
Application of Self Controlling Software Approach to Reactive Tabu Search

Nilgun Fescioglu-Unver
TOBB Economics and Technology University

Sogutozu Cad., Ankara, Turkey
nfunver@etu.edu.tr

Mieczyslaw M. Kokar
Northeastern University

360 Huntington Ave., Boston, Massachusetts, USA
kokar@ece.neu.edu

Abstract

In this paper the principle of self adaptation is applied
to achieve a self controlling software. The software con-
sidered in this case is a heuristic search algorithm: the re-
active tabu search. In reactive search algorithms, the be-
havior of the algorithm is evaluated and modified during
the search. To improve self adaptation, two new strategies
for reactive tabu search are introduced. The first strategy
uses a control theoretic approach, treats the algorithm as a
plant to be controlled and modifies the algorithm parame-
ters to control the intensification of the search. The second
strategy adjusts several parameters according to the feed-
back coming from the search to achieve diversification dur-
ing the search. These strategies adjust the parameters of
the tabu search and form the Self Controlling Tabu Search
(SC-Tabu) algorithm. The performance of the algorithm is
tested on different problem types of the Quadratic Assign-
ment Problem (QAP). The results show that the algorithm
adapts successfully to achieve good performance on prob-
lems with different structures.

1 Introduction

Self adaptive software is software that changes itself at
runtime to achieve better performance. Heuristic search al-
gorithms are software which try to find good solutions to
optimization problems within reasonable time limits. Reac-
tive heuristic search algorithms modify algorithm param-
eters and/or strategies during the search to improve the
search quality. In this paper we apply the principles of self
adaptive software to reactive tabu search and implement and
test the Self Controlling Tabu Search (SC-Tabu) algorithm
on the Quadratic Assignment Problem (QAP).

Most of the real life combinatorial optimization prob-
lems cannot be solved with exact algorithms within rea-
sonable time limits. Heuristic algorithms are used to solve
these problems but the performance of these algorithms
depends on the values of their parameters. One set of
parameters which give good results on one problem type
may perform poorly on another type. Researchers work
on developing methodologies for selecting these parame-
ters [1, 19, 36]. Parameter tuning and reactive search are
two research areas which deal with finding the best parame-
ter values for heurisic search algorithms. Experimental de-
sign techniques, statistical analysis methods [36], as well as
their combination with local search [1] and machine learn-
ing methods [19, 6] are often used for parameter tuning.
Reactive search methods change the parameters during the
search through a feedback mechanism which uses informa-
tion about the history of the search [3]. One of the most well
known reactive search algorithms is Reactive Tabu Search
[4]. Other reactive algorithms include Guided Local Search
[33] and application of reaction methods to genetic algo-
rithms [10] as well as other heuristics [18].

In this paper we use the self controlling software
paradigm of Kokar, Eracar and Baclawski [11, 22, 23] and
use a control theoretic approach to adjust the parameters of
the controlled plant - the tabu search algorithm. The rest
of the paper is organized as follows. In Section 2 several
self adaptive software approaches are summarized. The Self
Controlling Tabu Search algorithm and its implementation
on the QAP is introduced in Section 4. In Section 5 the
experimental results with the problem domain and compar-
isons are presented. Finally, Section 6 discusses the results
and future research directions.

2 Self Adaptive Software Approach

The concept of self modifying software has been known
for some time now. Research on active software, self adapt-
ing software [24, 27], software cybernetics [20], self con-
trolling software [11] and autonomic computing [21] repre-
sents multiple ways of achieving self adaptive behavior in
software.

Laddaga [24, 25] separated the work on self-adaptive
software into three groups: coding as a dynamic planning
system, coding as a control system and coding as a self
aware system. In the coding as a dynamic planning system
approach, a system plans its actions and re-plans when the
effectiveness of the plan decreases. In the coding as a con-
trol system approach, the software is a system with mon-
itoring and control units. The reconfiguration of the sys-
tem is managed by the evaluation, measurement and con-
trol units. In the coding as a self aware system approach
evaluation, revision and reconfiguration is part of the run-
ning software. The application has knowledge of its op-
eration, evaluates itself, reconfigures and adapts to changes.
Robertson and Laddaga propose to achieve the self-adaptive
behavior through the use of reflective layers which interpret
the environment. In their architecture the program knows
itself and can alter itself in order to respond to changes in
the real world. [28].

