ~ S  transitions shows that in order to prove the above 
theorem all we have to establish is the following series of propositions which 
imply the existence of normal forms Ci,,zi .  [eiIcT for causal trees. 
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SEMANTICS OF CONCURRENT SYSTEMS 15: 

From Propositions 5.1 to 5.5 below, both transitions e -2 el (between 
terms) and transitions [elo --2 [ello (between trees, defined in Section 2) 
obey the rules stated for C ~ S  in Section 3. The propositions rely upon the 
cornbinatory laws of Appendix A and their proofs may be found in 
Appendix B. 

PROPOSITION 5.1 For each (vec x.t) E CREC(C, X) and for eachfinite set K 
in P ( N +  ), 

P R O P O S ~ T ~ O N  5.2 f i r  each rEcREZ(Z, X) and jkr each jtnite set 
K E  P ( N + ) ,  

PROPOSITION 5.3 For each t ,  t', r "  E CREC(C, X) andfor eachfinite set K E 

P(N' ), 

PROPOSITION 5.4 For each C3s  term e, [I] [elcT = [6(e)IcT. 0 

PROPOSITION 5.5 For each C3s term e and for eachfinite set H E P(Nt ) 
and 1 E H, 

6. CAUSAL WEAK BISINIULATION 

We start by defining the causal weak bisimulation between C ~ S  terms (and 
thus, by way of extension, on CCS terms) and then we will define it on 
causal trees to indicate a sound and complete system of equational axioms 
for causal CCS. 

To correctly define the causal weak bisimulation relation we have the 
problem of the "cleaning" of the sets of causes of the (A, K )  transitions from 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

3:
22

 0
8 

Ju
ne

 2
01

5 



152 STEF 4 N 0  AASACrlul 

the pomters to the r actions which precede them. To this aim we define the 
new operator "flexa," t, and an extension of the transition relation such that 
when a (7,  K)  transition occurs the sets of causes of the fellowing transitions 
are not modified. 

We require for the operator i: P(N + ) 4 P(N4  ) to distribute over all 
operations in C\({nil) u {,uJp E A)) ,  and we have: 

Let C "" = ( ( A ,  K )  I X  E A u /\ A K c N , K finite) U {T) be the set of 
labels where only the non-r symbols bear indication of their observabie 
causes (see [ 5 ] ) .  

The transition relation where w E C D D ,  is defined from 2 by the 
following two rules: 

In order to cope with this new setting we need some definitions, which are 
standard (see [lo]). 

DEFINITION 6.1 (Sequences of internai actions) Given e and e' in Z'S, we 
write e =+ e' if there exists a sequences of n T-transitions, n > 0 such that e 
becomes e' without taking care of the causes of TS, namely there exists el ,  
1 5 i 5 n, such that 

We will write e 2 e ' ,  w E C D D ,  if there exist el and e2 such that 

X. K 
either e * el H e2 * e' or e * el A i (e2)  * e ' .  

e 2 e' will be the same of e =. el and, if n = 0 ,  e = e'. 

DEFINITION 6.2 (Causal weak bisimulation) Given e and f in C ~ S ,  we 
have e w w f  if for each w E C D D ,  

i .  whenever e =% e' then there exists f' such that f f' and elwwf'. 
ii. whenever f f' then there exists e' such that e % e' and e'-wf'. 

0 
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SEMA~TICS OF C O ~ C U R R E ~  r SYSTEMS 153 

Two CCS terms will be causally weakly equivalent if the corresponding C'S 
terms are such. 

Causal weak bisimulation satisfies all the properties that hold for the 
interleaving case, eg . ,  propositions from Sections 5.2 and 5.3 in [lo] are still 
valid. 

DEFINITION 6.3 Given e and f in C ~ S ,  let ewcf  if for each w E CDD, 

i. whenever e A e' then there exists f '  such that f -2 f' and e'wwf', 
ii. ..A. wll~~lr;ver -- - f f' then there exists r' such that e e ' and el- wf' .  i> 

As done before, if t i  and t2 are CCS terms then t lwCt2 ~ff(@ s t l w C  (fl j t2). 
- 
Poliowing the corresponding proof ir? [lo], it is immediate to prove that 

wc is a congruence with respect to CCS operators, and that it is completely 
characterized by (the transposition to terms of) axioms (Al) t (A4) listed in 
Section 2 and the T-laws: 

where x, y and z are CCS terms and p E A. 
Besides, it is easy to establish the following: 

FACT 6.1 The cazr,.~! nbservattonal congrzence, is finer tha:: - (Miher  '3 

congruence). 0 

By way of conclusion, we mention that the correspondence between the 
transitions of C3s terms e 5 el and the tree-transitions [elo -% [ellc;, due 
to the full adequacy of the model CT, permits to define the causal weak 
bisimulation relation on causal trees following the pattern of Definition 6.2. 
Similarly to what we did with terms, we need a new tree-transition relation 
which permits to correctly upgrade the sets of causes of those arcs who are 
preceded by T-arcs. A family of auxiliary operators is introduced which 
removes from the sets of causes of all arcs of a sub-tree prefixed by a T-arc 
the pointer to that arc. Thus, we have a relation which is an extension of the 
tree-transition relation defined in Section 5. Formal definitions can be found 
in Appendix C. 

