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Abstract—Transmissions in the mmWave spectrum benefit
from a-priori knowledge of radio channel propagation models.
This paper is concerned with one important task that helps
provide a more accurate channel model, namely, the clustering
of all multipath components arriving at the receiver. Our work
focuses on directive transmissions in urban outdoor scenarios and
shows the importance of the correct estimation of the number of
clusters for mmWave radio channels simulated with a software
ray-tracer tool. We investigate the effectiveness of k-means and
k-power-means clustering algorithms in predicting the number
of clusters through the use of cluster validity indices (CVIs) and
score fusion techniques. Our investigation shows that clustering
is a difficult task because the optimal number of clusters is not
always given by one or by a combination of more CVIs. However,
using score fusion methods, we find the optimal partitioning for
the k-means algorithm based on the power and time of arrival
of the multipath rays or based on their angle of arrival. When
the k-power-means algorithm is used, the power of each arriving
ray is the most important clustering factor, making the dominant
received paths pull the other ones around them, to form a cluster.
Thus, the number of clusters is smaller and the decision based
on CVIs or score fusion factors easier to be taken.

Index Terms—mmWave, clustering algorithms, cluster validity
indices, channel propagation models

I. INTRODUCTION

5G wireless standards are a promising solution for many
problems of current wireless networks, especially concerning
high-speed data transfers and ubiquitous connectivity requir-
ing very low latency responses. In this context, one option
to achieve these goals is spectrum extension through the
use of millimeter-wave (mmWave) band (30–300 GHz) with
multiple GHz of unused bandwidth. Unfortunately, mmWave
transmissions suffer from high propagation loss, sensitivity
to blockage, atmospheric attenuation and diffraction loss, so
implementing transmissions in these extremely high frequency
bands brings in new challenges. Tackling them requires well-
thought radio channel propagation models that are obtained
through extensive measurements (via steerable antennas and
channel sounders), or via software ray-tracing simulators.

In this paper we are concerned with one important task
that leads to the generation of better radio channel models.
We emphasize the role of clustering algorithms in grouping
the incoming rays at the receiver site. They are paramount

for the fast processing of the received rays, and thus for
extracting channel parameters in an efficient manner when
the volume of data generated through simulations is huge.
We use two variants of the well known k-means clustering
algorithm in which we replace the usual Euclidean distance
metric with the multipath component distance (MCD). Thus,
we create a multi-dimensional space that is defined by the
channel parameters of the multipath components (MPCs).
This space—based on the Time-of-Arrival (ToA), azimuth
and elevation of the Angle-of-Arrival (AoA) and Angle-of-
Departure (AoD)—is fed into the clustering algorithms to
provide the partitioning of all MPCs. We also quantify the
goodness of these algorithms through the use of five cluster
validity indices (CVIs) and three score fusion techniques. Our
results show that by only using CVIs we sometimes fail to find
the optimal clustering number K because the indices might
capture only specific aspects of a clustering solution. Thus, we
combine all five CVIs in an ensemble to provide a predictor
of clustering quality that is better than any of the CVIs taken
separately. The solution is represented by few score fusion
techniques. We check this solution by visualizing the resulted
clusters using polar plots of the AoA/AoD vs. ToA and by
calculating the variance of the parameters that characterize
the MPCs (power, ToA, AoA and AoD).

Our investigation uses a professional software ray-tracer
tool (Wireless InSite by Remcom), to produce the chan-
nel simulations for each receiver location considered in the
mmWave urban scenario. The estimated channel parameters at
those locations are then processed in MATLAB by applying
clustering algorithms and analyzing the validity of their results.

