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Remarks on Ad Hoc Networking

Stefano Basagni

Department of Electrical and Computer Engineering
Northeastern University
basagni@ece.neu.edu

Abstract. This papers describes selected problems and solutions for ad
hoc networking, namely, for networking in absence of a fixed infrastruc-
ture. All nodes of an ad hoc networks move freely and communicate with
each other only if they are in each other transmission range (neighboring
nodes). This implies that in case two nodes are not neighbors, in order
for them to communicate they have to rely on the forwarding services
of intermediate nodes, i.e., each node is a router and the communication
proceeds in multi-hop fashion. In this paper we are concerned with three
aspects of ad hoc networking. The problem of accessing the wireless chan-
nel, i.e., the problem of devising Media Access Control (MAC) protocols.
The problem of grouping the nodes of the network so to obtain a hierar-
chical network structure (clustering ). The problem of setting up an ad
hoc network of Bluetooth devices, i.e., of forming a Bluetooth scatternet.

1 Introduction

The ability to access and exchange information virtually anywhere, at any time,
is transforming the way we live and work. Small, handheld unthethered devices
are nowadays at anybody’s reach, thus allowing new forms of distributed and
collaborative computation. Among the several examples of this new form of com-
munication we can mention what is often referred to as pervasive computing. The
essence of pervasive computing is the creation of environments saturated with
computing and wireless communication, yet gracefully integrated with human
users. Numerous, casually accessible, often invisible computing devices, which
are frequently mobile or embedded in the environment, are connected to an
increasingly ubiquitus network structure.

The possible network architectures that enable pervasive computing fall into
two main categories: Cellular networks and multihop wireless networks or, as
commonly termed recently, ad hoc networks. In the first case, some specialized
nodes, called base stations, coordinate and control all transmissions within their
coverage area (or cell). The base station grants access to the wireless channels
in response to service requests received by the mobile nodes currently in its
cell. Thus the nodes simply follow the instruction of the base station: For this
reason, the mobile nodes of a cellular network need limited sophistication and
can request and achieve all the information they need via the base station that
is currently serving them.
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The primary characteristic of an ad hoc network architecture is the absence
of any predefined structure. Service coverage and network connectivity is defined
solely by node proximity and the prevailing RF propagation characteristics. Ad
hoc nodes directly communicate with one another in a peer-to-peer fashion. To
facilitate communication between distant nodes, each ad hoc node also acts as
a router, storing and forwarding packets on behalf of other nodes. The result
is a generalized wireless network that can be rapidly deployed and dynamically
reconfigured to provide on-demand networking solutions.

In this work we are concerned about this second, more general, kind of net-
work architecture, which is recently gaining more and more attention—both
from the academia and industry.

While the generic architecture of ad hoc network certainly has its advantages,
it also introduces several new challenges. All network control and protocols must
be distributed. For any possible collaborative task, each ad hoc node must be
aware of what is happening around them, and cooperate with other nodes in
order to realize critical network services, which are instead realized by the base
stations in a cellular environment. Considering that most ad hoc systems are
fully mobile, i.e., each node moves independently, the level of protocol sophisti-
cation and node complexity is high. Power conservation is also of the essence,
since most of the devices of upcoming ad hoc networks, such as handheld de-
vices, laptops, small robots, sensors and actuators are battery operated. Finally,
networks operations and protocols should be scalable, i.e., largely independent
of the increasing number of networks nodes, or of their larger geographical dis-
tribution.

In this paper we describe some results that have been proposed in recent years
on ad hoc networking. In particular here we focus on two main aspects, namely,
Media Access Control (MAC) protocols, i.e., methods for successfully accessing
the wireless channel, and clustering protocols, i.e., protocols for the grouping of
nodes into clusters. As an application of clustering, we illustrate a protocol for
the set up of an ad hoc network of Bluetooth devices, Bluetooth being a wireless
technology that enables ad hoc networking. The important issue of routing and
in general, of multipoint communication, are not dealt with in this paper. These
issues have been widely covered in many comprehensive survey papers, such as
[1] and [2].

The rest of the paper is organized as follows. In the next section we describe
the problem of accessing the wireless channel, and the proposed MAC protocols
that solve this problem. In Section 3 we give an example of a clustering algo-
rithm which is well suited for mobile ad hoc networks. We finally illustrate an
application of the presented clustering algorithm for setting up ad hoc networks
of Bluetooth devices (Section 4). Section 5 concludes the paper.

2 Ad Hoc MAC Protocols

Ad hoc networks do not have the benefit of having predefined base stations
to coordinate channel access, thus invalidating many of the assumptions held
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by MAC designs for the centralized (cellular) architecture. In this section, we
focus our attention on MAC protocols that are specifically designed for ad hoc
networks. (This section is based on the research performed with Dr. Andrew
Myers, and can be more thoroughly found in [3]).

We start by exploring the physical constraints of the wireless channel and
discuss their impact on MAC protocol design and performance.

Radio waves propagate through an unguided medium that has no absolute
or observable boundaries and is vulnerable to external interference. The signal
strength of a radio transmission rapidly attenuates as it progresses away from
the transmitter. This means that the ability to detect and receive transmissions
is dependent on the distance between the transmitter and receiver. Only nodes
that lie within a specific radius (the transmission range ) of a transmitting node
can detect the signal (carrier) on the channel. This location dependent carrier
sensing can give rise to so-called hidden and exposed nodes that can detrimentally
affect channel efficiency. A hidden node is one that is within range of a receiver
but not the transmitter, while the contrary holds true for an exposed node.
Hidden nodes increase the probability of collision at a receiver, while exposed
nodes may be denied channel access unnecessarily, thereby under utilizing the
bandwidth resources.

Performance is also affected by the signal propagation delay, i.e., the amount
of time needed for the transmission to reach the receiver. Protocols that rely
on carrier sensing are especially sensitive to the propagation delay. With a sig-
nificant propagation delay, a node may initially detect no active transmissions
when, in fact, the signal has simply failed to reach it in time. Under these condi-
tions, collisions are much more likely to occur and system performance suffers. In
addition, wireless systems that use a synchronous communications model must
increase the size of each time slot to accommodate propagation delay. This added
overhead reduces the amount of bandwidth available for information transmis-
sion.