Lately, several researchers consider designing self adap-
tive software using approaches such as Checkland’s Soft
System Methodology [8, 32], Beer’s Viable System Model
[5, 32, 17] and hidden markov models [34]. Herring use the
Viable System Model as the basis for the Viable Software
Architecture [17]. The Viable System Model of Beer [5] is
based on insights from neurophysiology, control theory and
cybernetics, and investigates the organizational structure of
viable organizations. The Viable Software Architecture ap-
plies this model to software architecture. Another model
recently used in self adaptive software architecture is the
Soft Systems Methodology (SSM). Soft Systems Method-
ology (SSM) seeks to utilize the basic principles of systems
thinking to analyze complex situations where the problem
definition is not clear [8]. SSM is used for capturing the
requirements of a self adaptive software [32]. In addition to
these approaches Wang employ the hidden markov model to
model the software environment and achieve self-adaptation
at runtime [34].

In engineering, control theory (cf. [12]) is used for con-
trolling dynamic systems. Kokar, Eracar and Baclawski
identified software as a candidate for a control plant whose
efficiency can increase by dynamic adjustments [11, 22,
23]. They called their approach the self-controlling soft-
ware approach. The use of control theory for controlling
software has the benefits of using the concepts that have
been developed for years by the control community. Re-

cently, control theory was used in the design of web servers
as a means of increasing the service quality [37, 35, 16, 9].

The control theory based self-controlling software model
([11, 22, 23]) maps the concepts of control theory to soft-
ware engineering. In this model:

• Software is treated as the controlled plant.

• The behavior of the plant and environment is modeled
as a dynamic system.

• Inputs to the plant are classified as control inputs and
disturbances. Control inputs control the behavior of
the plant according to the control goal, while distur-
bances change the plant’s behavior unpredictably.

• A controller subsystem changes the value of control
inputs to the plant.

• A quality of service (QoS) subsystem provides feed-
back to control the plant.

In this paper we develop two reaction strategies for
reactive tabu search. The first strategy follows the ap-
proach described in [22] to control the intensification of the
search. The second strategy is a diversification mechanism
which adapts algorithm parameters according to the feed-
back coming from the history of the search.

3 Tabu search and Quadratic Assignment
Problem

Tabu search (TS) is an iterative heuristic algorithm
[13, 14, 15]. TS uses the history of search (memory) to pre-
vent cycling back to previously visited solutions. In each it-
eration, a transformation operator - the move is used to gen-
erate the neighborhood of the current solution. The moves
operated are stored in the tabu list. A move is tabu if it re-
verses one of the transformations on the tabu list. The tabu
list size ts indicates the number of iterations a move will
be considered as tabu. If the aspiration condition is met, a
move is not prohibited. One commonly used aspiration con-
dition is: if a move results in a solution which has a better
objective value than the best solution, it is not tabu.

In order to improve the performance, additional strate-
gies for intensification and diversification of the search are
used in different versions of tabu search algorithm. The in-
tensification strategies direct TS to search for solutions sim-
ilar to each other whereas diversification drives the search
to unexplored areas in the solution space [2].

We implemented the SC-Tabu algorithm for the NP-hard
Quadratic Assignment Problem (QAP) [29]. The applica-
tion areas QAP has been used includes image processing,

2

network design, airport gate assignment, factory/office lay-
out design, printed circuit board design. We used the bench-
mark problems from the Quadratic Assignment Problem Li-
brary (QAPLIB) in our experiments [7].

QAP is an assignment problem where n units are as-
signed to n locations. There is a flow of supplies f(i, j) be-
tween each unit and there is a distance d(i, j) between each
location. The number of units - n determines the size of
the problem. The goal is to find the assignment s∗ ∈ S(n)
which minimizes the total of the sum of the products of flow
and distance between the units. S(n) is the set of all permu-
tations of {1, · · · , n} and s(i) gives the location of unit i in
the permutation s ∈ S(n). Equation 1 shows the objective
function for this minimization problem.

n∑

i=1

n∑

j=1

f(i, j) · d(s∗(i), s∗(j)) =

min
s

n∑

i=1

n∑

j=1

f(i, j) · d(s(i), s(j)) (1)

There are several types of Quadratic Assignment Prob-
lems. These problems differ from each other according to
the distribution of their flow and distance data. Taillard
[31] showed that different heuristic algorithms show differ-
ent performance on different problem types. The problem
types can be summarized as follows:

1. Random uniform instances: Distance and flow data are
randomly generated from a uniform distribution.

2. Random flows on grids: Flows are randomly gener-
ated. Distance between units is the Manhattan dis-
tances between grid points of an n1 × n2 grid.