The rest of the paper is organized as follows. Section II
reviews clustering concepts and the algorithms applied to the
partitioning of the MPCs generated in our mmWave outdoor
scenario. Section III enumerates the cluster validity indices
and the score fusion methods used in our research. Section IV
describes the outdoor simulation environment and presents the
results of the two variants of the k-means algorithm and the
validation of their results. Section V draws the conclusions
regarding the optimal number of clusters proposed by each
clustering algorithm and the effectiveness of the CVI/score
fusion techniques in confirming these numbers.978-1-5386-8380-4/19/$31.00 ©2019 IEEE



II. CLUSTERING FOR MMWAVE MPCS

A cluster is defined as a group of rays with similar
attenuation and angular profile. Channel parameters like
Time-of-Arrival (ToA), Angle-of-Arrival (AoA) and Angle-of-
Departure (AoD) are reported in our simulations by the ray-
tracer tool for each arriving ray at the receiver. As a first order
of magnitude, visual inspection [1] can identify clusters in the
channel impulse response (CIR) of the channel. Unfortunately,
this method is possible for simulations in which the number
of received rays is small. If this number increases or the
number of simulations becomes orders of magnitude larger,
more automated procedures and algorithms need to replace
the visual inspection of the CIR.

In our paper, we consider some of the well known center-
based clustering algorithms in which the input gets partitioned
around few centroids or central points [2]. The most common
algorithm (k-means) [3] and one of its variants (k-power-
means) are applied in many studies [4], [5], [6], [7]. k-means
groups the rays with similar features (e.g., ToA, AoA, AoD)
into a number of K clusters based on an a-priori decision
about their number. Each MPC is assigned to a specific
cluster by calculating the distance to these centroids and
choosing the minimum one (i.e., finding the closest centroid):
D =

∑L
l=1 d(xl, cxl

), where L is the total number of MPCs,
xl is the parameter of the l-th MPC, cxl

is the parameter of
the cluster centroid closest to the l-th MPC, and d(·) denotes
the distance function between any two points in the parameter
space. In subsequent iterations, the algorithm tries to find the
optimum location of the centroids in order to minimize the
distance from each MPC to its centroid. While each of the
distances for ToA, AoA, AoD can be calculated separately,
and delay and angular domains can be searched sequentially,
there is an improvement if we use them jointly. In this case,
the Euclidean distance is replaced by the multipath component
distance (MCD) [8]. The result is a hypersphere with a radius
in the normalized multipath parameter distance space:

MCDij =√
||MCDAoA,ij ||2 + ||MCDAoD,ij ||2 + ||MCDτ,ij ||2, (1)

where i and j are any two estimated MPCs.
As a variation, in the k-power-means algorithm [6], the

same distance metric MCD is applied, but it is weighted by
the power values Pl of the MPCs:

D =

L∑
l=1

Pl ·MCD(xl, cI(i)l

), (2)

where index I
(i)
l is the cluster number for the l-th MPC in

the i-th iteration. The idea of including power values into
the distance function “forces” the centroids towards the points
with strong powers. This lines up with the receiver’s usual
desire of finding and latching on the strongest rays in the
transmitted spectrum.

III. CLUSTER VALIDITY INDICES

Clustering is an unsupervised pattern classification method
that partitions the elements in a data set into clusters. Grouping
elements within a cluster requires the identification of similar
values for the parameters that characterize these elements. The
MPCs arriving at the receiver have various values for their
radio channel parameters (e.g., power levels, ToA, AoA, AoD).

Once the clustering algorithm finishes processing the input
data set, an indicator is required to prove how accurate the
number of clusters is. Cluster validation is a difficult task,
so the techniques used are not easy to be classified. How-
ever, we can group them based on the information available
during the validation process. External validation methods
validate the clustering result by comparing it with the correct
partitioning; it makes sense when the exact value is known
(i.e., in a controlled test environment). Internal validation
methods validate the partitioning results by examining only
the clustered data, measuring the compactness and separation
of the clusters. This category is applied in our paper, using the
following CVIs: Calinski-Harabasz [9], Davies-Bouldin [10],
generalized Dunn [11], [12], Xie-Benie [13] and PBM [14].
Yet a third category labeled relative validation compares
partitions generated by the same clustering algorithm with
different parameters or with different subsets of data.