A possible taxonomy of ad hoc MAC protocols includes three broad proto-
col categories that differ in their channel access strategy: Contention protocols,
allocation protocols, and a combination of the two (hybrid protocols ).

Contention protocols use direct competition to determine channel access
rights, and resolve collisions through randomized retransmissions. Prime exam-
ples of this protocols are ALOHA and CSMA (for a brief discussion on “core”
MAC protocols such as ALOHA, slotted ALOHA, CSMA, TDMA, FDMA and
CDMA the reader is referred to [3]). With the exception of slotted ALOHA,
most contention protocols employ an asynchronous communication model. Col-
lision avoidance is also a key design element that is realized through some form
of control signaling.

The contention protocols are simple and tend to perform well at low traffic
loads, i.e., when there are few collision, leading to high channel utilization and
low packet delay. However, protocol performance tends to degrade as the traffic
loads are increased and the number of collisions rise. At very high traffic loads, a
contention protocol can become unstable as the channel utilization drops. This
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can result in exponentially growing packet delay and network service breakdown
since few, if any, packets can be successfully exchanged.

Allocation protocols employ a synchronous communication model, and use
a scheduling algorithm that generates a mapping of time slots to nodes. This
mapping results in a transmission schedule that determines in which particular
slots a node is allowed to access the channel. Most allocation protocols create
collision-free transmission schedules, thus the schedule length (measured in slots)
forms the basis of protocol performance. The time slots can either be allocated
statically or dynamically, leading to a fixed and variable schedule length.

The allocation protocols tend to perform well at moderate to heavy traffic
loads as all slots are likely to be utilized. These protocols also remain stable
even when the traffic loads are extremely high. This is due to the fact that most
allocation protocols ensure that each node has collision-free access to at least
one time slot per frame. On the other hand, these protocols are disadvantaged
at low traffic loads due to the artificial delay induced by the slotted channel.
This results in significantly higher packet delays with respect to the contention
protocols.

Hybrid protocols can be loosely described as any combination of two or more
protocols. However, in this section, the definition of the term hybrid will be
constrained to include only those protocols that combine elements of contention
and allocation based channel access schemes in such a way as to maintain their
individual advantages while avoiding their drawbacks. Thus the performance of
a hybrid protocol should approximate a contention protocol when traffic is light,
and an allocation protocol during periods of high load. (For details on hybrid
protocols the reader is referred to [3].)

2.1 Contention Protocols

Contention protocols can be further classified according to the type collision
avoidance mechanism employed. The ALOHA protocols make up the category
of protocols that feature no collision avoidance mechanism, i.e., they simply react
to collision via randomized retransmissions. Most contention protocols, however,
use some form of collision avoidance mechanism.

The busy-tone multiple access (BTMA) protocol [4] divides the entire band-
width into two separate channels. The main data channel is used for the trans-
mission of packets, and occupies the majority of the bandwidth. The control
channel is used for the transmission of a special busy-tone signal that indicates
the presence of activity on the data channel. These signals are not bandwidth
intensive, thus the control channel is relatively small.

The BTMA protocol operates as follows. When a source node has a packet
to transmit, it first listens for the busy-tone signal on the control channel. If
the control channel is idle, i.e., no busy-tone is detected, then the node may
begin transmitting its packet. Otherwise, the node reschedules the packet for
transmission at some later time. Any node that detects activity on the data
channel immediately begins transmitting the busy-tone on the control channel.
This continues until the activity on the data channel ceases.
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In this way, BTMA prevents all nodes that are two hops away from an active
source node from accessing the data channel. This significantly lowers the level of
hidden node interference, and therefore reduces the probability of collision. How-
ever, the number of exposed nodes is dramatically increased. The consequence
being a severely underutilized data channel.

The receiver initiated busy-tone multiple access (RI-BTMA) protocol [5] at-
tempts to minimize the number of exposed nodes by having only the destina-
tion(s) transmit the busy-tone. Rather than immediately transmitting the busy-
tone upon detection of an active data channel, a node monitors the incoming
data transmission to determine whether it is a destination. This determination
takes a significant amount of time, especially in a noisy environment with cor-
rupted information. During this time, the initial transmission remains vulnerable
to collision. This can be particularly troublesome in high speed systems where
the packet transmission time may be short.

The wireless collision detect (WCD) protocol [6] essentially combines the
BTMA and RI-BTMA protocols by using two distinct busy-tone signals on the
control channel. WCD acts like BTMA when activity is first detected on the
main channel, i.e., it transmits a collision detect (CD) signal on the BTC. RI-
BTMA behavior takes over once a node determines it is a destination. In this
case, a destination stops transmitting the CD signal, and begins transmitting a
feedback-tone (FT) signal. In this way, WCD minimizes the exposed nodes while
still protecting the transmission from hidden node interference.

These busy-tone protocols feature simple designs that require only a minimal
increase in hardware complexity. Because of its unique characteristics, the WCD
protocol is the overall performance leader followed by RI-BTMA and BTMA,
respectively [6]. Furthermore, the performance of busy-tone protocols are less
sensitive to the hardware switching time since it is assumed that a node can
transmit and receive on the data and control channels simultaneously. However,
wireless systems that have a limited amount of RF spectrum may not be able
to realize a separate control and data channel. In such cases, collision avoidance
using in-band signaling is necessary.

The multiple access with collision avoidance (MACA) protocol [7] uses a
handshaking dialogue to alleviate hidden node interference and minimize the
number of exposed nodes. This handshake consists of a request-to-send (RTS)
control packet that is sent from a source node to its destination. The desti-
nation replies with a clear-to-send (CTS) control packet, thus completing the
handshake. A CTS response allows the source node to transmit its packet. The
absence of a CTS forces a node to reschedule the packet for transmission at some
later time.

