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Abstract—This work investigates the effectiveness of k-means
and k-power-means clustering algorithms in predicting the num-
ber of clusters through the use of cluster validity indices (CVIs)
and score fusion techniques. Our results show how these two
solutions generate an accurate approximation of the mmWave
channel model, greatly simplifying the complexity of analyzing
large amount of rays at any receiver location.

Index Terms—mmWave, channel propagation models, cluster-
ing algorithms, cluster validity indices

I. INTRODUCTION

In this work we are concerned with multipath and with the
analysis of sorting and grouping the received rays into clusters.
A cluster is defined as a group of rays with similar attenuation
and angular profile. Channel parameters like received power,
Time-of-Arrival (ToA), Angle-of-Arrival (AoA) and Angle-
of-Departure (AoD) are reported in our simulations by the
ray-tracer tool for each arriving ray at the receiver. These
parameters are fed into well known center-based clustering
algorithms, namely, k-means [1] and one of its variants,
k-power-means, in which the input gets partitioned around
few centroids or central points. Each MPC is assigned to a
specific cluster by calculating the distance to the centroids
and choosing the closest one. There is an improvement if we
use few channel parameters jointly by replacing the Euclidean
distance with the multipath component distance (MCD) [2]:
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where ¢ and j are any two estimated MPCs. We use k-
power-means algorithm with the same distance metric MCD,
weighted by the power values P, of the MPCs: D =
ZlePZ-MCD(xl,cl(i)), where index Il(z) is the cluster
number for the I-th MPC in the i-th iteration.

The preferred clustering solution for a specific algorithm is
obtained by finding the value of K (in a certain range) that
provides the optimal (min or max) value of a Cluster Validity
Index (CVI). The CVIs used in this work are the following:
Calinski-Harabasz (CH) [3], Davies-Bouldin (DB) [4], gen-
eralized Dunn (GD) [5], Xie-Benie (XB) [6] and PBM [7].
Since no single CVI can capture correctly the validity of any
clustering solution (i.e., work well with all data sets), we use
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a conciliation of multiple CVIs through score fuslion-based
techniques: SF, = ﬁ Zi\il vi; SFy = (Hf\il yi) M 1 SF), =
-1
M(SE L)
II. SIMULATION RESULTS

We simulate 28 GHz communications between transmitter
and receiver units using one of the urban scenarios (Rosslyn,
VA) delivered with Remcom’s ray-tracing tool Wireless InSite
(Fig. 1). 22°/15 dBi antennas with maximum transmitted
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Fig. 1. 44 MPCs at receiver Rx#9.

power of 24 dBm are used at both Tx and Rx locations.
We capture the values of the received power, excess delay,
angle-of-arrival and angle-of-departure of all MPCs arriving at
each randomly placed Rx point. The real part of the complex
impulse response (CIR) for this one-time channel realization
(Fig. 2) shows the received power levels of all MPCs and their
ToA. The 3D results (Fig. 3) show the effect of capturing all
five parameters of the MPCs (azimuth & elevation for AoA
and AoD, and excess delay) in the clustering process. They
allow for a better partition because they correlate the temporal
and spatial characteristics of the radio channel. The results of
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Fig. 2. Clustered CIR at Rx#9 based on k-means with MCD.
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Fig. 3. Clustering via k-means algorithm—ToA vs. AoA, AoD.

the clustering process are validated and the optimal K value
is found by applying the CVIs and score fusion techniques
mentioned in Section L.

We are primarily concerned with the analysis of the root
mean square (RMS) delay spread (DS), as this parameter is
tightly connected with the maximum data rate achievable in the
channel. We capture the delay spread reported by the ray-tracer
at each of the 14 locations on the street, and we compare with
the RMS DS values calculated for each cluster based on the
partitioning obtained with both variants of k-means algorithm
(Fig. 4). Plots of the Cumulative Distribution Function (CDF)
of the clustered RMS delay spread for both variants of k-
means are captured in Fig. 5. The statistics extracted from
the clustered solutions of the RMS DS represent an accurate
approximation of the values estimated by the ray tracer without
clustering, thus providing a first order of magnitude estimate
of the delay spread and maximum data rate in the channel.

We are also interested in two other sets of parameters, inter-
and intra-cluster parameters that describe the clusters and the
rays in each cluster (Table I). The inter-cluster parameters
are the cluster power decay rate I (i.e., the decay rate of the
strongest path within each cluster), and the cluster inter-arrival
time (i.e., the relative delay between two adjacent clusters).
The intra-cluster parameters are described in the time domain
by the average number of rays, ray arrival rate, and ray power
decay time, and in the angular domain by cluster azimuth and
elevation spread.
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Fig. 4. CDFs of the RMS DS for ray-tracer values and cluster-based values.
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Fig. 5. CDF and truncated normal distribution of clustered RMS DS.

TABLE 1
INTER-CLUSTER PARAMETERS AND THEIR DISTRIBUTION PARAMETERS

k-means k-power-means
3.9286 / 1.3848 -

(-145.06) / 37.184 (-114.13) / 13.677
822 610

7.22E(-8) / 6.69E(-8) | 5.08E(-8) / 6.44E(-8)
0.18503 / 0.16093 0.12817 / 0.1058

Cluster Parameter/Alg

No of clusters (u/0)

Power decay (u/o)
Arrival rate 1/A [ns]
RMS DS (u/0)
RMS AS (u/0)
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