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Abstract

This paper provides an outline of a formalization of classes of information fusion systems in terms of category theory and formal

languages. The formalization captures both the inputs/outputs of a fusion system and the fusion processing algorithms. The paper

also introduces a notion of subclass, which is used to compare classes of fusion systems, whether they are different or one is a special

case of another. Two examples of classes of fusion systems formalized in the paper are data fusion and decision fusion; decision

fusion is shown to be a subclass of data fusion. A number of other classes of fusion systems are defined. The formalization is

extended by adding the notion of measure of effectiveness, which is then used to prove that one of the classes (so called overlapping

system) is at least as efficient as a single-source system. And finally it is shown how data association can be formalized in this

framework. While at first the formalization could be used by information fusion scientists to formally define various types of fusion

systems and then to prove theorems about properties of such systems, it is expected that it should lead to the development of tools

that could be used by software engineers to formally derive designs of fusion systems.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past two decades information fusion has

established itself as an independent research area.

However, in spite of a significant progress in research on
information fusion, there is still a lack of a formal the-

oretical framework for defining various types of infor-

mation fusion systems, defining and analyzing relations

among such types, and finally designing information

fusion systems using the formal method approach [1–4].

In particular, although various classifications of fusion

systems exist (e.g., the JDL classification [5]), the clas-

sifications are based on the input/output data, rather
than on algorithms of fusion, and moreover, they are

expressed mainly in natural language rather than fully in

mathematics and logic. The consequence of this situa-
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tion is that it is not possible to formally prove that one

type of fusion system is superior to another. Instead,

algorithms are compared as ‘‘black boxes’’, i.e., they are

first implemented and then their performance is com-

pared based on the simulated (or sometimes real)
experiments. The main goal of this paper is to show how

fusion systems can be formalized (in a logical and

mathematical notation) to enable their theoretical

analysis.

It is our belief that the main difficulty of formalizing

information fusion lies in the fact that the real issues of

information fusion are resolved at the time of designing

an information fusion system, rather than at run time of
such a system [6]. At run time, a fusion operation

(algorithm) is executed. But the real challenge of infor-

mation fusion is to derive such an algorithm, rather than

to execute it. In our view then, the problem of infor-

mation fusion lies in the search through a space of

various algorithms for one that satisfies some prespeci-

fied criteria. The term ‘‘search’’ does not mean a search
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through a file of algorithms, since such a file does not

exist; it is used here in a sense similar like in ‘‘searching

for a solution to a problem’’. It may involve, for in-

stance, synthesizing an algorithm using some primitive

algorithms and algorithm composition operations.
The current situation in information fusion is that a

designer proposes an algorithm for fusion and then tests

it on either real or simulated data. So the real fusion

process is done in the designer’s head rather than in the

computer. Our ultimate goal is to develop a framework

in which various design solutions can be searched for

and formally analyzed by a computer rather than solely

by the designer. Towards this goal, we are interested in
methods for analyzing fusion systems before they are

built rather than testing their performance after the

system is implemented (cf. discussion on the selection of

a fusion algorithm based upon knowledge of the envi-

ronment in [7]). In other words, we are interested in a

formal theory of information fusion.

To address these issues we need to ask the question of

what defines our search space (design space). The first
step in this direction is answering the question of what is

given to us in the formulation of a specific fusion

problem that would define the primitives from which

synthesis could start. It seems that we could consider the

following three kinds of knowledge:

• knowledge of the sensors used,

• knowledge of the goal for a fusion system, and
• background knowledge (e.g., physics, geometry).

There are various notions of ‘‘knowledge’’ in various

research communities. Since we follow the formal

methods paradigm (cf. [1–4]), to us knowledge means

formal (logical) theories and their classes of models [8].

Theories may be given as collections of signatures of

functions and relations and collections of axioms over
the signatures. In particular, the knowledge of sensors

means theories through which we interpret sensory data.

The central element of such a theory is a measurement

function. In our approach we conceptualize it as a

function that assigns sensory values to specific coordi-

nates. Knowledge of the goal may mean, for instance,

theories describing targets to be detected by an Auto-

matic Target Recognition system (ATRS) and a target
recognition function that assigns targets to world loca-

tions. In the process of development of a fusion system,

at first only the signature of such a function is known.