All CVIs described in this section use the MCD metric
defined by (1) and the following notations. L is the total
number of MPCs arriving at the receiver while Lk is the
number of MPCs in cluster k. ck is the position of the centroid
of cluster k, c is the position of the global centroid, and sl is
the data of subpath l in cluster k.

Calinski-Harabasz (CH) is one the most used CVIs in re-
search, from pattern recognition papers [15], [16] to clustering
radio channel parameters [6], [17]. The index estimates the
compactness of a cluster based on the distances from the points
in the cluster to its centroid. The separation of the clusters
is measured as the distance from the centroids to the global
centroid:

νCH =

∑K
k=1 Lk(MCD(ck,c))

2

K−1∑K
k=1

∑Lk
l=1 Lk(MCD(sl,c))2

L−K

, (3)

where the location of the centroid of cluster k is calculated
as ck = 1

Lk

∑Lk

l=1 xl while the one of the global centroid is
computed as c = 1

L

∑L
l=1 xl. If k-power-means is used, then

the position of the global centroid becomes c =
∑L

l=1 Plxl∑L
l=1 Pl

while the position of the k-th centroid (ck) is given by a similar
formula in which L is replaced by Lk. The optimal K number
is represented by the highest value of the νCH index.

Davies-Bouldin (DB) is another index widely used in
CVI comparative studies. The compactness is computed as
the average distance of all patterns for the points in the
cluster to its centroid Sk = 1

Lk

∑Lk

l=1MCD(sl, ck) while
the separation is based on the distance between centroids



dk1,k2 = MCD(ck1 , ck2). Then, the DB index is calculated
as:

νDB =
1

K

K∑
k=1

Rk, Rk = max
k1,k2

Sk1 + Sk2
dk1,k2

. (4)

Trying different input K values, the optimal number of clusters
is achieved for the smallest value of the index: νDBopt =
arg minK{νDB(K)}.

Generalized Dunn (GD) index [11] was meant to improve
the sensitivity of Dunn’s index to noisy points (i.e., outliers
and inliers to the cluster structure). The initial Dunn index was
the ratio of two distances, the minimum distance between two
points belonging to different clusters to the maximum distance
between any two points selected from the same cluster; hence,
it was quantifying both the separation of clusters and their
spread. 18 forms are known for the generalized index based
on 6 formulas for the calculation of the distance δ between
clusters and 3 formulas for the diameter ∆ of the cluster. Our
paper uses two of the most researched forms that define the
D53 index. The distance δ between two clusters depends on
all points in each cluster, so averaging reduces the effect of
adding/deleting points to/from any two clusters:

δ5 =
1

Lk1 + Lk2

( Lk1∑
l=1

MCD(sl, ck1) +

Lk2∑
m=1

MCD(sl, ck2)
)
.

(5)
The diameter of each cluster is also based on all points in
the cluster: ∆3 = 2

Lk
(
∑Lk

l=1MCD(sl, ck)). The Generalized
Dunn index is given by the ratio:

νD53 =
mink1,k2 δ5(k1, k2)

maxk ∆3(k)
. (6)

The worst case scenario is captured as the smallest cluster
separation and the largest cluster. The optimal value for K is
given by the maximum value of the νD53

index.
Xie-Beni (XB) index was initially proposed for cluster

validation on fuzzy partitions, but may be used on hard
partitions as well [18], [14] (i.e., for crisp clustering where
the CVIs are best for their lowest or highest values).

νXB =

∑K
k=1

∑Lk

l=1(MCD(sl, ck))2

L× [mink1,k2(MCD(ck1, ck2))2]
. (7)

More compact clusters (the numerator) and larger separations
between clusters (the denominator) result in smaller values for
this index. Thus, the optimal clustering solution is the one for
which the XB index has the minimum value.

The last index accounted in our analysis is the PBM index.

νPBM =
( 1

K
× maxk1,k2(MCD(ck1, ck2))∑K

k=1

∑Lk

l=1MCD(sl, ck)

)2
. (8)

According to the authors of [14], it performed better than
Davies-Bouldin, Dunn and Xie-Beni indices for their specific
data. However, this is not a rule.