Notice that a hidden node is likely to overhear the CTS packet sent by a
destination node, while an exposed node is not. Thus by including the time
needed to receive a CTS and packet in the respective RTS and CTS packets,
we reduce the likelihood of hidden node interference and the number of exposed
nodes simultaneously.
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The MACAW protocol [8] enhances MACA by including carrier sensing to
avoid collisions among RTS packets, and a positive acknowledgement (ACK) to
aid in the rapid recovery of lost packets. To protect the ACK from collision, a
source node transmits a data sending (DS) control packet to alert exposed nodes
of its impending arrival. Improvements are also made to the collision resolution
algorithm to ensure a more equitable sharing of the channel resources.

The MACA with piggyback reservations (MACA/PR) protocol [9] enhances
MACA by incorporating channel reservations. This allows the system to support
QoS sensitive applications. Each node maintains a reservation table (RT) that
is used to record the channel reservations made by neighboring nodes. A source
node makes a reservation by first completing a RTS/CTS exchange. It then sends
the first real-time packet whose header contains the time interval specifying the
interval in which the next one will be sent. The destination responds with an
ACK carrying the equivalent time interval. Other nodes within range note this
reservation in their RT, and remain silent during the subsequent time intervals.
Thus the source node can send subsequent real-time packets without contention.
To ensure proper bookkeeping, the nodes periodically exchange their RTs.

The MACA by invitation (MACA-BI) protocol [10] reverses the handshaking
dialogue of MACA. In this case, the destination node initiates packet transmis-
sion by sending a request-to-receive (RTR) control packet to the source node.
The source node responds to this poll with a packet transmission. Thus each
node must somehow predict when neighbors have packets for it. This requires
each node must maintain a list of its neighbors along with their traffic character-
istics. In order to prevent collision, the nodes must also synchronize their polling
mechanisms by sharing this information with their neighbors.

These MACA based contention protocols minimize collisions by reducing the
negative effect of hidden and exposed nodes through simple handshaking dia-
logues. However, the exchange of multiple control packets for each data packet
magnifies the impact of signal propagation delay and hardware switching time.
To some extent the MACA/PR and MACA/BI protocols alleviate these prob-
lems reducing the amount of handshaking, yet the amount of state information
maintained at each node can be substantial.

2.2 Allocation Protocols

There are two distinct classes of allocation protocols that differ in the way the
transmission schedules are computed. Static allocation protocols use a central-
ized scheduling algorithm that statically assigns a fixed transmission schedule
to each node prior to its operation. This type of scheduling is equivalent to the
assignment of MAC addresses for Ethernet interface cards. Dynamic allocation
protocols uses a distributed scheduling algorithm that computes transmission
schedule in an on-demand fashion.

Since the transmission schedules are assigned beforehand, the scheduling al-
gorithm of a static allocation protocols requires global system parameters as
input. The classic TDMA protocol builds its schedules according to the maxi-
mum number of nodes in the network. For a network of N nodes, the protocol
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uses a frame length of N slots and assigns each node one unique time slot. Since
each node has exclusive access to one slot per frame, there is no threat of collision
for any packet type (i.e., unicast or multicast). Moreover, the channel access de-
lay is bounded by the frame length. Because of the equivalence between system
size and frame length, classic TDMA performs poorly in large scale networks.

The time spread multiple access (TSMA) protocol [11] relaxes some of the
strict requirements of classic TDMA to achieve better performance while still
providing bounded access delay. The TSMA scheduling algorithm assigns each
node multiple slots in a single frame, and permits a limited amount of collisions
to occur. These two relaxations allow TSMA to obtain transmission schedules
whose length scales logarithmically with respect to the number of nodes. Further-
more, TSMA guarantees the existence of a collision-free transmission slot to each
neighbor within a single frame.

The source of this “magic” is the scheduling algorithm that makes use of the
mathematical properties of finite fields. An excellent introduction to finite fields
can be found in [12]. The scheduling algorithm is briefly outlined as follows.
For a network of N nodes, the parameters q (of the form q = pm, where p
is a prime and m an integer) and integer k are chosen such that qk+1 ≥ N
and q ≥ kDmax + 1, where Dmax is the maximum node degree. Each node can
then be assigned a unique polynomial f over the Galois field GF (q). Using this
polynomial, a unique TSMA transmission schedule is computed where bit i = 1
if (i mod q) = f("i/q#), otherwise i = 0.

As shown in [11], that this TSMA scheduling algorithm provides each node
with a transmission schedule with guaranteed access in each time frame. The
maximum length of this schedule is bounded by:

L = O

(
D2

max log2 N

log2 Dmax

)

.

Notice that the frame length scales logarithmically with the number of nodes
and quadratically with the maximum degree. For ad hoc networks consisting of
thousands of nodes with a sparse topology (i.e., small Dmax), TSMA can yield
transmission schedules that are much shorter than TDMA. Table 1 compares
the frame lengths of TDMA and TSMA for a network of N = 1000 nodes. For
TSMA protocols a Ω(log n) lower bound has been proved for L in [13]. We notice
that there is still a gap between the TSMA upper bound and the mentioned
logarithmic lower bound. Therefore, there is still room for improvements (more
likely on the lower bound side). Protocols TSMA-like have also been deployed
as a basis for implementing broadcast (i.e., one-to-all communication) in ad hoc
networks. Upper and lower bound for deterministic and distributed TSMA-based
broadcast can be found in [14,15] and [16], respectively.
With mobile ad hoc networks, nodes may be activated and deactivated without
warning, and unrestricted mobility yields a variable network topologies. Conse-
quently, global parameters, such as node population and maximum degree, are
typically unavailable or difficult to predict. For this reason, protocols that use
only local parameters have been developed. A local parameter refers to informa-
tion that is specific to a limited region of the network, such as the number of
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Table 1. Frame lengths of classic TDMA vs. TSMA.

D = 2 D = 5 D = 10 D = 15
TDMA 1000 1000 1000 1000
TSMA 49 121 529 961

nodes within x hops of a reference node (referred to as an x-hop neighborhood).
A dynamic allocation protocol then uses these local parameters to deterministi-
cally assign transmission slots to nodes. Because local parameters are likely to
vary over time, the scheduling algorithm operates in a distributed fashion and
is periodically executed to adapt to network variations.

Dynamic allocation protocols typically operate in two phases. Phase one
consists of a set of reservation slots in which the nodes contend for access to the
subsequent transmission slots. Lacking a coordinating base station, contention
in this phase requires the cooperation of each individual node to determine and
verify the outcome. Successful contention in phase one grants a node access to
one or more transmission slots of phase two, in which packets are sent.

