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Abstract This paper uses a formal approach to

incorporating uncertainty of input information into

the fusion process and decision making. Fuzzy set

theory (fuzzy numbers, and fuzzy operators) is used

to characterize and then manipulate (reason about)

uncertainty. A library of speci�cations of fuzzy

set theory is developed using category theory and

Specware, a tool that supports category theory based

algebraic speci�cation of software. The library is

then used to construct speci�cations of fuzzy infor-

mation processing systems. The main construction

in this process is composition. Category theory op-

erators of limits and colimits are used for compo-

sition. As an example, a fuzzy edge detection al-

gorithm is shown, which uses fuzzy operations in

its processing. One of the advantages of this ap-

proach is that every aspect of the fusion process is

speci�ed formally, which allows us to reason about

the uncertainty associated with the sensors and the

processing.
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1 Introduction

In information fusion systems, uncertainty of
information comes into the picture for a num-
ber of reasons: incompleteness of the cover-
age of the environment, inaccuracy of the sen-
sors (e.g., limited resolution of sensors), back-

ground noise in the environment, and others.
There are many ways of dealing with uncer-
tainty. Statistical methods and e�cient �l-
tering algorithms have been applied to this
area using mathematical tools, such as FFT
or wavelets, but none in a completely formal
way, i.e., these mathematical formalisms have
been used to derive algorithms by humans, but
not by computing machines (computers).

Why is a formal method so important? We
know that in order to design a fusion system,
we need to be able to reason about the im-
pact of the uncertainty of the input informa-
tion on the outcome of the fusion system, be-
fore the system is built. In other words, we
need to be able to predict the performance of
the fusion system for any given level of uncer-
tainty and guarantee that it will give satisfac-
tory solutions provided that the uncertainty of
incoming information is within some prespeci-
�ed bounds. With conventional methods, rea-
soning about the performance of the system
cannot be done automatically, but even hu-
mans might draw di�erent conclusions about
a speci�c system due to the lack of full math-
ematical speci�cation of the system.

In this paper, we describe the process by
which uncertainty is formally incorporated into
the fusion system design, so that it allows us
to reason about the uncertainty of the deci-



sions of the fusion system while in the design
phase. Section 2 describes how a fuzzy set the-
ory library is built using category theory and
Specware, and how the library is used to con-
struct speci�cations of fuzzy information pro-
cessing systems. This is the main part of the
paper. Section 3 describes a simple conven-
tional edge detection algorithm, and then maps
this algorithm into a corresponding fuzzy edge
detection algorithm in which all the operations
are replaced by fuzzy operations. This part
serves as an example of the application of our
approach to reasoning about the uncertainty
in information fusion. Section 4 concludes the
paper and gives directions for future research.

2 Fuzzy Information Process-

ing

Before fuzzy set theory was introduced by
Zadeh in 1965, uncertainty was solely treated
by probability theory. But there are some sit-
uations where uncertainty is non-probabilistic.
In information processing systems, for in-
stance, we cannot guarantee that the input
data are precise numbers; instead they are of-
ten referred to as approximately x, or around x.
The reason for this uncertainty is not that we
measure the values with some error, but sim-
ply because we do not know what it should be.
This uncertainty of imprecision can be modeled
by using fuzzy set theory. Another example is
evident in linguistic expressions, such as tall,
big, hot, or likely, unlikely, etc. This linguistic
uncertainty, of vagueness or fuzziness, can be
well described by appropriate fuzzy sets.

In this paper we use fuzzy set theory to han-
dle uncertainty in information processing sys-
tems. We show how fuzzy information pro-
cessing systems can be speci�ed by using cate-
gory theory and Specware. Category theory is
a mathematical technique that is suitable for
representing relations between various types
of objects [5]. Speci�cally, we are interested
in relations between (algebraic) speci�cations.
Specware is a tool that supports category the-
ory based algebraic speci�cations of software

[10]. This section will talk about the construc-
tion of a fuzzy set theory library and fuzzy in-
formation processing speci�cations.

2.1 Construction of Fuzzy Set The-

ory Library

The fuzzy set theory library is composed of
speci�cations (also called specs) of the main
concepts of fuzzy set theory: fuzzy sets, fuzzy

numbers, �-cuts, and fuzzy arithmetic opera-

tions. These specs are useful in composing for-
mal speci�cations of fuzzy information process-
ing systems.

2.1.1 Fuzzy Sets

There are a number of de�nitions for fuzzy sets.
Two most popularly used de�nitions are listed
here for comparison, out of which we chose the
second one.