A. Using multiple CVIs to compare clustering solutions

Finding the correct number of clusters in an analyzed
data set has no theoretically optimal method. Existing algo-
rithms include other methods than CVIs (e.g., stability-based
methods, model-fitting-based algorithms). CVIs are meant to
quantify various properties of the clustering solution such as
compactness and separation between clusters. The optimal
clustering solution K is pointed out by the min or max value
of the CVI. Nevertheless, their formulas might capture only
specific aspects of the clustering solution, so an elongated
shape cluster might not be considered compact. Therefore, no
CVI should be assumed a-priori better than its alternatives.
Considering that no single CVI can capture correctly the
validity of any clustering solution (i.e., work well with all data
sets), [19] proposes that the value of each CVI be captured
in an ensemble that could represent a better predictor of
the clustering quality than any of the CVIs taken separately.
Therefore, in our paper, the solution is represented by few
score fusion-based techniques. A combined score SFx is
computed using M normalized CVIs. Three such examples
shown below are based on the arithmetic, geometric and
harmonic mean (9).

SFa =
1

M

M∑
i=1

νi;SFg =
( M∏
i=1

νi

) 1
M

;SFh = M
( M∑
i=1

1

νi

)−1

(9)
From the many normalization methods (e.g., z-norm, global
z-norm), [19] claims min-max to be the best. First, all indices
are normalized, to produce values in the range [0, 1]. Then, to
capture in all SFx formulas only CVI values that point the
optimal K with their max value, we subtract their normalized
values from 1 for the indices that actually show this optimal
value with their min value (e.g., Xie-Beni, Davies-Bouldin).

IV. SIMULATION RESULTS

This section describes our ray-tracer simulations, the results
of both clustering algorithms and the decision on the optimal
number K of clusters based on the CVIs and score fusion
techniques.

We simulated 28 GHz transmissions using one urban sce-
narios (Rosslyn, VA) delivered with the ray-tracing tool. The
advantage of using this professional electromagnetic simula-
tion tool is the input of site-specific data for any scenario,
and the evaluation of the signal propagation characteristics by
taking into consideration the effects of buildings, terrain and
even weather. The tool generates rays with a very high angle
resolution (0.2◦), allowing us to collect very accurate channel
parameters at a fraction of the time required to measure them
with dedicated hardware (e.g., channel sounders and horn
antennas). The estimated values are then fed to the clustering
algorithms.

Our scenario has the Tx (base station) located on a
light/traffic pole (with a height of 8 m) in the North part
of Fig. 1 (the green dot) while the Rx point is installed in
a vehicle at approximately 1.5 m above ground (any of the



Fig. 1. 44 MPCs at receiver Rx#9.

red dots). The LOS transmission is simulated in the North-
South direction by placing the vehicle along the wide-open
boulevard at different locations up to 150 m in front of the
transmitter. The NLOS reception mode is simulated in the
East-West orientation in Fig. 1 by moving the vehicle at
distances 70 to 150 m from Tx, on a side street behind very tall
buildings. Since NLOS is a much more challenging scenario,
we focus our simulations primarily on this case. We set the
ray-tracer to use two horn antenna models with different half-
power beamwidth (HPBW) and gain (7◦/25 dBi and 22◦/15
dBi). In all simulations described in this paper, the same
antennas (7◦ or 22◦) are used at both Tx and Rx locations
in one experiment. The maximum power of the transmitted
signal is 24 dBm. The ray-tracer follows a certain number
of reflections (6) and diffractions (1) for each path from
transmitter to receiver. Two methods are always considered
in all our studies. In the no beam alignment (Fig. 1), the Tx
and Rx antennas are simply oriented with the street direction,
whereas the beam alignment procedure implies that the bore-
sight of the Rx antenna is oriented with the direction of the
strongest reception path, at that specific location. To take less
time for running the simulations, in this paper, we applied only
the no beam alignment procedure. At each Tx-Rx separation
distance, we use MATLAB to generate a random Rx point that
is given to the ray-tracer for simulation. We capture the values
of the received power, excess delay, angle-of-arrival and angle-
of-departure of all MPCs arriving at each randomly placed Rx
point. Thus, each of these channel parameters is an array with
L values due to the L MPCs. The clustering algorithm can be
applied to each parameter, or a multi-dimensional space (e.g.,
the MCD metric [8]) can be used to find a correlation among
these parameters.