3. Real life instances: The facility layout, circuit design
and typewriter design problems are examples to this
type.

4. Real life like instances: Distribution of the distances
and flows are not uniform. They resemble the real life
problems but are bigger in size.

The real life problems available in the QAPLIB [7] are
small in size hence can not measure the performance of
heuristic algorithms effectively. In this research we imple-
mented the Self Controlling Tabu Search and experimented
on the random uniform instances and the real life like in-
stances.

There are several implementations of tabu search algo-
rithm on QAP. One type of move that is mostly used in these
algorithms is exchanging the location of two units [30, 4].
After creating an initial solution s, a neighboring solution is
obtained by exchanging the location of two units.

s′(k) = s(k) ∀k 6= i, j s′(j) = s(i) s′(i) = s(j) (2)

Information about the moves applied to the solutions are
stored in the tabu list. In the SC-Tabu implementation, the
tabu list structure of Taillard [30] is used. In this structure
the tabu list is a two-dimensional array, tl, indexed by units
and locations. The last iteration when unit i was moved to
location j is entered to tl(i, j). The tabu list size ts refers
to the number iterations a move will be considered tabu. A
move is tabu if the following condition is satisfied:

tl(i, s(j)) > (currentIteration− ts) &
tl(j, s(i)) > (currentIteration− ts) (3)

If the solution resulting form a tabu move has a better
objective function value than the best solution found so far,
the move is permitted.

4 Self control of tabu search

Iterative search algorithms move through the space of so-
lutions by selecting a different solution in each iteration.
They use different intensification and diversification strate-
gies to direct the search. Intensification refers to focus-
ing the search efforts on a region within the solution space.
Diversification, refers to driving the search to different re-
gions. Finding a balance between intensification and diver-
sification is important for the success of the search algo-
rithms. This balance is determined by some parameters of
the algorithm. Using the same parameter values for differ-
ent problems disregard the specific problem’s needs. Even
while solving a specific problem the need for intensifica-
tion and diversification change during the search depending
on the region the search is currently in. The dynamically
changing requirements bring the need of a search algorithm
which can modify its own behavior when needed. In this re-
search we controlled the intensification and diversification
of the search using using self adaptation.

4.1 Controlling intensification

The control theory based self-controlling software model
([11, 22, 23]) is used for controlling the intensification of
the search. In this model the software is treated as sys-
tem whose parameters can be dynamically changed using
a feedback controller. A feedback control system is com-
posed of the following elements. The Target system (also
referred to as Plant) is the system to be controlled. In this
case it is the tabu search. The goal is to control the intensi-
fication of the search. The Controlled output is a variable of

3

the target system that is controlled. The Reference input is
the desired value of the measured output. The Controller is
an equation which determines the value of the control input,
given the reference input and the controlled output.

4.1.1 Control input and output

In order to design the control system, we first identified the
controlled variable and control input. The goal is to con-
trol the intensification/diversification of the search and tabu
list size ts is already recognized by researchers as a critical
parameter for the balance of intensification and diversifica-
tion [3]. Large ts values increase the number of prohibited
moves and encourage diversification while small ts values
promote intensification. Hence we selected the tabu list size
ts as the control input.

The controlled output was determined in the next step.
When the controlled software is a search algorithm the first
output that comes to mind is the value of the objective func-
tion. However this value gives us no information about
whether the system is intensifying or diversifying. Hence
it was not used as the controlled variable. The next candi-
date for controlled output was the repetition length, lr. It
is the length of the interval between repetitions of the same
solution. The existence of repetitions was considered as an
evidence for need of diversification also in Reactive Tabu
Search [4]. The repetition length gives information about
not only if there exists a repetition but also how frequently
repeating solutions are found. Hence we selected the repe-
tition length lr as the controlled output.