A great number of dynamic allocation protocols have been proposed. The
protocols in [17]-[18] are just a few excellent examples of this two-phase design.
The protocols in [17]-[19] use a contention mechanism that is based on classic
TDMA. Essentially the nodes take turns contending for slot reservations, with
the earliest node succeeding. This results in a high degree of unfairness which
is equalized by means of a reordering policy. Although these protocols create
transmission schedules that are specific to the local network topology, they still
require global parameters.

In contrast, the five phase reservation protocol (FPRP) [18] is designed to
be arbitrarily scalable, i.e., independent of the global network size. FPRP uses a
complex frame structure that consists of two subframe types, namely reservation
frames and information frames. A reservation frame precedes a sequence of k
information frames. Each reservation frame consists of " reservation slots that
correspond to the " information slots of each information frame. Thus, if a node
wants to reserve a specific information slot, it contends in the corresponding
reservation slot. At the end of the reservation frame, a TDMA schedule is created
and used in the following k information frames. The schedule is then recomputed
in the next reservation frame.

In order to accommodate contention, each reservation slot consists of m reser-
vation cycles that contain a five round reservation dialogue. A reservation is made
in the first four rounds, while the fifth round is mainly used for performance op-
timization. The contention is summarized as follows. A node that wishes to make
a reservation sends out a request using p-persistent slotted ALOHA (round 1),
and feedback is provided by the neighboring nodes (round 2). A successful re-
quest, i.e., one that did not involve a collision, allows a node to reserve the slot
(round 3). All nodes within two hops of the source node are then notified of
the reservation (round 4). These nodes will honor the reservation and make no
further attempts to contend for the slot. Any unsuccessful reservation attempts
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are resolved through a pseudo-Bayesian resolution algorithm that randomizes
the next reservation attempt.

In [18], FPRP is shown to yield transmission schedules that are collision-free,
however the protocol requires a significant amount of overhead. Each reservation
cycle requires a number of hardware switches between transmitting and receiv-
ing modes. Each round of contention must also be large enough to accommodate
the signal, propagation delay and physical layer overhead (e.g., synchronization
and guard time). Add this together and multiply the result by m reservation
cycles and " reservation slots, and the end result is anything but trivial. Fur-
thermore, the system parameters k, " and m are heuristically determined through
simulation and then fixed in the network. This limits the ability of FPRP to dy-
namically adapt its operation to suit the current network conditions which may
deviate from the simulated environment.

3 Clustering for Ad Hoc Networks

Among the many ways to cope with the barriers and challenges posed by the ad
hoc network architecture, here we describe a possible solution based on grouping
the network nodes into clusters. This operation goes commonly under the name
of clustering.

In this section, we describe a protocol for clustering set up and clustering
maintenance in presence of node mobility. The cluster are characterized by a
node that coordinates the clustering process (a clusterhead) and possibly few
non-clusterhead nodes, that have direct access to only one clusterhead (one hop,
non-overlapping clusters).

In the following description of the clustering protocol we consider an ad hoc
network as an undirected graph G = (V, E) in which V , |V | = n, is the set
of (wireless) nodes and there is an edge {u, v} ∈ E if and only if u and v can
mutually receive each others’ transmission. In this case we say that u and v are
neighbors. The set of the neighbors of a node v ∈ V will be denoted by Γ (v).
Due to mobility, the graph can change in time.

Every node v in the network is assigned a unique identifier (ID). For simplic-
ity, here we identify each node with its ID and we denote both with v. Finally,
we consider weighted networks, i.e., a weight wv (a real number ≥ 0) is assigned
to each node v ∈ V of the network. For the sake of simplicity, here we stipulate
that each node has a different weight. (In case two nodes have the same weight,
the tie can be broken arbitrarily, e.g., by using the nodes’ ID.)

In this section, clustering an ad hoc network means partitioning its nodes
into clusters, each one with a clusterhead and (possibly) some ordinary nodes.
(Clusterhead and ordinary node ar the roles that each node may assume.) The
choice of the clusterheads is here based on the weight associated to each node:
the bigger the weight of a node, the better that node for the role of clusterhead.
Each node constantly computes its weight based on what is most critical to
that node for the specific network application (e.g., node mobility, its remaining
battery life, and its connectivity degree, i.e., the number of its neighbors). For
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instance, as introduced in [20,21,22], we assume the following expression for the
computation of node v’s weight:

wv =
∑

i∈I

ciPi

where the cis are the (constant) weighing factors for the |I| system parameters
of interest Pi.

The protocol described in this section is a generalization of the Distributed
Mobility-Adaptive Clustering (DMAC) originally presented in [23]. DMAC is a
distributed algorithm for clustering set-up and maintenance in presence of node
mobility that partition the nodes of the network into “one hop” clusters in such
a way that no two clusterheads can be neighbors and so that whenever a “better
clusterhead” moves into the neighborhood of an ordinary nodes, the ordinary
node must affiliate to the new clusterhead. Here we relax these conditions allow-
ing clusterheads to be neighbors and allowing ordinary nodes to choose whether
to switch to a new neighboring clusterhead or not.

The process of cluster formation/maintenance is continuously executed at
each node, and each node decides its own role so that the following three re-
quirements (that we call “ad hoc clustering properties”) are satisfied:

1. Every ordinary node always affiliates with only one clusterhead.
2. For every ordinary node v there is no clusterhead u ∈ Γ (v) such that wu >

wClusterhead +h, where Clusterhead indicates the current clusterhead of v.
3. A clusterhead cannot have more than k neighboring clusterheads.