A. Clustering Algorithm Results

This section summarizes the clustering results obtained
when the two variants of the k-means algorithm are applied

Fig. 2. Clustered CIR at Rx#9 based on k-means with MCD.

Fig. 3. Clustering via k-means algorithm—ToA vs. AoA, AoD.

to the MPCs collected for our simulations. The urban scenario
in Fig. 1 shows 44 MPCs at a specific receiver point (Rx#9)
placed on one of the side streets. Each path/MPC has its
own received power level, AoA, AoD, and comes with a
certain excess delay (ToA). The real part of the complex
impulse response (CIR) for this one-time channel realization
(Fig. 2) shows the relationship between received power levels
of various MPCs and their ToA. Using different colors, we
show the average power value of each cluster and its average
ToA, as marked by stars. Both values are calculated using the
channel parameters of the MPCs in each cluster; the parti-
tioning is performed with the k-means with MCD algorithm.
Considering the large number of MPCs, it is impossible to
apply a clustering procedure based on visual inspection. The
same clustering algorithm gives us the 3D result in Fig. 3,
in which MPCs are grouped in different clusters based on
their temporal and spatial characteristics (i.e., delay spread and
azimuth & elevation values of their AoA/AoD). The results
show that capturing all five parameters of the MPCs (azimuth
& elevation for AoA and AoD, and excess delay) allows us to
correlate the temporal and spatial characteristics of the radio
channel and to provide a better clustering solution.

Using the other variant of the clustering algorithm (k-power-
means with MCD), we obtain different CIR (Fig. 4) and ToA
vs. AoA/AoD clustering pictures (Fig. 5). We can notice that
the average values of the Rx power and ToA in each cluster
(marked with a star in Fig. 4) are very close to each other,



Fig. 4. Clustered CIR at Rx#9 based on k-power-means with MCD.

Fig. 5. Clustering via k-power-means algorithm—ToA vs. AoA, AoD.

even though the MPCs in each cluster can be dispersed in time.
Comparing Fig. 2 and Fig. 4, we can see that the 5-dimensional
space that we had initially is now totally biased (in the latter
picture) by the received power. In this case, partitioning around
the most representative MPCs (power-wise) is the important
factor that reduces the number of clusters to a minimum.

B. CVIs and Score Fusion Results

Once the clustering phase is finished for various input K
values, the CVIs described in Section III are applied, to find
the optimal K value. As mentioned in Section III-A, one or
more CVIs might not be able to solve this task, but combining
CVIs in a fusion classifier could potentially provide a better
way to find the optimal value of the number of clusters K. This
section provides the results of the clustering validation process
and of the score fusion methods described by equations (9).

For this analysis, we use receiver Rx#9 placed on a side
street at approximately 150 m (Euclidean distance) from the
transmitter (Fig. 1). With only 44 MPCs reaching this receiver
and considering only 3 rays per cluster, we could have a
maximum of 15 clusters. This assumption sets the initial K
input of the clustering algorithm in the range [2, 15].

As mentioned, not all CVIs can find the optimal K value.
For example, when we apply k-means with MCD algorithm,
indices CH, DB and GD cannot find this number correctly.
Nevertheless, the other two indices XB and PBM find a
number of clusters of 6 and 5, respectively (Table I). The
conclusion is that few CVIs report a number of clusters hard
to believe, and a couple of CVIs report different values for
the K number. Using the ensemble predictor, we plug the

normalized and biased CVI values obtained for Rx#9 (for
each input value K) into the score fusion formulas (9), as
explained in Section III-A (Table I). While the optimum value

TABLE I
NORMALIZED AND BIASED CVIS AND SF VALUES FOR RX#9—k-MEANS

ALGORITHM.