The new definition of causal congruence introduced here, allows us to 
obtain a complete system of equational axioms for causal observational 
congruence over finite, i .e., non recursive, CCS programs t identified with 
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the corresponding C'S expressions @ =+ t. The first seven axioms are copies 
of Milner's ax~oms (Al) -+ (A7) indicated above, where label p ranges over C. 
The remaining axioms are Inzt, Nzl, Pref, Sum, Relab, Restr, Interleave and 
the defining equations for combinators a .  D, [n] and i K p ]  operating on 
causal trees specified by sum expressions. The correctness of the resultant 
axiomatization derives from the fact that axioms (Al) t ( A 4 )  are clearly 
valid and that the r-laws may be proved valid for causal trees, letting p 

range over L DD. Completeness directly emerges from a remake of the 
original proof of completeness for axioms (At) + (A7) in [9, 101, provided 
that axlorns h t ,  Nli, ?ref, Sum, Relab, Restr and Interleave are used ro 
derive from any non recursive C3s expression an equivalent expression on 
combinators NIL, (p, Kj. and + (a "normal f 3 m "  for causal trees). 
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A. SOME ALGEBRAIC LAWS 

Here we state some algebraic laws satisfied by the operators introduced in 
Section 4.1. These laws will be useful in the proofs of the propositions of 
Section 5. 
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SE.M4VTICS OF CONCURRENT SYSTEMS 155 

Before we need the following definition: 

DEFINITION A.l (Boundedness) A finite set K E P ( N + )  is i-bounded if for 
each k E K  is k =: f. Then a causal tree is bounded if for each inidai path 
labeled with 

every set Ki, is i-bounded. 0 

Notice that if i = I ,  being k < 1 and k E N  +, then it wi!! be K1 = 8. The 
previous definition is aimed at ensuring that all the causes of an 2:c are in 
the tree - this constraint avoids dangling references, i.e,, references to arcs 
not in the tree. The definition also introduces a "normalization" constraint 
on causal trees in order to have a meaningful notion of equivalence. Each 
law is shaped as an indexed family of equations over causal trees. 

LEMMA A.l Let T be a causal tree and let K, H in P ( N + )  befinite. Then 

Let, in the following five lemmas, T and U be bounded trees in CT, and let K 
and H be finite in P ( N  + ). 

LEMMA 8 . 2  Let n, jE N +, n 2 j. Then [ J ~ ~ K G , - I T  = ~ K D , T .  0 

LEMMA A.3 Let  EN +. Then aKb,(TI/,,U) = ~ K D ,  T//,,aKD, U. 0 

LEMMA A.5 Let n E N ' . Then 

LEMMA A.6 Let n E N + .  Then 

TaKbn /n] (TI I c l  U) = r a K ~ n  In] TI I ,:, raKpn lnJ U. v 
(a KD, abbreviates a K D , ~ ,  i.e., the application of S to the set K n times.) 
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1 i6  STEFAXO BASAGM 

The proofs of the above lemmas are easily obtained by induct~on on the 
depth of a (bounded) causal tree. We do not include them here, because they 
are ted~ous and long They can be found in [I]-Appendix A 

B. FULL ADEQUACY: THE PROOF 

T. 7 we now establish Propositions 5 . i  -- 5.5. We need the laws of Appendix A, 

the axioms ~f Sec!ic;n 4.2 and the follocving lemmas: 

Proof Follows directly from the Interleave axiom for C 7 .  0 

L E M M A  B.2 For each t in CCS, [tIcT is bounded and equals [0 J tIcT. 

Proof [tIcT is a bounded causal tree. Indeed, by contradiction, let t have 
minimal complexity in the set of terms for which [tIcT is not bounded. From 
the algebraic axioms of C I ,  r must have either the form p.T) or the form 
t'lit'. If t = p.t and [t'],, is bounded then [tIC7 is bounded (axiom Pref). If 
t = t'iit" and both [t'jcl and [t"jcl are bounded then [ticT is bounded 
(Lemma B. I). Hence t cannot be minimal and we have the desired contra- 
diction. 