Requirement number 1. ensures that each ordinary node has direct access to at
least one clusterhead (the one of the cluster to which it belongs), thus allowing
fast intra- and inter-cluster communications. This is the property that insures
that this protocol is a “single hop” kind of clustering protocol. Also, since an
ordinary node affiliates only to one clusterhead, the obtained clusters are not
overlapping. The second requirement guarantees that each ordinary node always
stays with a clusterhead that can give it a “guaranteed good” service. By varying
the threshold parameter h it is possible to reduce the communication overhead
associated to the passage of an ordinary node from its current clusterhead to
a new neighboring one when it is not necessary. Finally, requirement number
3. allows us to have the number of clusterheads that can be neighbors as a
parameter of the algorithm. This, as seen for requirement number 2. allows us
to consistently reduce the communication overhead due to the change of role of
nodes.
The following description of the algorithm is based on the following two common
assumptions:

– A message sent by a node is received correctly within a finite time (a step )
by all its neighbors.

– Each node knows its own ID, its weight, its role (if it has already decided its
role) and the ID, the weight and the role of all its neighbors (if they have
already decided their role). When a node has not yet decided what its role
is going to be, it is considered as an ordinary node.



Remarks on Ad Hoc Networking 111

The algorithm is executed at each node in such a way that at a certain time a
node v decides (to change) its role. This decision is entirely based on the decision
of the nodes u ∈ Γ (v) such that wu > wv.

Except for the initial procedure, the algorithm is message driven: a specific
procedure will be executed at a node depending on the reception of the corre-
sponding message. We use three types of messages that are exchanged among
the nodes: Ch(v), used by a node v ∈ V to make its neighbors aware that it is
going to be a clusterhead, Join(v, u), with which a node v communicates to its
neighbors that it will be part of the cluster whose clusterhead is node u ∈ Γ (v),
v, u ∈ V , and Resign(w) that notifies a clusterhead whose weight is ≤ w that
it has to resign its role. In the following discussion and in the procedures we use
the following notation:

– v, the generic node executing the algorithm (from now on we will assume
that v encodes not only the node’s ID but also its weight wv);

– Cluster (v), the set of nodes in v’s cluster. It is initialized to ∅, and it is
updated only if v is a clusterhead;

– Clusterhead , the variable in which every node records the (ID of the) clus-
terhead that it joins. It is initialized to nil;

– Ch (−), boolean variables. Node v sets Ch (u), u ∈ {v}∪Γ (v), to true when
either it sends a Ch(v) message (v = u) or it receives a Ch(u) message from
u (u )= v, u ∈ Γ (v)).

Furthermore:

– Every node is made aware of the failure of a link, or of the presence of a
new link by a service of a lower level (this will trigger the execution of the
corresponding procedure);

– The procedures of the algorithm (M-procedures, for short) are “atomic,” i.e.,
they are not interruptible;

– At clustering set up or when a node is added to the network its variables
Clusterhead , Ch (−), and Cluster (−) are initialized to nil, false and ∅, re-
spectively.

The following two rules define how the nodes assume/change their roles adapting
to changes in the network topology.

1. Each time a node v moves into the neighborhood of a clusterhead u with a
bigger weight, node v switches to u’s cluster only if wu > wClusterhead +h,
where Clusterhead is the clusterhead of v (it can be v itself) and h is a
real number ≥ 0. This should happen independently of the current role of
v. With this rule we want to model the fact that we incur the switching
overhead only when it is really convenient. When h = 0 we simply obtain
that each ordinary nodes affiliates to the neighboring clusterhead with the
biggest weight.

2. We allow a clusterhead v to have up to k neighboring clusterheads, 0 ≤
k < n. We call this condition the k-neighborhood condition. Choosing k = 0
we obtain that no two clusterheads can be neighbors (maximum degree of
independence: In graph-theoretic terms, the resulting set of clusterhead is
an independent set).



112 S. Basagni

The parameters h and k can be different from node to node, and they can vary in
time. This allows the algorithm to self-configure dynamically in order to meet the
specific needs of upper layer applications/protocols that requires an underlying
clustering organization. At the same time, different values of h and k allow our
algorithm to take into account dynamically changing network conditions, such as
the network connectivity (related to the average nodal degree, i.e., to the average
number of the neighbors of the nodes), variations in the rate of the mobility of
the nodes, etc.

The following is the description of the six M-procedures.
• Init. At the clustering set up, or when a node v is added to the network,
it executes the procedure Init in order to determine its own role. If among its
neighbors there is at least a clusterhead with bigger weight, then v will join it.
Otherwise it will be a clusterhead. In this case, the new clusterhead v has to
check the number of its neighbors that are already clusterheads. If they exceed
k, then a Resign message is also transmitted, bearing the weight of the first
clusterhead (namely, the one with the (k + 1)th biggest weight) that violates
the k-neighborhood condition (this weight is determined by the operator mink).
On receiving a message Resign(w), every clusterhead u such that wu ≤ w will
resign. Notice that a neighbor with a bigger weight that has not decided its role
yet (this may happen at the clustering set up, or when two or more nodes are
added to the network at the same time), will eventually send a message (every
node executes the Init procedure). If this message is a Ch message, then v could
possibly resign (after receiving the corresponding Resign message) or affiliate
with the new clusterhead.

procedure Init ;
begin

if {z ∈ Γ (v) : wz > wv ∧ Ch (z)} #= ∅
then begin

x := maxwz>wv {z : Ch (z)};
send Join(v,x);
Clusterhead := x

end
else begin

send Ch(v);
Ch (v) := true;
Clusterhead := v;
Cluster (v) := {v};
if |{z ∈ Γ (v) : Ch (z)}| > k then

send Resign(mink{wz : z ∈ Γ (v) ∧ Ch (z)})
end

end;

• Link failure. Whenever made aware of the failure of the link with a node u,
node v checks if its own role is clusterhead and if u used to belong to its cluster.
If this is the case, v removes u from Cluster (v). If v is an ordinary node, and
u was its own clusterhead, then it is necessary to determine a new role for v.
To this aim, v checks if there exists at least a clusterhead z ∈ Γ (v) such that
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wz > wv. If this is the case, then v joins the clusterhead with the bigger weight,
otherwise it becomes a clusterhead. As in the case of the Init procedure, a test
on the number of the neighboring clusterheads is now needed, with the possible
resigning of some of them.