K CH XB PBM DB GD SFa SFg SFh MSF

2 0.000 0.449 0.755 1.000 1.000 0.641 0.000 0.000 0.214

3 0.166 0.399 0.539 0.911 0.577 0.518 0.451 0.378 0.449

4 0.100 0.702 0.431 0.772 0.679 0.537 0.437 0.303 0.426

5 0.133 0.793 1.000 0.724 0.613 0.653 0.542 0.391 0.529

6 0.213 1.000 0.513 0.676 0.534 0.587 0.524 0.454 0.522

7 0.358 0.408 0.706 0.517 0.511 0.500 0.486 0.474 0.487

8 0.540 0.722 0.714 0.518 0.394 0.578 0.564 0.549 0.563
9 0.631 0.671 0.362 0.358 0.394 0.483 0.464 0.448 0.465

10 0.691 0.807 0.078 0.368 0.285 0.446 0.340 0.230 0.339

11 0.819 0.940 0.253 0.297 0.240 0.510 0.425 0.363 0.433

12 0.810 0.000 0.095 0.051 0.240 0.239 0.000 0.000 0.080

13 0.844 0.644 0.000 0.148 0.000 0.327 0.000 0.000 0.109

14 0.872 0.353 0.264 0.000 0.000 0.298 0.000 0.000 0.099

15 1.000 0.811 0.572 0.147 0.000 0.506 0.000 0.000 0.169

K cannot be predicted using only CVIs because not all CVIs
have their maximum value on the same row, by using score
fusion methods, we find that two scores (SFg and SFh) agree
with each other. If we calculate the average of the three scores
(last column in Table I), the maximum value points to an
optimal value of K = 8 clusters, which agrees with both
geometric (SFg) and harmonic (SFh) mean-based scores.

We repeat this study for all 14 receivers installed on the
side street where Rx#9 is located. For lack of space, we show
in Table II the optimal K clustering values only for three
receivers, including Rx#9. We notice that for other receiver

TABLE II
OPTIMAL K VALUE FOR EACH CVI AND SF METHOD FOR FEW

RX—k-MEANS ALGORITHM.

Rx CH XB PBM DB GD SFa SFg SFh MSF

5 21 17 2 2 2 3 3 3 3

9 15 6 5 2 2 5 8 8 8

13 17 8 4 2 2 4 4 4 4

locations on the same street the score fusion factors and their
average value all agree on the same optimal K value (K = 3
for Rx#5 and K = 4 for Rx#13).

The second part of our analysis is the k-power-means
variant of the clustering algorithm. The distance metric used
in the clustering algorithm (2) and in the local and global
centroids computed for the CVI formulas in Section III is
weighted by the power of each MPC. The clustering results
are validated by the same five CVIs and three score fusion
factors for the same set of MPCs received at Rx#9. In this case,
the optimal K number is 2. As with the first algorithm, we
repeat the study for all 14 receivers located on the same street



Fig. 6. Polar plot of azimuth AoA vs. ToA for k-means with K=8.

Fig. 7. Polar plot of azimuth AoA vs. ToA for k-means with K=5.

with Rx#9. For the other two receivers (Rx#5 and Rx#13)
mentioned in Table II, the optimal K values are 2 and 3.

