ECE U468 Noise and Stochastic Processes, Spring 2005
School of Electrical and Computer Engineering
Northeastern University

Instructor:
Dr. Suparna Datta
Tel: 617-373-4663
Email: suparna@ece.neu.edu
Fax: 302-288-3175
Office: 322 Dana Research Center
Office Hours: MTh 10:30am-12noon and by appointment
Web Page: www.ece.neu.edu/faculty/suparna/courses/eceu468

Teaching Assistant:
Jie Cheng
Tel: 617-373-4969
Email: cheng.j@neu.edu
Office: 232 Forsyth Building
Office Hours: Wed 2-4pm, Fri 10-11am

Class Hours and Location:
9:15-10:20am MWTh, 108-G West Village

Course Description:
Discusses the physical origins of noise and models for its analysis in electronic devices, analog and digital systems, and communications. The basic theory of discrete and continuous probability, correlation, covariance, and power density spectra is developed and used to discuss random variables and stochastic processes, with application to the analysis of signals in the presence of noise in analog and digital systems.

Prerequisites:
Courses: ECE U464.
Topical: Linear systems. Transform techniques (Fourier, Laplace, and Z-transforms). Convolution integral. Properties of LTI systems. Linear algebra. An introductory probability course is extremely helpful, though not required.

Textbooks:

Reference Books (on reserve at Snell Library):
Grading Policy:
Homework: 10%, due at the beginning of class on due date.
Exams: 55%, see schedule below.
Final Exam: 35%, comprehensive.

- No late homeworks will be accepted after solutions have been handed out and/or posted on the class website.
- No make-up examinations will be given.

Examination dates:
Exam #1: February 24, 2005, 2:50pm-4:30pm, 108-G West Village
Exam #2: March 24, 2005, 2:50pm-4:30pm, 108-G West Village
Final Exam: April 20, 2005, 1:00 pm, room: TBD

Email and Course Web Page:
- You are required to send me an email with your legal name (and preferred name, if applicable), email address, and course title (ECE U468) no later than 01/07/2005 so that I can construct an email list for this class.
- All students are required to check their email everyday for any class updates or notices.
- Any changes or updates to the class syllabus or schedule will also be posted on the class website.
 Copies of homeworks, exams, and solutions will be posted there as well.

Special Needs:
Any student requiring any special accommodations because of a disability, please see me during office hours or send me an email immediately so that appropriate arrangements can be made. If special testing arrangements are required, you must bring your DRC letter to me immediately so that examination rooms can be reserved on your behalf.
Topical Outline:

Basic Concepts of Probability Theory
 Chapter 2
 Sample space, events, set operations
 Axioms of probability
 Counting methods
 Conditional probability
 Independent events
 Sequential experiments

Random Variables
 Chapter 3
 Cumulative distribution function (CDF)
 Probability distribution function (PDF)
 Important random variables (discrete & continuous)
 Functions of a random variable
 Expected value of a random variable
 Markov and Chebyshev inequalities
 Goodness-of-fit
 Transform methods

Multiple Random Variables
 Chapter 4
 Vector random variables
 Pairs of random variables
 Independence of two random variables
 Conditional probability and conditional expectation
 Functions of multiple random variables
 Expected value of functions of random variables
 Jointly Gaussian random variables

Sums of Random Variables and Long-Term Averages
 Chapter 5
 Sums of random variables
 Sample mean and the laws of large numbers
 Central limit theorem

Random Processes
 Chapter 6
 Discrete-time random processes
 Continuous-time random processes
 Stationary random processes (RP)
 Wide-sense stationary (WSS) RP
 Cyclostationary RP
 Continuity, derivatives, and integrals of RP
 Time averages and ergodic theorems

Analysis and Processing of Random Signals
 Chapter 7*
 Power spectral density
 Response of linear systems to random signals

* time permitting