procedure Link failure (u);
begin

if Ch (v) and (u ∈ Cluster (v))
then Cluster (v) := Cluster (v) \ {u}
else if Clusterhead= u then

if {z ∈ Γ (v) : wz > wv ∧ Ch (z)} #= ∅
then begin

x := maxwz>wv {z : Ch (z)};
send Join(v,x);
Clusterhead := x

end
else begin

send Ch(v);
Ch (v) := true;
Clusterhead := v;
Cluster (v) := {v};
if |{z ∈ Γ (v) : Ch (z)}| > k then

send Resign(mink{wz : z ∈ Γ (v) ∧ Ch (z)})
end

end;

• New link. When node v is made aware of the presence of a new neighbor u, it
checks if u is a clusterhead. If this is the case, and if wu is bigger than the weight
of v’s current clusterhead plus the threshold h, than, independently of its own
role, v affiliates with u. Otherwise, if v itself is a clusterhead, and the number
of its current neighboring clusterheads is > k then the operator mink is used
to determine the weight of the clusterhead x that violates the k-neighborhood
condition. If wv > wx then node x has to resign, otherwise, if no clusterhead x
exists with a weight smaller than v’s weight, v can no longer be a clusterhead,
and it will join the neighboring clusterhead with the biggest weight.

procedure New link (u);
begin

if Ch (u) then
if (wu > wClusterhead + h)

then begin
send Join(v,u);
Clusterhead := u;
if Ch (v) then Ch (v) := false

end
else if Ch (v) and |{z ∈ Γ (v) : Ch (z)}| > k then

begin
w := mink{wz : z ∈ Γ (v) ∧ Ch (z)};
if wv > w then send Resign(w)
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else begin
x := maxwz>wv {z : Ch (z)};
send Join(v,x);
Clusterhead := x;
Ch (v) := false

end
end

end;

• On receiving Ch(u). When a neighbor u becomes a clusterhead, on receiving the
corresponding Ch message, node v checks if it has to affiliate with u, i.e., it checks
whether wu is bigger than the weight of v’s clusterhead plus the threshold h or
not. In this case, independently of its current role, v joins u’s cluster. Otherwise,
if v is a clusterhead with more than k neighbors which are clusterheads, as
in the case of a new link, the weight of the clusterhead x that violates the k-
neighborhood condition is determined, and correspondingly the clusterhead with
the smallest weight will resign.

On receiving Ch(u);
begin

if (wu > wClusterhead + h) then begin
send Join(v,u);
Clusterhead := u;
if Ch (v) then Ch (v) := false

end
else if Ch (v) and |{z ∈ Γ (v) : Ch (z)}| > k

then begin
w := mink{wz : z ∈ Γ (v) ∧ Ch (z)};
if wv > w then send Resign(w)

else begin
x := maxwz>wv {z : Ch (z)};
send Join(v,x);
Clusterhead := x;
Ch (v) := false

end
end

end;

• On receiving Join(u,z). On receiving the message Join(u,z), the behavior of
node v depends on whether it is a clusterhead or not. In the affirmative, v has
to check if either u is joining its cluster (z = v: in this case, u is added to
Cluster (v)) or if u belonged to its cluster and is now joining another cluster
(z )= v: in this case, u is removed from Cluster (v)). If v is not a clusterhead, it
has to check if u was its clusterhead. Only if this is the case, v has to decide its
role: It will join the biggest clusterhead x in its neighborhood such that wx > wv

if such a node exists. Otherwise, it will be a clusterhead. In this latter case, if
the k-neighborhood condition is violated, a Resign message is transmitted in
order for the clusterhead with the smallest weight in v’s neighborhood to resign.



Remarks on Ad Hoc Networking 115

On receiving Join(u, z);
begin

if Ch (v)
then if z = v then Cluster (v) := Cluster (v) ∪ {u}

else if u ∈ Cluster (v) then Cluster (v) := Cluster (v)\{u}
else if Clusterhead= u then

if {z ∈ Γ (v) : wz > wv ∧ Ch (z)} #= ∅
then begin

x := maxwz>wv {z : Ch (z)};
send Join(v,x);
Clusterhead := x

end
else begin

send Ch(v);
Ch (v) := true;
Clusterhead := v;
Cluster (v) := {v};
if |{z ∈ Γ (v) : Ch (z)}| > k then

send Resign(mink{wz : z ∈ Γ (v) ∧ Ch (z)})
end

end;

• On receiving Resign(w). On receiving the message Resign(w), node v checks
if its weight is ≤ w. In this case, it has to resign and it will join the neighboring
clusterhead with the biggest weight. Notice that since the M-procedures are
supposed to be not interruptible, and since v could have resigned already, it has
also to check if it is still a clusterhead.

On receiving Resign(w);
begin

if Ch (v) and wv ≤ w then begin
x := maxwz>wv{z : Ch (z)};
send Join(v,x);
Clusterhead := x;
Ch (v) := false

end
end;
The correctness of the described protocol in achieving the ad hoc clustering

properties listed above can be found in [21] along with simulation results that
demonstrate the effectiveness of the protocol in reducing the overhead of role
switching in presence of the mobility of the nodes.

4 Forming Ad Hoc Networks of Bluetooth Devices

In this section we illustrate the use of clustering as described in the previous
section to define a protocol for scatternet formation, i.e., the formation of an ad
hoc network of Bluetooth devices. The protocol outlined in this section is joint
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research with Professor Chiara Petrioli and has been described more thoroughly
in [24] and [25].

Bluetooth Technology (BT) [26] is emerging as one of the most promising
enabling technologies for ad hoc networks. It operates in the 2.4GHz, unlicensed
ISM band, and adopts frequency hopping spread spectrum to reduce interfer-
ences.

When two BT nodes come into each others communication range, in order
to set up a communication link, one of them assumes the role of master of the
communication and the other becomes its slave. This simple “one hop” network
is called a piconet, referred in the following as a BlueStar, and may include many
slaves, no more than 7 of which can be active (i.e., actively communicating with
the master) at the same time. If a master has more than seven slaves, some
slaves have to be “parked.” To communicate with a parked slave a master has
to “unpark” it, while possibly parking another slave.

All active devices in a piconet share the same channel (i.e., a frequency
hopping sequence) which is derived from the unique ID and Bluetooth clock
of the master. Communication to and from a slave device is always performed
through its master.