Going back to the values in Table I, we question the option
of providing a decision on the correct partitioning if only two
score fusion models are used. The arithmetic mean-based score
fusion points to a solution with 5 clusters while the geometric
mean-based one indicates 8 clusters. However, when we take
the average value for SFa and SFg , the optimal clustering
solution is K = 5. To investigate both solutions even more,
we use the polar plots of the AoA and AoD vs. ToA for all
MPCs when they are grouped in either 5 or 8 clusters. The
advantage of this method is that it considers the cyclic feature
of the angles and becomes easier to find how close the MPCs
are in comparison with the 3D visualization. The elevation
component of the two angles shows little spatial variation.
Thus, we focus only on the azimuth component, and we show
the polar plots of the AoA for both solutions (Fig. 6 and
Fig. 7). Based on the azimuth component information for
both AoA and AoD, we build a 3D plot in which the third
dimension is the ToA of each MPC (Fig. 8 and Fig. 9), in order

Fig. 8. 3D representation based on ToA and azimuth of AoA, AoD for K=8.

Fig. 9. 3D representation based on ToA and AoA, AoD for K=5.

to understand the advantage of each potential clustering. As
Fig. 9 shows, this solution is able to gather more MPCs in at
least one cluster and to merge two other clusters with a low
number of multipaths. Thus, a partitioning with only 5 clusters
might be more realistic (Fig. 3).

Polar or 3D plots are helpful when the number of estimated
clusters is small and we can infer something from their
visualization. However, when the number of MPCs is large,
and the decision based on CVIs or SF scores is in between
two clustering solutions, we want a more analytical method,
to find the K number. A statistics-based decision using the
variance of the values for various parameters of the MPCs in
each cluster could be a solution. To choose one partitioning
against the other, we find which one produces more compact
clusters, i.e., with the smallest variance for received power,
ToA, and AoA (Table III). The results show that if we are

TABLE III
TOTAL VARIANCE OF MPC PARAMETERS

MPC Parameter k-means K=5 k-means K=8

Rx Power 1687.63 2095.64

ToA 0.19 0.25

Elevation AoA 811.78 1090.89

Azimuth AoA 4166.87 2808.96

Elevation AoD 51.12 52.92

Azimuth AoD 4361.98 1997.11



interested in clusters that group more MPCs, a solution with
5 clusters would be better. The total variance values of the Rx
power and ToA are smaller, so this solution produces clusters
with rays coming closer in time to each other and with power
values closer to the average value in each cluster. On the other
hand, mmWave transmissions consider directivity as one of
their dominant traits, so it is equally important to analyze
the clusters predominantly from the AoA of their constituent
MPCs. In that case, the solution with 8 clusters gives a better
result since it groups MPCs based on their spatial parameters
rather than temporal and power ones.

A similar analysis consisting of polar plots for AoA/AoD
vs. ToA and variance values for the channel parameters of
the received MPCs can be applied to the k-power-means
algorithm. Fortunately, in this case, the validation of the
clustering results is easier. All score fusion factors point to
the same optimal K value for Rx#9. Moreover, this consensus
applies for all receivers placed on that street. Since power
was the major weight factor, in addition to the number of
clusters, we are also interested in the received power levels of
the dominant path that defines each cluster. These values are
getting smaller (i.e., from −104 dB for Rx#5 to −137 dB for
Rx#13) as we move on the street from East to West towards
the edge of the cell.

V. CONCLUSIONS

Our paper compared two variants of the well known k-
means clustering algorithm from the point of validating and
predicting the optimal partitioning of the MPCs generated in
our simulations. Our results show that clustering is not a trivial
task because finding the optimal number K of clusters is not
always given by one or more cluster validity indices. For the
k-means algorithm, we noticed that few of the CVIs used
in our study were not able to find the correct partitioning.
Nevertheless, score fusion techniques and further statistics-
based decisions allowed us to choose the optimal value for K.
When the k-power-means algorithm was applied to the same
set of MPCs (at the same receiver), the Rx power factor
weighted more and “pulled” many MPCs around the dominant
path in each cluster. It also generated a much smaller number
of clusters at many locations on the street. The end result
was an easier decision about the correctness of the clustering
solution based on both CVIs and score fusion factors. In the
future we will analyze the effect of diffuse scattering to the
partitioning solution, and then we will quantify the influence
of clustering to the generation of mmWave channel models.
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