De�nition 1 [4]: Fuzzy set A is a set of or-
dered pairs

A = f(x; �A(x))jx 2 Xg

where X is a collection of objects (called uni-

verse of discourse), and �A(x) is the member-
ship function. This function takes real values
between 0 and 1.

De�nition 2 [3]: Fuzzy set A is a function

A : X ! [0; 1];

where X is the universe of discourse.

The di�erence between the two de�nitions is
that the former de�nes a function that is not
necessarily total on X, while the latter requires
that the function be total. Since Specware re-
quires that all functions be total, we chose the
second de�nition of fuzzy set for building spec-
i�cations. The diagram of the speci�cation of
fuzzy set is shown in Figure 1.

The spec UNI-INTVL imports REAL
and introduces a new sort : Uni intvl =
Real j between zero one?. FUZZY-SET is a
de�nitional extension [5] of the colimit of UNI-
INTVL and SET; it de�nes a function sort :
Fuzzy set = E ! Uni intvl, where E is the



Figure 1: Diagram for Fuzzy-set

type of all elements in Set. In the FUZZY-SET
spec, �-cut and height are de�ned as

op alpha cut : Fuzzy set; Uni intvl! Set

op height : Fuzzy set! Uni intvl

The �-cut is a powerful concepts that links
fuzzy sets with sets. The application of the �-
cut to a fuzzy set results in a set, and thus all
operations and relations of sets can be applied
to the �-cuts of the fuzzy set, or to �-levels.

2.1.2 Fuzzy Numbers

Fuzzy numbers are one speci�c type of fuzzy
set. The universe od discourse for fuzzy num-
bers is real numbers. Fuzzy number A has the
form: A : Real ! [0; 1]. It has the following
properties:

� A must be a normal fuzzy set. That is,
the height of the fuzzy set A should be 1:

height(A) = sup
x2X

A(x) = 1

� A must be a convex fuzzy set. The prop-
erty of convexity is captured by the fol-
lowing theorem:

Theorem: A fuzzy set A on Real is convex
i�

A(�x1 + (1� �)x2) � min[A(x1); A(x2)]

for all x1; x2 2 Real and all � 2 [1; 0],
where min denotes the minimum opera-
tor.

� �-cut of the fuzzy set A should be a closed
interval for every � 2 (0; 1].

These properties are intuitively obvious. A
fuzzy number is normal since our concept of a
fuzzy number \approximately x" means that
it is fully satis�ed by x itself. We require that
the shape of the fuzzy number be monotonicly
increasing on the left and monotonicly decreas-
ing on the right, so �-cuts of any fuzzy number
should be closed intervals, which leads to the
property that fuzzy numbers are convex.

Fuzzy number is speci�ed in the spec
FUZZY-NUMBER, which imports FUZZY-
SET and adds one sort axiom: E = Real. It
also adds two axioms: normality and convex-

ity.

2.1.3 Fuzzy Operations

In [3], two methods have been presented for
developing fuzzy arithmetic. One method is
based on interval arithmetic. Let A;B denote
two fuzzy numbers, * denote any of the four ba-
sic arithmetic operations, +;�;�; and�. Then
A � B is a fuzzy number, which can be repre-
sented by

A � B =
[

�2[0;1]

(�A �� B)� �

This method requires using �-cuts of fuzzy
numbers. The second method represents fuzzy
number A*B in the following way:

(A � B)(z) = sup
z=x�y

min[A(x); B(y)]

for all z 2 Real. We chose the latter one be-
cause it is more explicitly expressed, thus more
convenient to be speci�ed in Specware.



Fuzzy arithmetic operations are speci�ed in
the spec FUZZY-ARITHM, which is a de�-

nitional extension of FUZZY-NUMBER, with
fuzzy operations being of the following types.

op f add : Fuzzy number; Fuzzy number

! Fuzzy number

op f sub : Fuzzy number; Fuzzy number

! Fuzzy number

op f mult : Fuzzy number; Fuzzy number

! Fuzzy number

op f div : Fuzzy number; Fuzzy number

! Fuzzy number

2.2 Fuzzy Information Processing

There are three stages in fuzzy information
processing: fuzzi�cation, fuzzy reasoning, and
defuzzi�cation. They are covered in the follow-
ing three subsections.