We performed some experiments with the tabu search al-
gorithm to support our decision on the control input and out-
put. In the experiments, we changed the value of tabu list
size ts according to a schedule and observed the repetition
length lr. Figure 1 shows the measurements from the exper-
iment we performed on the Tai35a problem of the Quadratic
Assignment Problem set [7]. In this experiment, the run
was 5,000 iterations long and the value of ts changed ev-
ery 200 iterations following a roughly triangular waveform.
The repetition length lr was measured in a sliding window
of size 100. The window size of 100 was chosen arbitrarily
in this experiment. Use of a sliding window enables taking
the recent history into account. Thus, if a solution is found
30 iterations ago, the repetition length lr is recorded as 30.
If the solution has not repeated within the last 100 iterations,
the lr is recorded as 100.

Figure 1 demonstrate the impact of the change in tabu
list size ts (the light straight lines) on repetition length, lr,
(the dark marks). It is seen that when ts decreases the repe-
tition length decreases and increases when ts increase. The
decrease of the repetition length to very small values means
that the search got trapped around a local optima. As ts val-
ues increase, lr values increase and reaches to 100 which

0
10
20
30
40
50
60
70
80
90

100

1 1001 2001 3001 4001

iter

lr
,ts

lr

ts

Figure 1. Impact of changes in tabu list size
ts on repetition length

0

20

40

60

80

100

0 20 40 60 80 100

lr
%

 r
ep

et
it

io
n

s
w

it
h

 l
en

g
th

 <
=

lr

Figure 2. Cumulative distribution of repetition
length, lr

means the solutions found has not been met within the last
100 iterations. Having repetitions shows the search is in-
tensifying on a region, whereas having no repetitions for
a while shows that search is moving away from solutions
found within the last 100 iterations.

The next step after this experiment was to determine the
window size for measuring lr. To answer this question an
experiment was conducted. In this experiment tabu search
was run on various QAP problems for 20,000 iterations.
The ts was changed between 3 and 21 according to a step
function and the repetition length was recorded. The results
are shown in figure 2. The figure shows the cumulative dis-
tribution of the lr values recorded during the experiments
and it is seen that most of the existing repetitions occur
within the last 100 iterations. Hence the size of the slid-
ing window to measure the repetition length was selected
as 100.

4.2 Intensification Control

The elements of the feedback control system can be
mapped to the tabu search control system as follows: Tar-
get System: Tabu Search Algorithm; Control Input: Tabu
List Size, ts; Measured Output: Repetition Length, lr; Ref-
erence Input: The desired repetition length, lref

r ; Control

4

Error: The difference between the desired repetition length
and the measured output, e = lref

r − lr.
To control this system we decided to use an integral con-

troller [16]. Integral control changes the control input pro-
portional to the integral of the past errors. Instantaneous er-
ror variations are smoothed out this way and history of the
search is taken into account while determining the control
input.

The integral control law for our system is

e(k) = lref
r − lr(k − 1) (4)

ts(k) = ts(k − 1) + Ki e(k) (5)

In equations 4 and 5, k is the iteration number and
ts(0) = 1. The reference value lref

r should be selected such
that an intensified search is conducted while the repetitions
are limited. Obtaining low values of lr means the search
is repeatedly finding the same solutions hence wasting the
search time. Continuing with few repetitions can be possi-
ble by selecting a high lref

r but in that case intensification
will not be achieved. To avoid going into both extremes, we
selected the reference point as lref

r = 50.
After selecting the reference value, the integral control

parameter Ki is determined. Since low lr values lead into
wasting many iterations with repetitions, it is desirable to
eliminate repetitions with small lr values quickly and move
toward small values slowly. To achieve this behavior the
control parameter Ki is determined through an adaptation
loop. This asymmetric behavior is achieved through use of
equation 6. The parameters a and b adjust the speed of in-
crease and decrease of the control input ts. The parameters
c and d set the turning point for increase/decrease in ts. In
this case the turning point is the reference repetition length
lref
r , using the values c = −1357.47 and d = −1370.91

sets the turning point as lref
r = 50. After off line tun-

ing experiments the values for a and b are determined as
a = 0.001, b = 0.04.