The function is then realized by a specific target recog-

nition algorithm. The algorithm is synthesized using

some knowledge from the three types––theories of sen-

sors, signatures of the goal function and background

knowledge theories.
The next question is what should be the composition

operators and the formalism in which such a search

problem can be specified and an algorithm synthesized.
The constraint here is that the formalism must be able to

capture various theories, for instance theories of sensors

and targets, models of the theories, as well as relations

among them. And moreover, the formalism must in-

clude combination operators for this kind of compo-
nents. The set theory operators, like union, shared

union, intersection, Cartesian product, cannot be used

here since the components (theories and models) are not

just set elements, they are structured elements. To be

able to manipulate structured elements, the operators

of set theory must be extended.

We came to the conclusion that the formalism that

best satisfies these requirements is category theory (cf.
[9]). Category theory is a mathematically sound repre-

sentation technique used to capture the commonalities

and relationships between structured objects, in partic-

ular theories and their models. This feature makes cat-

egory theory a very elegant language for describing

information fusion systems and the information fusion

process itself. This formalism is very convenient for

combining (fusing) such structures. In particular, it
provides the operators of colimit and limit that allow us

to combine such structures in a sound and rigorous way.

The colimit operator is a generalization of the shared

union operator and the limit operator is a generalization

of the Cartesian product operator.

Finally, we would like to have some tool support for

manipulating various theories in the process of specify-

ing a fusion problem and searching for solutions. In
other words, we need a language in which we could

specify all of the knowledge and a tool that would

support (semi)automatic analysis of such specifications.

To satisfy this requirement we used the Specware spec-

ification tool (Kestrel Institute) and Slang, its specifi-

cation language. Specware is based on category theory.

In Specware [10], category theory objects are called

specs (short for ‘‘specifications’’). Specware supports the
colimit operation. It also supports progressive modular

development of specifications. Additionally, it supports

the process of refinement––the process of progressive

translation of specifications into code. The refinement

process is guaranteed to be correct, i.e., the code satisfies

its specification.

In this paper we show some results of our investiga-

tions into an information fusion theory within the cat-
egory theory based framework. In the next section we

describe a simple example of one class of information

fusion, i.e., the data fusion. Then we give a formal def-

inition of this class. Then we define a class called decision

fusion (cf. [11,12]). The results in this paper include the

definition of a subclass relation between classes of

information fusion systems in Section 4, proof that

decision fusion is a subclass of data fusion in Section
4.1, identification of necessary and sufficient conditions

for decision fusion to be equivalent to data fusion in

Section 4.2 and identification of a number of additional
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classes of information fusion systems in Section 5. Sec-

tion 6 extends the formalization by adding a measure of

effectiveness of a fusion system. In Section 7 we briefly

discuss the way data association is dealt with within our

framework. In Section 8 we review other approaches
to the formalization of fusion. And finally in Section 9

we present conclusions.
2. Example of data fusion

In order to explain our ideas presented in this paper

we use a simple example of an information fusion sce-
nario. We consider two vision sensors Sens1 and Sens2
observing an object in the world. The first sensor, Sens1,
returns the image denoted as I1ðx1; y1Þ and the second

sensor, Sens2, returns the image I2ðx2; y2Þ. The signatures
of sensory output functions can be represented as

I1 : X1 � X2 ! V1, I2 : X2 � Y2 ! V2. These functions

assign intensity values to world coordinates. We assume

that I1 and I2 consist of two subfunctions. For Sens1,
there is a function g1ðx1; y1Þ which returns pixel values,

which are then filtered by h1ðz1Þ. The composition of

these two functions returns the values of I1ðx1; y1Þ.
Similarly, Sens2 consists of two functions g2 and h2.

The goal of the fusion system is to utilize the infor-

mation from both sensors in order to detect edges of the

observed object. This goal can be represented by a goal

function D : X � Y ! E, where X , Y represent the world
coordinates and E represents edge points. This goal can

be achieved in two ways:

1. Data fusion: Two images I1ðx1; y1Þ and I2ðx2; y2Þ are
fused into one combined image Iðx; yÞ and then edge

detection is performed on this image. The resulting

edges (or more precisely, edge points) are denoted

by Eðx; yÞ.
2. Decision fusion: The two images I1ðx1; y1Þ and

I2ðx2; y2Þ are analyzed separately by edge detection

algorithms. This results in edges E1ðx1; y1Þ and

E2ðx2; y2Þ. Then the detection information (edges) is

fused into one Eðx; yÞ.