2.2.1 Fuzzi�cation

The �rst step in fuzzy information processing is
to fuzzify input data. There are many ways to
do this. We chose the one in which a triangular
membership function is involved. For a given
value c, we de�ne the triangular fuzzy number
A, such that for all x 2 Real, A(x) satis�es the
equation

A(x) =

8>>><
>>>:

0 if x < c� �;
or x > c+ �

(x� c+ �)=� if c� � � x � c
(c+ � � x)=� if c � x � c+ �

In this equation, � represents the uncertainty
level. The larger the �, the more uncertain the
input data.

One kind of typical input data for an infor-
mation fusion system is image, which is gener-
ally sampled into a rectangular array of pix-
els. Each pixel has an x-y coordinate that
corresponds to its location within the image,
and an intensity value representing brightness.
The spec IMAGE imports INTEGER and
REAL, and de�nes a function sort : Image =

Figure 2: Diagram for Fuzzi�cation

Integer; Integer ! Real. The spec FUZZI-
FICATION is generated by taking the colimit
of IMAGE and FUZZY-ARITHM, and de�n-
ing another function sort : Fuzzy image =
Integer; Integer ! Fuzzy number. The di-
agram for this speci�cation is shown in Fig-
ure 2. FUZZIFICATION maps Image to
Fuzzy image, so that each pixel has a corre-
sponding fuzzy triangular number instead of a
crisp number. Also in this spec, two operations
are de�ned:

op fuzzify : Real;Nonzero! Fuzzy number

op fuzzify 2 : Real! Fuzzy number

where fuzzify takes a crisp number and some
uncertainty level, and generates a fuzzy trian-
gular number. The operation fuzzify 2 deals
with the situation when the uncertainty level is
zero, which means there is no fuzziness about
the result. The latter operation is speci�ed so
that a crisp number can also be regarded as a
fuzzy number.



2.2.2 Fuzzy reasoning

Fuzzy reasoning takes fuzzi�ed inputs and ap-
plies fuzzy arithmetic operations on them. For
instance, as we discussed above, the input can
be a fuzzy image in which each pixel corre-
sponds to a fuzzy triangular number. While
for crisp numbers we apply some arithmetic
operations, like +;�;�; and�, for fuzzy num-
bers we will apply f add; f sub; f mult, and
f div, as speci�ed in FUZZY-ARITHM. Some
additional fuzzy operations are speci�ed there
too, which will be useful in our applications.
One is fuzzy minimum(fmin), another is fuzzy
maximum(fmax). Let A;B denote two fuzzy
numbers, then

fmin(A;B)(z) = sup
z=min(x;y)

min[A(x); B(y)]

fmax(A;B)(z) = sup
z=max(x;y)

min[A(x); B(y)]

for all z 2 Real. The results of these two op-
erations are fuzzy numbers. These two opera-
tions introduce partial ordering of fuzzy num-
bers.

Corresponding logic operations such as fuzzy
equal(fequal) and fuzzy less than(flt) are also
speci�ed here. There are many ways to de�ne
such operations. Here we have chosen the fol-
lowing:

op fequal : Fuzzy number; Fuzzy number

! Fuzzy number

op flt : Fuzzy number; Fuzzy number

! Fuzzy number

The operation fequal takes two fuzzy num-
bers, defuzzi�es them and compares the di�er-
ence of the result. If the di�erence is less than
a threshold, fequal will return a fone, which
is generated by fuzzify(one; �). � is the value
where the two membership functions intersect
and � will be zero if there is no intersection.
If the di�erence is larger than the threshold,
fequal will return a fzero, which is generated
by fuzzify(zero; �). The intersection of the
two membership functions are taken to gen-
erate �, the same way as in fuzzify(one; �).

The result of fequal and flt is either fone or
fzero. This is the fuzzy equivalent of boolean
values true and false. They are not limited to
stating whether something is a fact or not, but
in addition to this, they give the value of the
uncertainty associated with such a statement.

2.2.3 Defuzzi�cation

The input to the defuzzi�cation process is a
fuzzy number, and the output is a crisp num-
ber. There are several defuzzi�cation methods
- centroid calculation that returns the center of
the area under the curve of the fuzzy number,
middle of maximum that returns the average
of the maximum value of the fuzzy number,
largest of maximum, and smallest of maximum.
We chose the largest of maximum method to
implement the defuzzi�cation process.