A BT device can timeshare among different piconets. In particular, a device
can be the master of one piconet and a slave in other piconets, or it can be a
slave in multiple piconets. Devices with multiple roles will act as gateways to
adjacent piconets, resulting in a multihop ad hoc network called a scatternet.

Although describing methods for device discovery and for the participation of
a node to multiple piconets, the BT specification does not indicate any methods
for scatternet formation. The solutions proposed in the literature so far ([27],
[28], and [29]), either assume the radio vicinity of all devices ([27] and [29]), or
require a designated device to start the scatternet formation process, [28]. Fur-
thermore, the resulting scatternet topology is a tree, which limits the efficiency
and robustness of the resulting scatternet.

In this paper we present BlueStars, a new scatternet formation protocol for
multi-hop Bluetooth networks, that overcomes the drawbacks of previous so-
lutions in that it is fully distributed, does not require each node to be in the
transmission range of each other node and generates a scatternet whose topology
is a mesh rather than a tree.

The protocol proceeds in three phases:

1. The first phase, topology discovery, concerns the discovery of neighboring
devices. By the end of this phase, neighboring devices acquire a “symmetric”
knowledge of each other.

2. The second phase takes care of BlueStar (piconet) formation. By the end of
this phase, the whole network is covered by disjoint piconets.

3. The final phase concerns the selection of gateway devices to connect multiple
BlueStars so that the resulting BlueConstellation is connected.

These three phases are described in the following sections.
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4.1 Topology Discovery

The first phase of the protocol, the topology discovery phase, allows each device
to become aware of its one hop neighbors’ ID and weight. According to the BT
specification version 1.1, discovery of unknown devices is performed by means
of the inquiry procedures.

The problem of one-hop neighbors discovery in Bluetooth has been dealt
with extensively in [27] (for “single hop” networks, i.e., networks in which all
devices are in each other transmission range) and [30] (for multihop networks).
The BT inquiry and paging procedures are used to set up two-node temporary
piconets through which two neighboring devices exchange identity, weight and
synchronization information needed in the following phases of the scatternet
formation protocol. This information exchange allows a “symmetric” knowledge
of one node’s neighbors, in the sense that if a node u discovers a neighbor v,
node v discovers u as well.

4.2 BlueStars Formation

In this section, we describe a distributed protocol for grouping the BT devices
into piconets. Given that each piconet is formed by one master and a limited
number of slaves that form a star-like topology, we call this phase of the protocol
BlueStars formation phase.

Based on the information gathered in the previous phase, namely, the ID, the
weight, and synchronization information of the discovered neighbors, each device
performs the protocol locally. The rule followed by each device is the following:
A device v decides whether it is going to be a master or a slave depending on the
decision made by the neighbors with bigger weight (v’s “bigger neighbors”). In
particular, v becomes the slave of the first master among its bigger neighbors that
has paged it and invited it to join its piconet. In case no bigger neighbors invited
v, v itself becomes a master. Once a device has decided its role, it communicates
it to all its (smaller) neighbors so that they can also make their own decision.

Let us call init devices all the devices that have the biggest weight in their
neighborhood. If two nodes have the same weight, the tie can be broken by using
the devices unique ID. Init devices are the devices that initiate the BlueStars
formation phase. They will be masters. As soon as the topology discovery phase
is over, they go to page mode and start paging their smaller neighbors one by
one. All the other devices go in paging scan mode.

The protocol operations in this phase are described by the initOperations()
procedure described below.

initOperations() {
if (for each neighbor u: myWeight > uWeight) {

myRole = ‘master’;
go to page mode;
send page(v, master, v) to all smaller neighbors;
exit the execution of this phase of the protocol; }
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else
go to page scan mode;

}

The following procedure is triggered at a non-init device v by the reception of
a page. The parameter of the page are the identity of the paging device u, its
role (either ‘master’ or ‘slave’) and, in the case the paging device u is a slave,
the identity of the device to which it is affiliating. (In case u is a master this
parameter is irrelevant and can be set to u itself.)
onReceivingPage(deviceId u, string role, deviceId t) {
record that u has paged;
record role(u);
if (role(u) == ‘slave’)

master(u) = t;
if (myWeight < uWeight) {

if (role(u) == ‘master’)
if (myRole == ‘none’) {

join u’s piconet;
myMaster = u;
myRole = ‘slave’; }

else
inform u about myMaster’s ID;

if (some bigger neighbor has to page yet)
exit and wait for the following page;

else {
switch to page mode;
if (all bigger devices are slaves) {

myRole = ‘master’;
send page(v, master, v) to each neighbors
(smaller neighbors first);
exit the execution of this phase of the protocol; }

else {
send page(v, slave, myMaster) to each neighbors;
switch to page scan mode; } } }

else
if (all neighbors have paged)

exit the execution of this phase of the protocol;
else

exit and wait for the next page;
}

The procedure of recording the role of a device u includes all the information
of synchronization, addressing, etc., that enable v to establish a communication
with u at a later time, if needed.

Upon receiving a page from a device u, device v starts checking if this is a
page from a bigger neighbor or from a smaller one. In the former case, it checks
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if the sender of the page is a master. If so, and v is not part of any piconet yet,
it joins device u’s piconet. If instead device v has already joined a piconet, it
informs device u about this, also communicating the name of its master. Device
v then proceeds to check if all its bigger neighbors have paged it. If this is not the
case, it keeps waiting for another page (exiting the execution of the procedure).

When successfully paged by all its bigger neighbors, device v knows whether
it has already joined the piconet of a bigger master or not. In the first case,
device v is the slave of the bigger master that paged it first. In the latter case
device v itself is going to be a master. In any case, device v goes to page mode,
and communicates its decision to all its smaller neighbors.

At this point, a master v exits the execution of this phase of the protocol.
If device v is a slave, it returns to page scan mode and waits for pages from all
its smaller neighbors of which it still does not know the role. Indeed, some of a
slave’s smaller neighbors may not have decided their role at the time they are
paged by the bigger slave. As soon as a device makes a decision on its role, it
therefore pages its bigger slaves and communicates whether it is a master or a
slave, along with its master ID (if it is a slave). This exchange of information is
necessary to implement the following phase of gateway selection for obtaining a
connected scatternet (see Section 4.3).