Ki(k) = α(k) · lref
r /lr (6)

where
α(k) = a + b/(1 + ed·(lref

r /lr(k))−c) (7)

Figure 3 demonstrates how the measured output lr
change according to the changes in ts when this controller
is used. The data is taken from a single run of tabu search
on Tai30a problem. Initially ts is set to 1, ts stays at this
value until a repetition occurs. The first repetition has an lr
of 4, which means the solution was found 4 iterations ago.
As this is a very small value, the increase in ts is high and in
the next iteration ts = 24. In the next phase ts continuously
decreases until a new repetition occurs. A repetition length
value below the reference causes ts to increase again. This
pattern repeats throughout the intensification period.

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600

iter

ts

(a) Tabu list size vs. iterations

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600

iter

lr

(b) Repetition length vs. iterations

Figure 3. Adaptive control behavior

4.3 Supplementary diversification

The control loop described in 4.2 adapt the ts such that
an intensified search is conducted while repetitions are lim-
ited. However intensification alone is not sufficient for a
successful search. The search should also be directed to
unexplored areas of the search space, in other words ‘di-
versify’. To obtain diversification we added another feed-
back mechanism which gets information from the history of
the search and decides on when and how to diversify. This
mechanism is based on observing if the search is using most
of the available moves and changing the tabu list size such
that the moves not used for a while are enforced to be used.
The diversification mechanism is composed of two compo-
nents, the Observer which is responsible for observing the
use of the moves and the Diversifier which modifies the ts
as instructed by the Observer.

Figure 4 demonstrates the structure of the Self Control-
ling Tabu Search. The search starts with the intensification
period. During this period, the basic feedback loop feeds
the lref

r and the control error e into the Controller. The
adaptation loop uses the control output lr to adapt the con-
trol parameter Ki to be used in the Controller. Controller
computes the ts value and sends it to the tabu search algo-
rithm.

Meanwhile the Observer monitors if the stagnation pe-
riod exceeds the given stagnation threshold. The stagna-
tion period is defined as the period of iterations without any
improvement with respect to the current best solution [26].
The value of the stagnation threshold is selected equal to
number of possible moves, po. When that stagnation pe-
riod length exceeds po the Observer counts the number of
moves that have not been used since the beginning of stag-

5

ts = ts + Ki . e Tabu Search Algorithme = lrref – lrcontrol error ts - tabu list sizelrref - referencerepetition length lr -repetition lengthControllerKi = f(lrref /lr)Ki TL- tabu listtsObserverDiversifiertsddmaxDiversification Mechanism
Figure 4. Self Controlling Tabu Search mech-
anism

nation period. Starting from this iteration, Observer counts
the number of not used moves every po iterations. When the
decrease in not used moves is less than 15% the Observer
cuts the intensification control loop and starts the diversifi-
cation period.

In the beginning of the diversification period, the Diver-
sifier gets information from the Observer. This information
includes the iteration number when the stagnation started
or the last diversification period ended, and the number of
moves that have not been used since that iteration. The Di-
versifier increases and adjusts ts in each iteration such that
the moves that have been used since that iteration are pro-
hibited. Diversification period length equals to the number
of not used moves. Although diversification mechanism tar-
gets the use of old moves during this period, it decreases the
ts to a small value (one third of the problem size) for short
periods so that the old moves and new moves are combined.

SC-Tabu shows different behavior on different types of
problems. We experimented on the random uniform dis-
tribution and real life like problems. Figure 5(a) demon-
strates an example behavior of SC-Tabu on a random uni-
form problem and Figure 5(b) illustrates an example behav-
ior on a real life like problem. Figures 5(a) and 5(b) show
that real life like problems have longer and more frequent
diversification periods than the random uniform problems.
The increased diversification need of the real life like prob-
lems has also been recognized in the literature [31]. The
self-adaptation mechanism adapts the software such that
this need is automatically satisfied.