As we can see, in the end both systems derive the

same kind of global information about edges repre-
sented by Eðx; yÞ. For simplicity we assume that edge

detection is based on the magnitude of the gradient, for

the image of Sens1, for the image of Sens2 and for the

fused image.
3. Formal definition of fusion

3.1. The formalization approach

Formalizations of a specific problem are usually

called formal specifications. There are two kinds of
specifications: declarative and operational. In this paper

we use the declarative approach. In particular, we for-

malize fusion systems and subsystems in terms of alge-

braic theories. Since a fusion system is to be composed of

a number of subsystems, we also need some structuring
mechanism in which more complex specifications are

composed from simpler specifications. For this purpose

we use the structuring operations of category theory (cf.

[9]). A category is a mathematical structure consisting of

category objects and category arrows (or morphisms).

Category objects are the objects in the category of

interest. For instance, in category Set the objects are all

sets. Category arrows are the mappings that define the
relationships between pairs of (possibly structured) ob-

jects, with one object called its domain and the other

called codomain. One of the arrows must be an identity

arrow. In the category Set the arrows are total func-

tions between sets. A category has a composition oper-

ation which assigns an arrow to a pair of arrows (the

pair must satisfy the domain/codomain compatibility

condition). The composition operation must be asso-
ciative. A diagram in a category is a collection of objects

and a collection of arrows between these objects. In the

category Set the composition is just the composition of

functions and the identity arrow is the identity function.

An arrow identifies parts that are common to the two

objects. The colimit operation creates an object for a

given diagram so that the common (shared) parts are

unified and the rest of the parts are inserted into the new
object while preserving the structures of all the objects.

To formalize specifications we use the category Spec

in which objects are algebraic specifications and the

category arrows are morphisms among the specifications.

Algebraic specifications are pairs (R; T ), where R are

signatures and T ––theories over the signatures. Signa-

tures have the following form: R ¼ ðr; F Þ, where r are

sorts and F are functions over the sorts. Theories asso-
ciated with the signatures are collections of axioms over

the signatures. Signatures and associated theories are

called specifications, or for short specs. In the rest of this

paper we will represent specs in the following form:

S ¼ ððr; F Þ; T Þ ð1Þ

First we will show sorts and signatures of operations

delimited by parentheses. Then we will show the axioms

of a specific theory, if any.

Specs are considered as objects in the category Spec

related through morphisms. More specifically, mor-
phisms map sorts and operations of the source spec to

sorts and functions of the target spec. One special kind

of morphism is called definitional extension. A morphism

S ! T is called a (strict) definitional extension if it is

injective and if every element of T which is outside of the

image of the morphism is either a defined sort or a de-

fined operation. The target spec T is also called defini-

tional extension of S. Specs and morphisms are
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represented as diagrams. The colimit operation creates a

new specification from a diagram of existing specifica-

tions. This new specification has all the sorts and oper-

ations of the original set of specifications without

duplicating the shared sorts and operators. We always
assume that our theories are consistent, i.e., that they

have models, formally denoted asM � T . We implement

and verify our specifications in the Slang language

[13,14]. In the paper, however, we use mainly the

mathematical notation.

The above introduction to category theory and alge-

braic specification is semi-formal and incomplete. The

purpose of this section was to give an overview of the
concepts used in this paper. For a more complete treat-

ment of category theory the reader can refer to e.g. [9].

Algebraic specifications are described in [15]. Examples

related to information fusion can be found in [16–18].

3.2. Data fusion

The two kinds of information fusion systems known
in the subject literature (cf. [12,19]) are data fusion and

decision fusion. Since, as we later prove in this paper,

decision fusion is a subclass of data fusion, we first de-

fine this more general class of information fusion sys-

tems. We first introduce the diagram of a data fusion

system (see Fig. 1) in the category Spec. This diagram

consists of five nodes (specs) and six arrows (mor-

phisms). The nodes represent the following specifi-
cations: Sc––world coordinates; S1, S2––sensors,
Sw––world theory, Sf––the fused system. We describe

each of the nodes in the sections that follow. The arrows

specify which sorts and operations are unified as de-

scribed in Section 3.1. First, we give a general descrip-

tion of each spec, and then explain their meaning in

relation to the example of Section 2.