Notice that the outermost else is executed only by a slave node, since once it
has paged all its neighbors, a master has a complete knowledge of its neighbors
role and of the ID of their master and thus it can quit the execution of this phase
of the protocol.

Implementation in the Bluetooth Technology. The protocol operations
of this phase all rely on the standard Bluetooth paging procedures. However,
the paging and paging scan procedure described above assume the possibility of
exchanging additional information, namely, a device role and for slaves, the ID
of their masters. These information cannot be included in the FHS packet which
is the packet exchanged in the standard paging procedures.

Our proposal is to add an LMP protocol data unit (PDU), including fields
to record the role of the sending device and the ID of its master, to easily
exchange the information needed for scatternet formation while possibly avoiding
a complete set up of the piconet.

Of course, whenever a slave joins a non-temporary piconet, a complete pi-
conet set up has to be performed, after which the slave is put in park mode to
allow it to proceed with the protocol operation (e.g., performing paging itself).

4.3 Configuring BlueStars

The purpose of the third phase of our protocol is to interconnect neighboring
BlueStars by selecting inter-piconet gateway devices so that the resulting scat-
ternet, a BlueConstellation, is connected whenever physically possible. The main
task accomplished by this phase of the protocol is gateway selection and inter-
connection.
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Two masters are said to be neighboring masters (mNeighbors, for short) if
they are at most three hops away, i.e., if the shortest path between them is
either a two-hops path (there is only one slave between the two masters) or a
three-hops path (there are two slaves).

A master is said to be an init master, or simply an iMaster, if it has the biggest
weight among all its mNeighbors. Therefore, the set of masters that results from
the BlueStars formation phase is partitioned into two sets, the iMasters and the
non-iMasters devices.

The connectivity of the scatternet is guaranteed by a result, first proven in
[31], that states that given the piconets resulting from the BlueStars formation
phase, a BlueConstellation—a connected BT scatternet—is guaranteed to arise
if each master establishes multihop connections to all its mNeighbors. These
connections are all needed to ensure that the resulting scatternet is connected,
in the sense that if any of them is missing the scatternet may be not connected.

This result provides us with a criterion for selecting gateways that ensures
the connectivity of the resulting scatternet: all and only the slaves in the two
and three-hops paths between two masters will be gateways. If there is more
than one gateway device between the same two masters they might decide to
keep only one gateway between them, or to maintain multiple gateways between
them.

Upon completion of the previous phase of the protocol a master v is aware
of all its mNeighbors. It directly knows all its neighboring slaves which in turn
are aware of (and can communicate to the master v) the ID of their master and
of the master of their one-hop slave neighbors.

Establishment of a connected scatternet. We are finally able to establish all
the connections and the needed new piconets for obtaining a BlueConstellation,
i.e., a connected scatternet.

This phase is initiated by all masters v by executing the following procedure.

mInitOperations() {
if (for each mNeighbor u: myWeight > uWeight) {

myRole = ‘iMaster’;
instruct all gateway slaves about which neighbors to page;
go to page mode;
page all the slaves which belong to a different piconet

and have been selected as interconnecting devices;
exit the execution of this phase of the protocol; }

else {
tell all gateway slaves to bigger mNeighbors

to go to paging scan mode;
if (there are bigger mNeighbors’ slaves in my neighborhood

which will interconnect the two piconets)
go to page scan mode;

tell all gateway to smaller mNeighbors to go to paging mode
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when the links to bigger mNeighbors are established;
if (there are smaller mNeighbors’ slaves in my neighborhood

which will interconnect the two piconets)
go to page mode when the links to bigger mNeighbors are up; }

}

Every master v starts by checking whether it is an iMaster or not. If it is an
iMaster, then it instructs each of its gateway slaves to go into page mode and to
page (if any):

• Its two-hop mNeighbors. In this case, as soon as v’s slave has become the
master of an mNeighbor u, they perform a switch of roles, as described in the
BT specification, so that v’s slave become also a slave in u’s piconet. In this
case, no new piconet is formed and the slave in between u and v is now a slave
in both their piconets, as desirable.

• The slaves of its three-hop mNeighbors (that are two-hops away from v).
In this case v’s slave becomes also a master of a piconet whose slaves are also
slaves to the three-hop mNeighbors, i.e., a new piconet is created to be the trait
d’union between the two masters.

The iMaster v itself can then go into paging mode to recruit into its piconet
some of those neighboring slaves (if any) that joined some other piconets, so that
these slaves can be the gateway to their original masters.

Notice that, given the knowledge that every master has about its “mNeigh-
borhood,” an iMaster v instructs each of its gateway slaves about exactly who
to page, and the resulting new piconet composition. If, for instance, a slave is
gateway to multiple piconets, iMaster v knows exactly to which of the neighbor-
ing piconet its slave is going to be also a slave, and if it has to be master of a
piconet that can have, in turn, multiple slaves.

When the gateway slaves of a non-iMaster device v have set up proper con-
nections toward bigger mNeighbors, they will go into page mode and page those
of its two-hop mNeighbors and of the the slaves of its three-hop mNeighbors
with which they have been requested by v to establish a connection.

Implementation in the Bluetooth Technology. The mechanism described
above can be easily implemented by means of the BT standard procedures for
parking and unparking devices, and those for link establishment. In particular,
upon completion of the second phase of the protocol, a slave asks its master to be
unparked. The master will then proceed activating (unparking) different groups
of slaves, and collecting from them all the information required for configuring
the BlueConstellation. Based on this information, the master will then make a
decision on which links to establish to connect with its mNeighbors, and will
unpark the gateways in groups of seven to inform them of the piconets to which
they are gateway. Each gateway will then run the distributed procedure for
interconnecting neighboring piconets described in the previous section, at the
end of which it will issue to the master a request for being unparked in order to
communicate the list of links successfully established.
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5 Conclusions

In this paper we have described some issues and solutions proposed for ad hoc
networking. In particularly, we have illustrated leading MAC protocols, cluster-
ing protocols and we have shown how these protocols can be applied to networks
of Bluetooth devices for the formation of Bluetooth scatternet.
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