Defuzzi�cation is implemented in DE-
FUZZIFICATION, which is a de�nitional ex-

tension of FUZZY-NUMBER. This spec de-
�nes the defuzzify operation as: op defuzzify :
Fuzzy number! Real. It takes a fuzzy num-
ber, �nds the largest of maximum of its mem-
bership function, and returns the real number
as defuzzi�cation result. In our situation we
fuzzify the input data using triangular mem-
bership function, so after fuzzy operations are
applied to these fuzzy triangular numbers, the
result will always have only one peak value.
Therefore the largest of maximum of its mem-
bership function will always return only one
value. There are situations where other types
of fuzzi�cation are used, and then the defuzzi-
�cation spec should be more complex.

3 An Example: Fuzzy Edge

Detection

In this section, we will show how to use fuzzy
information processing speci�cations to trans-
late a standard detection algorithm into a fuzzy
detection algorithm, and see how uncertainty
of input data propagates during the process
and in
uences the �nal decision.



3.1 Edge Detection Algorithm

An edge in an image could be considered as
a boundary at which a signi�cant change of
intensity, I, occurs. Detecting an edge is very
useful in object identi�cation, because edges
represent shapes of objects. There are many
algorithms for edge detection. The objective
of an edge detection algorithm is to locate the
regions where the intensity is changing rapidly.
So we can decompose the whole process into
two steps, the �rst is to derive edge points in
an image, the second is to apply edge detection
method only to these points.
We use the Laplacian-based method to de-

rive edge points. Edge points are where the
second-order derivatives of the points are zero,
zero crossing. So edge points can be searched
by looking for zero crossing points ofr2I(x; y),
which can be calculated by the equation

r2I(x; y) = I(x+ 1; y) + I(x� 1; y) +

I(x; y + 1) + I(x; y � 1)� 4I(x; y)

In order to avoid false edge points, local vari-
ance is estimated and compared with a thresh-
old. The local variance can be estimated by

�2(x; y) =
1

(2M + 1)2

x+MX
k1=x�M

y+MX
k2=y�M

[I(k1; k2)

�m(k1; k2)]
2

where

m(x; y) =
1

(2M + 1)2

x+MX
k1=x�M

y+MX
k2=y�M

I(k1; k2)

with M typically chosen around 2. Since
�2(x; y) is compared with a threshold, the scal-
ing factor 1

(2M+1)2
can be eliminated.

The spec EDGE-POINT imports IMAGE
and de�nes a sort and some ops:

sort axiom Edge point =

(Integer; Integer)jedge point?

op edge point? : Integer; Integer

! Boolean

op grad : Integer; Integer ! Real

op var : Integer; Integer ! Real

where grad and var represent gradient and lo-
cal variance respectively, and for all Integers
x; y:

edge point?(x; y)()

grad(x; y) = 0 ^ var(x; y) < thrd

Therefore a pixel at (x; y) satis�es an edge
point if and only if the gradient equals zero
and the local variance is less than the thresh-
old. Otherwise the pixel is not an edge point.

3.2 Fuzzy Edge Detection

Now we will use fuzzy information processing
speci�cations and translate the above edge de-
tection algorithm into a fuzzy edge detection
algorithm.
Fuzzy edge detection is speci�ed in FUZZY-

EDGE-POINT, which imports FUZZIFICA-
TION, and de�nes a function sort :

Fuzzy edge point = Integer; Integer

! Fuzzy number

which maps each pixel to a fuzzy number rep-
resenting the level at which the pixel satis�es
an edge point. This fuzzy number represents
fuzzy boolean. Instead of making the decision
that a pixel is an edge point or is not an edge
point, a fone or a fzero is given. A fone states
that the pixel satis�es an edge point with un-
certainty as described by the fuzziness of this
fone. A fzero, on the other hand, states that
the pixel does not satisfy an edge point with
uncertainty that is described by the fuzziness
of this fzero. The following constants and op-
erations are speci�ed:

const delta : Nonzero

const thrd : Real

op fgrad : Integer; Integer ! Fuzzy number

op fvar : Integer; Integer ! Fuzzy number

where fgrad and fvar represent fuzzy gradient
and fuzzy local variance respectively. Calcula-
tion of fgrad and fvar requires fuzzy arith-
metic operations that have been speci�ed be-
fore. The operations fequal, flt and fmin are



also needed here to realize fuzzy edge detec-
tion. The operation fequal takes two fuzzy
numbers and returns a fzero or a fone, rep-
resenting how similar these two fuzzy numbers
are. The operation flt takes two fuzzy num-
bers and returns a fzero or a fone, represent-
ing how much the �rst one is less than the sec-
ond one. For all Integers x; y:

Fuzzy edge point(x; y) =

fuzzy min[fequal(fgrad(x; y);

fuzzify(one; delta);

f lt(fvar(x; y); fuzzify(thrd; delta))]

Thus the likelihood that one pixel satis-
�es an edge point depends on both the like-
lihood that the fuzzy gradient is close to zero
and the likelihood that the fuzzy local vari-
ance is less than a threshold. The more the
fuzzy gradient is near zero and the fuzzy lo-
cal variance is far less than the threshold, the
more likely this pixel is an edge point. Then
fequal(fgrad(x; y); fuzzify(zero; delta))
should return a fone with less uncertainty, and
flt(fvar(x; y); fuzzify(thrd; delta))
should also return a fone with less uncertainty.
Therefore Fuzzy edge point(x; y) corresponds
to a fone with less uncertainty.

If fequal(fgrad(x; y); fuzzify(zero; delta))
returns a fzero, which means fuzzy gra-
dient of the pixel (x; y) is not close
to zero with some uncertainty, and if
flt(fvar(x; y); fuzzify(thrd; delta)) also re-
turns a fzero, which means fuzzy local vari-
ance of the pixel (x; y) is not less than a fuzzy
threshold, then Fuzzy edge point(x; y) should
return a fzero, which is the fuzzy minimum of
the two results and which shows that the pixel
is not an edge point with some uncertainty.

If one of these two operations(fequal and
flt) returns a fzero, and the other returns a
fone, then Fuzzy edge point(x; y) should re-
turn a fzero which is the fuzzy minimum of
the two results. It shows that the pixel is not
an edge point with some uncertainty.

3.3 Results and Analysis

In order to show that with this approach we
can reason about the in
uence of uncertainty of
input information on the �nal decision before
the system is built, we specify a GOAL spec,
which imports FUZZY-EDGE-POINT and in-
troduces a theorem:

8�1; �2 2 Real; �1 � �2

=) �1 � �2

where �1 and �2 are two di�erent values cho-
sen to fuzzify the input data and represent
the uncertainty levels of the input informa-
tion, and �1 and �2 are the generated un-
certainty values for deriving the results of
Fuzzy edge point(x; y) for the two di�erent
fuzzi�ed images. These �1 and �2 repre-
sent the uncertainty levels in decision making.
They are in
uenced by the result of the fuzzy
gradient and the fuzzy local variance. It is nat-
ural that the more uncertain the input data
the more uncertain the decision. Depending
on the values �1, �2, �1 and �2, the theorem
prover [10] returns either a \yes" or a \no".
In the above example we have applied fuzzy

information processing speci�cations on a stan-
dard edge point derivation algorithm and the
results show that the uncertainty of input data
propagates through the whole process and in-

uences the uncertainty level of the decision.
The uncertainty of input data in
uences the
fuzzy gradient and the fuzzy local variance re-
sults, which in turn in
uence the uncertainty
of the decision. So instead of giving a crisp de-
cision (true or false), a fuzzy decision is given:
true with some uncertainty or false with some
uncertainty. The relation between the uncer-
tainty levels in the �nal decision and in the
input information can be proved in this speci-
�cation stage.

4 Conclusions and Future

work

In this paper we have introduced a formal ap-
proach to characterize and manipulate uncer-



tainty in information processing systems. We
chose fuzzy set theory to represent uncertainty.
We have shown how to specify basic elements
of fuzzy set theory in Specware. As an exam-
ple, fuzzy information processing speci�cations
were applied to an edge detection algorithm.
We showed how the uncertainty of input in-
formation propagates and in
uences the �nal
decision.

In our future work, we will enrich the fuzzy
set theory library by putting in more speci�ca-
tions for fuzzy set theory. �-cut is a powerful
link between fuzzy set and crisp set, so more
specs for �-cut will be built. We will also put
more specs in the fuzzy information process-
ing system. For instance, various fuzzi�cation
methods other than triangular will be speci-
�ed. Trapezoidal, Gaussian, and bell fuzzi�-
cation methods are three most popularly used.
They can represent di�erent levels and kinds
of uncertainty among input data or decision
making. Fuzzy reasoning will be enriched by
de�ning di�erent versions of fuzzy equal and
fuzzy less than. Other defuzzi�cation methods
will also be speci�ed.

Also in our future work, we will generalize
this uncertainty topic by using random set in-
stead of fuzzy set to characterize and manipu-
late uncertainty. We will also specify random
processing and formally introduce randomness
to some typical information processing prob-
lems.
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