5 Results

The performance of SC-Tabu is compared with Reative
Tabu Seach (Re-Tabu) [4] and Robust Tabu Search [31].
These algorithms are selected for their good performance on
Quadratic Assignment Problem. Both algorithms adjust the
tabu list size dynamically. Re-Tabu increase ts by a fixed
amount when there is a repetition, and decrease it when
there are no repetitions for a predefined period of time. For
additional diversification, Re-Tabu use random moves and
divert the search to unexplored areas. Ro-Tabu adjusts ts

0
500

1000
1500

2000
2500
3000

3500
4000

4500
5000

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iter

ts
,

m
o

ve
sN

o
tU

se
d

movesNotUsed

ts

(a) SC-Tabu behavior on a QAP - random uniform distri-
bution problem

0,00

200,00

400,00
600,00

800,00

1000,00

1200,00

1400,00
1600,00

1800,00

2000,00

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iter

ts
,

m
o

ve
sN

o
tU

se
d

movesNotUsed

ts

(b) SC-Tabu behavior on a QAP - real life like problem

Figure 5. SC-Tabu diversification on different
problem types

according to a predefined schedule during the search. We
experimented on the random uniform distributed (Type-A)
and real life like (Type-B) problem instances of Taillard.
Both of these problem sets can be found in the Quadratic
Assignment Problem Library [7]. Type-A problems are
named Taina and real life like problems are named Tainb
where n is the number of units and locations. For direct
comparison with published results we performed the exper-
iments using the same number of runs and iterations as in
tests of Taillard [31].

5.1 Comparison of solution quality for
medium sized problems

In this section we compare Re-Tabu, Ro-Tabu and SC-
Tabu in terms of the quality of solutions found in medium
sized problems. In these experiments the number of itera-
tions is limited and the limits are selected as in [31]. Each
problem is run for 30 times starting from random initial so-
lutions. Table 1 shows the percent of the difference between
the solution found at the end of the allowed iterations and
the optimal solution versus the optimal solution.

It is seen that for uniform random distributed problems
(Type A) both Re-Tabu and SC-Tabu have better perfor-
mance than Ro-Tabu in three out of four cases. For real life
like problems (Type B) SC-Tabu shows better performance
than Re-Tabu in all cases and has better performance than
Ro-Tabu in three out of five cases.

6

Table 1. Quality of suboptimal solutions for
medium sized problems for Re-Tabu, Ro-
Tabu and SC-Tabu

Problem Iterations Re-Tabu Ro-Tabu SC-Tabu
Tai20a 13043 0.312 0.235 0.246
Tai25a 28913 0.247 0.304 0.251
Tai30a 46864 0.186 0.326 0.178
Tai35a 82264 0.310 0.546 0.347
Tai20b 3675 3.919 0.540 0.189
Tai25b 9473 1.021 0.011 0.486
Tai30b 22048 1.101 0.307 0.327
Tai40b 31595 1.330 0.744 0.299
Tai50b 124867 0.409 0.228 0.212

Table 2. Best solutions found by Re-Tabu, Ro-
Tabu and SC-Tabu for large size problems

Problem Re-Tabu Ro-Tabu SC-Tabu BKV
Tai40a 3141702 3146541 3139370 3139370
Tai50a 4948508 4951186 4938796 4938796
Tai60a 7228214 7272020 7205962 7205962
Tai80a 13558710 13582038 13556348 13515450
Tai100a 21160946 21245778 21110846 21059006

5.2 Comparison of best solutions found
for large size problems

In these experiments we compare the performances of
Re-Tabu, Ro-Tabu and SC-Tabu on large size problems. Ta-
ble 2 presents the objective function value of the best solu-
tions found by eachalgorithm. Results show that SC-Tabu is
able to achieve the best known value in the literature in three
out of five cases, and improve the values found by Re-Tabu
and Ro-Tabu in the other cases.

5.3 Comparison of solution quality for
large size problems

The last comparison was made on the large size prob-
lems using short run sizes. Each problem was run for 30
times for 1000n iterations and the mean percent deviation
of the objective function value from the best known value
is presented for each algorithm. In order to compare the
SC-Tabu results directly with the published results, the best
known value is taken as the previously best known value
(BKVprev) at the time of the publication of Taillard [31].
The results show that SC-Tabu shows superior performance
to Re-Tabu in six out of nine cases and to Ro-Tabu in all
cases.