3.2.1. The world specification, Sw
In the diagram of Fig. 1 we assume that

Sw ¼ ððL;E;D : L ! EÞ; TwÞ ð2Þ
specifies the world that both sensors observe. The

specification includes signatures ðL;E;DÞ and axioms

(Tw). L represents the sort of world coordinates (it can

be, for instance a 2D space where L ¼ X � Y ), E is the
Fig. 1. Data fusion.
objects in the world; they ‘‘occupy’’ locations in the

world. The function D assigns these objects to particular

locations. We do not assume that we always know this

function, but we assume that we may know it for a

number of cases. This function is given as part of each of
the models from the set of models M . This is also re-

ferred to as ground truth. These known models are used

for testing the resulting fusion system. Additionally, the

specification of the world can contain theories Tw (axi-

oms) that capture known dependencies and constraints

that the world is known to obey.

Implicit in this formulation is the fact that the goal of

the fusion system is to recognize objects in the world, or
more precisely, assign object names to all locations in

the world. For other goals, the fusion problem could

have a different signature, but the idea should remain

the same.

Referring to the example of Section 2, the coordinates

of the world are X , Y , i.e., L ¼ X � Y . The objects are
E ¼ ½0; 1�––a subset of real numbers representing the

confidence of an edge point being at a particular world
location. We may define the function D that assigns

objects to each location in the world in a number of

ways. For instance, we can map each location to a

subset of ½0; 1�:
D : X � Y ! 2½0;1� ð3Þ
In such a case the subset represents the possible values

of ‘‘edgeness’’ that can be associated with a given loca-

tion. Alternatively, we can define D as a map to an

element of the interval ½0; 1�, i.e.,
D : X � Y ! ½0; 1� ð4Þ
In this case the function D returns just one edge point

(one value of edgeness) for each world location.

3.2.2. The sensor specifications, S1, S2
The specifications S1, S2 represent specifications of

two sensors.

S1 ¼ ððL1; V1; f1 : L1 ! V1Þ; T1Þ ð5Þ

S2 ¼ ððL2; V2; f2 : L2 ! V2Þ; T2Þ ð6Þ
Each sensor has its own coordinate sort: L1 is the

coordinate sort of the sensor specified by S1 and L2 is the
coordinate sort of the sensor specified by S2. V1 and V2
are the sorts of values returned by the sensors. The

functions f1 and f2 are the measurement functions of

Sens1 and Sens2, respectively. T1 and T2 specify theories
of sensor operation.

In our example, both sensors have the coordinates

denoted as L1 ¼ X1 � Y1 and L2 ¼ X2 � Y2, respectively.
Their measurement functions are f1 ¼ I1 for Sens1 and

f2 ¼ I2 for Sens2. The measurement functions return the

values from V1 and V2, respectively. Since I1 and I2 are
compositions of two functions, the theories of S1 and S2
must have appropriate axioms to this effect.
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I1 ¼ h1 	 g1 ð7Þ

I2 ¼ h2 	 g2 ð8Þ
where g1 and g2 return values from V11 and V21, respec-
tively. The specification of the first sensor, Sens1, is

shown below. We do not show the specification for the

second sensor since it is similar to the specification of the
first sensor.

S1 ¼ ððX1; Y1; V1; V11; g1 : X1 � Y1 ! V11; h1 : V11
! V1; I1 : X1 � Y1 ! V1Þ; I1 ¼ h1 	 g1Þ ð9Þ

The sensor specification includes all the sorts and the

signatures. Then, in its theory part, it includes the axiom

stating that the function I1 is computed as a composition
of the measurement function g1 and the filtering func-

tion h1 (see Eq. (7)).

3.2.3. The coordinate sort specification, Sc
So far we have shown three systems of coordinates: L,

L1 and L2. Each of them can have a number of com-

ponents. In our example we showed two components for

each. In the final specification we need to show which

coordinates are treated as the same coordinates. From

the notation in the example one might suspect that X , X1

and X2 refer to the same world coordinate. But this fact

would have to be made explicit in the specification. To

achieve this goal using the category theory formalism we

need to define a diagram that captures this fact. To-

wards this goal we introduce a spec Sc that contains only
a number of unifying coordinate sorts (note that the

axiom set is shown as empty)

Sc ¼ ððC1; . . . ;CnÞ; ;Þ ð10Þ
and three morphisms: Sc ! Sw, Sc ! S1, Sc ! S2, as

shown in Fig. 2.