For the second assertion we have [0* t],, = 0 * CT [t],, = 4 0 DO [tICT = 
[t],, applying axiom Init. 0 

PROPOSITION 5.1 For each (vec x.t) E CREC(C, X) and each jinite set 
K E  P ( N + ) ,  

[k + rec x.t],, = [K + t[uec x.t /x]lCT. 

Proof Since rec is interpreted in (CT, & - )  as a fixed point combinator 
we have [ K J  r e c ~ . t ] , ~  = a K  D~ [recx.t],, = 4 K  PO [t[recx.t/x]],, = [K=+ 
t[recx.t/x]],, by applying axiom Init. 0 

PROPOSITION 5.2 For each t E CREC(C, X) and eachjinite set K E P(Nf  ), 
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SEMANTICS OF CONCURRENT SYSTEMS 

Proof By axiom Itzit we have: 

CK J P.tlC7 = 

<K i.i~ jP.t],, = by axiom Piyf 

4Ki.o (P,  0) . ~ { l b o  [ ~ C T  = by definition of ~ K D ,  

( p ,  K )  . a ( K )  D ,  a { l ) bo  [ t] ,  = by definition of ~ K D ,  

( p ,  K )  . aS(K)  DO a ( l ) bo  [t],, = by Lemma A.l 

(1-1, K )  . aS(K)  U { l ) ~ o  [tlcr = by axiom Init 

jp, K )  . j6jK) u (1) J tlPT 0 

Proof We shall prove only the last assertion (the first three being trivial 
consequences of the definition of ~ K D ,  and of its distributivity over + ? [ a !B ]  
and \a). 
iv. Applying the Init axiom we have: 

PROPOSITION 5.4 For each c3S' term e,  [ I ]  [elc7 = [6(e)lc7. 

Proof If e is an expression of the form K J ~  then what we want to prove is 

D l  [K * tl,, = [S (K)  =+ tl,,. 
Applying the Init axiom we have: 

[1l[K* tl,, = 

[ I ]  a K D O  [t],, = by Lemma B.2 and Lemma A.2 

a K ~ l  [&;, = by definition of a KD,  

aS(K)  DO [t],, = by the Init axiom 

P ( K )  =+ tl,. 
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There remains to c h e ~ k  the caae when e is an expression of the form e'ije". 
We want that [l][ejcT = [l][el i lel l]cT = [6(e/lie/')]c7 = [6(e)icT We proceed 
by induction on (sub)expressions. By defimtion: 

P R O P O S I T I O N  5.5 For each C'S term e and for eachfinite set H E ?(N+) 
and 1 E H,  

Proof This proof is similar to that of Proposition 5.4, and relies on Lemmas 
B.2, A S  and A.6. 0 

C. CAUSAL WEAK BISIMULATION ON CAUSAL TREES: 
FORMAL DEFINITIONS 

Here we extend the tree-transition relation introduced in Section 5 in order 
to define causal weak bisimulation on causal trees. Starting from 
5, z E C, we deduce the relation A, u E C DD, by the following two 
rules: 

where the family of operators a . ~  : P ( N  + ) -+ P ( N  + ) is defined in the 
following way: 

D NILan E NIL, 

D T a n  r CiEI(pi,bKian) . D T ~ ~ " + ' ,  

where 
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SEMANTICS OF CONCURRETZT SYSTEMS 159 

!D K a  removes from the set K the integer E ,  if n E K, and decreases the 
pointers to the arcs that precede the current T arc, in order to skip it.) 

Netation Giver, two causal trees, T and T', we write T s ? '  to mean :ha: T' 
is a sub-tree of T and that there exists a path in T made of n T-arcs, n 2 0, 
such that from the root of T we can reach the root of T' without taking care 
of the causes of the T'S, i.e., there exist T,, 1 5 i 5 n, such that: 

By writing T T', u E L "", we mean that there exists TI  and T2 such that 
T ~ T ! ~ T 7 + T i . T ~ T i i ~ e q u a l t o T ~ T ' a n d , i f t z = O ~ T z T ' .  C, 

DEFINITION C.i (Causal weak bisimulation on Causal Trees! Given T1 
and T2 in C I ,  we say T1w WT2 if for each w E C DD, 

W 

i. whenever T1 & Ti  then there exists T i  such that T2 % T i  and 
T: -w T i ,  

ii. whenever Ti % T i  then there exists T ' ,  such that TI  2 Ti  and 
T', -w T i ,  0 

D E F ~ I T ! O N  C.2 (Causal Observationd Congrue~ce) Give:: Ti and T2 in 
CT, we say T1wCT2 if for each w E C DD, 

i. whenever TI T', then there exists Tk such that T2 % T i  and 
Ti -y T i :  

ii. whenever T2 T i  then there exists T', such that T1 Ti  and 
T{  -W Tk. 0 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

3:
22

 0
8 

Ju
ne

 2
01

5 