Table 3. Quality of suboptimal solutions
found by Re-Tabu, Ro-Tabu and SC-Tabu for
large size problems

Problem Re-Tabu Ro-Tabu SC-Tabu BKVprev

Tai50a 0.952 1.104 0.856 4941410
Tai60a 0.859 1.278 0.886 7208572
Tai80a 0.569 0.961 0.527 13557864
Tai100a 0.387 0.823 0.392 21125314
Tai50b 0.731 0.439 0.423 458821517
Tai60b 0.366 0.899 0.557 608215054
Tai80b 1.800 1.004 0.879 818415043
Tai100b 1.490 0.968 0.681 1185996137
Tai150b 0.807 1.904 0.657 499348972

6 Conclusions

This paper presents an application of the self adaptation
principles to software. The specific application subject is
a heuristic search algorithm - the reactive tabu search. In
self adaptive software approach the software evaluates and
changes its behavior to improve its performance. To achieve
this behavior we designed two reaction strategies for reac-
tive tabu search.

The first strategy is based on the control theoretic self
controlling software methodology. In this methodology the
software is treated as a plant to be controlled and the pa-
rameters of the plant are adjusted through a feedback mech-
anism. We controlled the intensification of the search using
this mechanism. We first determined the control input and
output, and then designed a controller to control the tabu
search algorithm. The goal of this control mechanism is to
control the repetitions such that the search is intensified and
the repetitions are limited.

The second strategy is a supplementary diversification
mechanism. This strategy also uses a feedback mechanism
and determines when and how long to diversify by using
the history of the search. The goal of the supplementary di-
versification mechanism is to drive the search to unexplored
areas of the search space. Both of these strategies combine
together and form the Self Controlling Tabu Search (SC-
Tabu).

SC-Tabu is tested on the Quadratic Assignment Prob-
lem (QAP). We experimented on the random uniform dis-
tributed problems and the real life like instances. The al-
gorithm was compared to two well known tabu algorithms,
the Reactive Tabu Search and Robust Tabu Search. Test re-
sults showed that Reactive Tabu performs well on especially
random uniform problems, Robust Tabu shows good perfor-
mance on real life like problems while SC-Tabu can achieve
good performance on both types.

7

The self adaptive nature of the SC-Tabu enables it to
modify its behavior and perform good on different types of
problems. The use of adaptation techniques improve the
quality of results of the tabu search algorithm for the QAP.
The use of control theory provided a systematic approach
to design the reaction mechanism. Control theory has many
other well established techniques such as sensitivity anal-
ysis, stability analysis and plant identification. Future re-
search studies could apply these techniques while designing
adaptive software algorithms.

References

[1] B. Adenso-Dı́az and M. Laguna. Fine-tuning of algorithms
using fractional experimental design and local search. Op-
erations Research, 54(1), 2006.

[2] R. Battiti. Reactive Search: Toward Self-Tuning Heuristics,
pages 61–83. John Wiley & Sons Ltd., Chichester, 1996.

[3] R. Battiti and M. Brunato. Reactive Search: Machine Learn-
ing for Memory-based Heuristics, chapter 21. Taylor &
Francis Books (CRC Press), Washington, DC, 2007.

[4] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA
Journal on Computing, 6(2):126–140, 1994.

[5] S. Beer. Brain of the Firm, 2nd ed. John Wiley & Sons,
Chichester, 1981.

[6] M. Birattari, T. Stutzle, L. Paquete, and K. Varrentrapp. A
racing algorithm for configuring metaheuristics. In Proceed-
ings of GECCO-02, pages 11–18, 2002.

[7] R. Burkard, E. Çela, S. Karisch, and F. Rendl. Qaplib -
a quadratic assignment problem library. http://www.
seas.upenn.edu/qaplib/, 2007.

[8] P. Checkland. Systems Thinking, Systems Practice. John
Wiley & Sons, Chichester, 1981.

[9] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Man-
aging web server performance with autotune agents. IBM
Systems Journal, 42(1), 2003.

[10] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter
control in evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 3(2):124–141, 1999.

[11] Y. Eracar and M. Kokar. An experiment in using control
techniques in software engineering. In Proceedings of the
1997 IEEE International Symposium on Intelligent Control,
pages 275–280, 1997.

[12] G. F. Franklin, J. D. Powell, and A. Emami-Naemini. Feed-
back Control of Dynamic Systems. Prentice-Hall, 2002.

[13] F. Glover. Tabu search-part 1. ORSA Journal on Computing,
1(3):190–206, 1989.