For our example the unifying sorts in the Sc spec are:

Sc ¼ ððC1;C2Þ; ;Þ ð11Þ
We assume that we want to associate X1 and X2 with X ,
Y1 and Y2 with Y . The unification of sorts is achieved by

specifying the three morphisms:

Sc ! S1 ¼ fC1 ! X1;C2 ! Y1g ð12Þ

Sc ! S2 ¼ fC1 ! X2;C2 ! Y2g ð13Þ

Sc ! Sw ¼ fC1 ! X ;C2 ! Y g ð14Þ
Fig. 2. Unification of coordinate sorts.
3.2.4. The goal specification, Sf
Now we are ready to construct the goal specification,

Sf . We call this so since it contains the goal function of

the ultimate fusion system. The specification Sf is ob-
tained in two steps. First, the colimit of the diagram in
Fig. 2 is constructed. At this point some of the sorts in

the specs Sw, S1, S2 are identified (or ‘‘glued’’ together).

For instance, the six sorts in our example (X ; Y ;X1;
Y1;X2; Y2) would form two equivalence classes fX ;X1;
X2g and fY ; Y1; Y2g. Note that this does not mean that in
the final spec we would not distinguish between the

variables defined in the original specs. We would still

have the variables representing the values coming from
the two sensors separately. Only after data association

(discussed in Section 7) is done could we use the same

variables for the two sensors. In this paper we assume,

for simplicity, that the coordinates of the two sensors

are perfectly associated and thus we will use the symbols

X and Y to represent the coordinates of the two sensors

in the final specification of the system.

In the second step the resulting specification is ex-
tended by adding the goal function Df . Its signature is

constructed out of the signatures of the two sensors and

of the world. This function takes two measurement

functions f1 2 ðL1 ! V1Þ, f2 2 ðL2 ! V2Þ as inputs and
returns a decision function that assigns subsets of objects

to the world coordinates (note that we write ðL1 ! V1Þ to
represent the space of functions from L1 to V1).

Df : ðL1 ! V1Þ � ðL2 ! V2Þ ! ðL ! 2EÞ ð15Þ
So the final spec Df is of the following form:

Sf ¼ ððL;E;D : X ! E; L1; V1; L2; V2; f1 : L1

! V1; f2 : L2 ! V2;Df : ðL1 ! V1Þ � ðL2 ! V2Þ
! ðX ! 2EÞÞ; TfÞ ð16Þ

For our example, the morphisms S1 ! Sf , S2 ! Sf and
Sw ! Sf would be specified first (similarly as the mor-
phisms shown above) and then the colimit operation

would be specified next. The resulting specification

would include the sorts X , Y , E, the operations I1, I2, g1,
g2, h1, h2 and all the axioms from Sw, S1, S2. The colimit
operation would guarantee that sorts are unified

appropriately, and the operations are applied to the

appropriate sorts. Additionally, it would insure that the

axioms from the source specifications are preserved, i.e.,
they are theorems of the colimit specification. This kind

of mechanisms for formally checking the colimit oper-

ation are part of the Specware tool [14].

The signature of the fusion function for our example

would take the form as shown in Eq. (17):

Df : ðX1 � Y1 ! V1Þ � ðX2 � Y2 ! V2Þ ! ðX � Y ! EÞ
ð17Þ

Note that the mapping is to the set E rather than to 2E.
This means that we expect a concrete value for each of
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the objects (in this case, edges) rather than a distribution

of confidence as a result of the fusion process. This

differs from our general specification where the mapping

is to 2E. The rationale behind the mapping specified in

Definition 1 is to show that the decision is not always
unique, in some cases it may return a number of possi-

bilities rather than just one specific object.

3.2.5. Definition: data fusion

Now we summarize our discussion from the previous

subsections in the following definition of the class of

data fusion systems.

Definition 1. A data fusion system consists of the fol-

lowing specs related through morphisms as shown in

Fig. 1:

Sw ¼ ððL;E;D : X ! EÞ; TwÞ ð18Þ

S1 ¼ ððL1; V1; f1 : L1 ! V1Þ; T1Þ ð19Þ

S2 ¼ ððL2; V2; f2 : L2 ! V2Þ; T2Þ ð20Þ

Sc ¼ ððC1; . . . ;CnÞ; ;Þ ð21Þ

Sf ¼ ððL;E;D : L ! E; L1; V1; L2; V2; f1 : L1 ! V1; f2 : L2
! V2;Df : ðL1 ! V1Þ � ðL2 ! V2Þ ! ðL ! 2EÞÞ; TfÞ

ð22Þ

Note that the spec of Eq. (22) includes all of the other

specs. So one might think that this spec should be suf-

ficient for a definition of a data fusion system. However,

in such a case the relations between the sources of

information, the world and the final spec would not be

specified. In other words, any specs S1, S2, Sw, Sc could
be used. By adding the morphisms Sc ! Sw, Sc ! S1,
Sc ! S2 and the requirement that the resulting spec Sf
must be the colimit of the diagram shown in Fig. 2 we

significantly constrained the set of specs that can satisfy

this definition. In particular, note that all of the axioms

(theories) associated with the specs of sensors S1, S2 and
of the world Sw must be theorems in Sf . This would not

be required if only Eq. (22) was used to define a data
fusion system.

Ideally, we would like to have a perfect data fusion

system, i.e., such that satisfies the following require-

ment:

Tf ‘ 8x2X Dfðf1; f2ÞðxÞ ¼ DðxÞ ð23Þ

This requirement states that the resulting decision

function Df is compatible with the world (ground truth)

specified through function D. This would mean that the
fusion system can always find a unique solution and that

the decision would always be correct. Such a strong

requirement is difficult to achieve in practice. Thus in-

stead, we can have a somewhat weaker requirement by
replacing the equality in this equation by the inclusion

(2); we call such a system a correct data fusion system.

Definition 2. A data fusion system of Definition 1 will be

called a correct data fusion system if it satisfies the fol-
lowing condition:

Tf ‘ 8D8f1;f28x2L DðxÞ 2 Dfðf1; f2ÞðxÞ ð24Þ
This definition states that the axioms of the goal speci-
fication constrain the sets of decisions so that the true

value is always included in the system’s decision. This

issue will be discussed in more detail in Section 6 after

we introduce the notion of measure of effectiveness of a

fusion system.

Another way of relating a data fusion system to the

ground truth is to require that it satisfy the known
ground truth given in the form of models. Note that the
term ‘‘model’’ is used here in the sense of logic and

model theory, where a model is a relational structure (cf.

[8]). For a decision fusion system a model would include

explicit specifications of measurement functions f1, f2
and the values of the function D for these input func-

tions. We will call a system that agrees with a given set

of models a model-satisfying data fusion system.

Definition 3. Consider a data fusion system as in Defi-

nition 1 and a collection of modelsM ¼ fM1; . . . ;Mng. A
data fusion system will be called a model-satisfying data
fusion system if the following condition holds:

Mi � Tf ; 8Mi 2 M ð25Þ
In practice, these models would serve as test cases that

are used to check the system we are designing. It is ex-

pected that the system will perform correctly at least on
the given test cases.

Returning to the example used in this paper, the

models would provide images representing the mea-

surement functions I i1, I
i
2 as well as the decision functions

Diðx; yÞ that would assign the value of E for each loca-

tion x; y. To check that the designed system performs

correctly we would need to show that for each Mi 2 M
we have Mi � Tf . This would be achieved by showing

that

8i8x;y DfðI i1ðx; yÞ; I i2ðx; yÞÞ ¼ Diðx; yÞ ð26Þ

3.3. Decision fusion

The class we have described so far is termed in the

literature (cf. [19]) data fusion systems. Another class is

known as decision fusion systems.

Definition 4. A decision fusion system consists of the

following seven specs related according to the diagram

of Fig. 3.
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Sw ¼ ððL;E;D : L ! EÞ; TwÞ ð27Þ

S1 ¼ ððL1; V1; f1 : L1 ! V1Þ; T1Þ ð28Þ

S2 ¼ ððL2; V2; f2 : L2 ! V2Þ; T2Þ ð29Þ

Sc ¼ ððC1; . . . ;CnÞ; ;Þ ð30Þ

Sd1 ¼ ððL1; V1;D : L ! E; f1 : L1 ! V1;D1 : ðL1 ! V1Þ
! ðL ! 2EÞÞ; Td1Þ ð31Þ

Sd2 ¼ ððL2; V2;D : L ! E; f2 : L2 ! V2;D2 : ðL2 ! V2Þ
! ðL ! 2EÞÞ; Td2Þ ð32Þ

Sd ¼ ððL1; V1;L2; V2;D : L ! E; f1 : L1 ! V1;D1 :

ðL1 ! V1Þ ! ðL ! 2EÞ; f2 : L2 ! V2;D2 : ðL2 ! V2Þ
! ðL ! 2EÞ;Dd : ðL ! 2EÞ � ðL ! 2EÞ
! ðL ! 2EÞÞ; TdÞ ð33Þ

Similarly as for data fusion systems, we can define a

correct decision fusion system by requiring that it satisfy

the condition of Eq. (24) and a model-satisfying decision
fusion system, when it satisfies Eq. (25).