[14] F. Glover. Artificial intelligence, heuristic frameworks
and tabu search. Managerial and Decision Economics,
11(5):365–375, 1990.

[15] F. Glover. Tabu search-part 2. ORSA Journal on Computing,
2(1):4–32, 1990.

[16] J. L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feed-
back Control of Computing Systems. John Wiley and Sons,
Inc., 2004.

[17] C. E. Herring. Viable Software the Intelligent Control
Paradigm for Adaptable and Adaptive Architecture. PhD
thesis, The University of Queensland, 2002.

[18] H. H. Hoos. An adaptive noise mechanism for walksat. In
Proceedings of AAAI-02, pages 655–660, 2002.

[19] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown.
Performance prediction and automated tuning of random-
ized and parametric algorithms. In Proceedings of Princi-
ples and Practice of Constraint Programming, September
2006.

[20] C. Kai-Yuan, J. Cangussu, R. DeCarlo, and A. Mathur.
An overview of software cybernetics. In Proceedings of
Eleventh Annual International Workshop on Software Tech-
nology and Engineering Practice, pages 77–86, September
2003.

[21] J. Kephard and D. Chess. The vision of autonomic comput-
ing. IEEE Computer Magazine, 36:41–52, 2003.

[22] M. M. Kokar, K. Baclawski, and Y. Eracar. Control theory
based foundations of self-controlling software. IEEE Intel-
ligent Systems and Their Applications, 14:37–45, 1999.

[23] M. M. Kokar and Y. Eracar. An architecture for software
that adapts to changes in requirements. Journal of Systems
and Software, 50:209–219, 2000.

[24] R. Laddaga. Creating robust software through self-
adaptation. IEEE Intelligent Systems and Their Applica-
tions, 14:25–29, 1999.

[25] R. Laddaga. Active software. Lecture Notes in Computer
Science, 1936:2–3, 2001.

[26] A. Misevicius. A tabu search algorithm for the quadratic
assignment problem. Computational Optimization and Ap-
plications, 30:95–111, 2005.

[27] P. Robertson and R. Laddaga. The grava self-adaptive ar-
chitecture: history; design; applications; and challenges.
In Proceedings of 24th International Conference on Dis-
tributed Computing Systems Workshops, pages 298–303,
2004.

[28] P. Robertson and R. Laddaga. The grava self-adaptive ar-
chitecture: history; design; applications; and challenges.
In Proceedings of 24th International Conference on Dis-
tributed Computing Systems Workshops, pages 298–303,
2004.

[29] S. Sahni and T. Gonzalez. P-complete approximation prob-
lems. Journal of the ACM, 23:555–565, 1976.

[30] E. Taillard. Robust taboo search for the quadratic assign-
ment problem. Parallel computing, 17(4-5):443–455, 1991.

[31] E. Taillard. Comparison of iterative searches for the
quadratic assignment problem. Location Science, 3(2):87–
105, 1995.

[32] A. Taleb-Bendiab, D. Bustard, R. Sterritt, A. Laws, and
F. Keenan. Model-based self-managing systems engineer-
ing. In Proceedings of Sixteenth International Workshop on
Database and Expert Systems Applications, 2005.

[33] C. Voudouris and E. Tsang. Guided local search and its ap-
plication to the traveling salesman problem. European Jour-
nal of Operational Research, 113:469–499, 1999.

[34] H. Wang and J. Ying. Toward runtime self-adaptation
method in software-intensive systems based on hidden
markov model. In Proceedings of 31st Annual International
Computer Software and Applications Conference, COMP-
SAC 2007, volume 2, pages 601–606, July 2007.

8

[35] Z. Wang, X. Zhu, and S. Singhal. Utilization vs. slo-based
control for dynamic sizing of resource partitions. In Pro-
ceedings of 16th IFIP/IEEE Distributed Systems: Opera-
tions and Management, October 2005.

[36] J. Xu, S. Y. Chiu, and F. Glover. Fine-tuning a tabu search
algorithm with statistical tests. International Transactions
in Operational Research, 5(3):233–244, 1998.

[37] X. Zhu, Z. Wang, and S. Singhal. Utility-driven workload
management using nested control design. In Proceedings of
2006 American Control Conference, June 2006.

9