The first four specs are the same as in the definition of

data fusion. The functions D1, D2 are the decision

functions for the two sensors. They could have been

used for making decisions when only one of the sensors

is available. In the process of decision fusion these two

decision functions are used instead of raw data. The spec

Sd represents the decision fusion block. Note that in this

spec Dd takes the assignments that are the results of
application of functions D1 and D2 and combines these

two assignments into one (fused) assignment.

Returning back to our example, we take the decision

function D1 to have the signature

D1 : ðX1 � Y1 ! V1Þ ! ðX � Y ! EÞ ð34Þ
In other words, the decision function D1 takes the

function I1 and returns another function (the decision

function) which maps the world coordinates to the val-

ues of edges. An edge in an image is manifested through
a discontinuity (for continuous images) or a significant

jump in the intensity value (in a digital image). There

are various edge detection techniques (cf. [20,21]). The

simplest method is to take the gradient magnitude as

the value of the edgeness at a specific pixel. Denoting
the (normalized) gradient magnitude by GðIÞðx; yÞ we

would have

D1 � GðI1Þ ð35Þ
This information would be incorporated into the theory

Td1 shown in the spec Sd1. Td1 would then incorporate the
axioms about the gradient magnitude operator and the

thresholds used for detection. Although D2 could use a

different edge detection algorithm, in this paper we as-

sume, for simplicity, that D2 also uses the same kind of

‘‘edgeness’’ operator. The Dd operator can be defined in
many different ways, for instance:

DdðG1;G2Þðx; yÞ � �Gðx; yÞ ¼ 1
2
ðGðI1Þðx; yÞ þ GðI2Þðx; yÞÞ

4. The subclass relation

In order to be able to compare various kinds of fusion

systems we introduce the relation of subclass, which is a

relation between classes of fusion systems. The notion of

subclass is present in most object-oriented modeling

languages, e.g., UML [22], DAML [23–25], OWL [26],

or Java. Informally, the meaning of this relation is that

one class is a subclass of another if each instance of the

former is also an instance of the latter. This definition is
sufficient only if the classes are interpreted as simply sets

of elements. For instance, this is the case for such lan-

guages as DAML and OWL. But this would not be

sufficient to specify the subclass relation among pro-

grams. For instance, the semantics of UML specifies the

subclass relation in terms of another relation called

substitutability. Each object-oriented programming lan-

guage has its own interpretation of subclass, not neces-
sarily compatible with the subclass notion of UML.

For fusion systems, we could say that the class of

systems defined by Sf1 is a subclass of systems defined by
Sf2 if each of the instances of Sf1 is also an instance of Sf2.
But how would one decide whether a given fusion sys-

tem is an instance of a given class of systems? Clearly,

any two systems differ in some respect. For instance,

consider two systems that differ in only one line of code,
i.e., one of them has the line a:¼ b + c, while the other

has a:¼ c + b. Are they equivalent or not? We propose

a formal operational definition of the notion of subclass
such that will allow us to decide when the relationship of

subclass holds, given the formal specifications of two

classes of fusion systems. Roughly, the interpretation of

the subclass relation for fusion systems is that each

system that satisfies the spec Sf1 must also satisfy the
spec Sf2. The following definition makes this notion

precise for the class of data fusion.
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Fig. 6. Decision fusion is a subclass of data fusion.
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Definition 5. Let Sf1 and Sf2 be two classes of data fusion
systems like in Fig. 1, where all nodes except Sf1 and Sf2
are the same. We say that Sf1 is a subclass of Sf2
(meaning that Sf1 and Sf2 are related by subclass) if there
is a morphism of specifications l : Sf2 ! �Sf1, where �Sf1 is
a definitional extension of Sf1, such that the diagrams

shown in Fig. 4 commute.

Fig. 5 explains the meaning of the diagrams of Fig. 4.

First, this definition captures the fact that the input

information in both classes of fusion systems is the

same, i.e., they both deal with the same world and use

the same sensors. Second, since the morphism arrow
points from Sf2 to Sf1 therefore all the constraints (sorts,
operations and axioms) of Sf2 are mapped to Sf1 and

thus Sf1 must obey all of them, and possibly more. And

finally, the three diagrams of Fig. 4 ensure that the

mappings provided by the morphism l agree with the

mappings from S1, Sw, S2 to Sf1 and Sf2, respectively.

Definition 6. Two classes of data fusion systems Sf1 and
Sf2 are equivalent if both Sf1 is a subclass of Sf2 and Sf2 is
a subclass of Sf1.

4.1. Decision fusion as a subclass of data fusion

Now we apply the idea of subclass to any two classes

of fusion systems, not necessarily two classes of data

fusion systems. In particular, we show that decision
fusion is a special case of data fusion (see Fig. 6).

Theorem 1. The class of decision fusion systems, as de-
fined in Fig. 3, is a subclass of data fusion systems, as
defined in Fig. 1.

Proof. Assume that we have a decision fusion diagram

as in Fig. 3. In order to prove that this class is a subclass
of data fusion we need to show (according to Definition

5), that there is a morphism l ¼ Sf ! Sd, such that the

three diagrams shown in Fig. 4 commute. In other

words, we need to produce a data fusion diagram as in

Fig. 1 such that there is a morphism from Sf of the

diagram of Fig. 1 to Sd of the diagram of Fig. 3. To-

wards this aim, we define Sf as a definitional extension of
Sd by defining a new function �Df : ðL1 ! V1; L2 ! V2Þ !
ðL ! 2EÞ:
�Df � Dd 	 ðD1 � D2Þ ð36Þ
Fig. 4. Commutativity requirements for subclass relations.
The meaning of this equation is that an element from

D1 � D2 is a pair of functions whose values are in

ðL ! 2EÞ, i.e., in the domain of Dd. Consequently, Dd

can be composed with the function defined by D1 � D2

giving a data fusion function as a result.

The definitional extension [13] Sf is equipped with an

embedding Sf ! Sd which is the identity on all sorts,

operations and axioms from Sd. We define the arrows
S1 ! Sf , S2 ! Sf as compositions

S1 ! Sf � S1 ! Sd1 ! Sd ! Sf ð37Þ

S2 ! Sf � S2 ! Sd2 ! Sd ! Sf ð38Þ

Then we define the arrow Sw ! Sf as a composition

Sw ! Sf � Sw ! Sd1 ! Sd ! Sf ð39Þ

We can easily check that the new diagram we con-

structed is a data fusion diagram as in Fig. 1. The

identity morphism Sf ! Sd makes Sd a subclass of Sf
according to Definition 5. Therefore the class of deci-

sion fusion systems is a subclass of data fusion systems.

This concludes the proof. h

For our example, the fusion function Df for this

system is

Df � �G 	 ðG1 � G2Þ ð40Þ
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4.2. Can data fusion be a subclass of decision fusion?

We have already proved that decision fusion is a

subclass of data fusion. To prove this we were able to

construct a diagram of data fusion from a diagram of
decision fusion. The main point of the proof of this

theorem was to construct the function Df . We can re-

state the result of this theorem in terms of this function:

8D1:ðL1!V1Þ!ðL!2EÞ;D2:ðL2!V2Þ!ðL!2EÞ;Dd :ððL1!V1Þ!ðL!2EÞ

�ðL2!V2Þ!ðL!2EÞÞ!ðL!2EÞ

9Df :ðL1!V1Þ�ðL2!V2Þ!ðL!2EÞ � 8f1:L1!V1;f2:L2!V2 Dfðf1; f2Þ
¼ DdðD1ðf1Þ;D2ðf2ÞÞ ð41Þ

Now comes the question of when a class of data fusion
systems is a subclass of decision fusion systems. If we

were able to prove that any data fusion system is also a

decision fusion system, then according to Definition 6,

the two classes (decision and data fusion) would be

equivalent, and thus there would not be any good reason

for introducing such a distinction. Below we show that

this is not the case and that actually it is very difficult to

satisfy such a requirement.
Note that in our framework, the statement that a

class of data fusion systems is a subclass of decision

fusion systems would be expressed by the diagram of

Fig. 7, which shows what it would take to construct a

decision fusion diagram out of a data fusion diagram.

While the condition of Eq. (41) is a necessary condition

for a class of data fusion systems to be a subclass of

decision fusion, the following corollary from Theorem 1
gives a sufficient condition.
Sd

S1 S2
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Sc

Sd1 Sd2

Sf

µ

νw

ν2
ν1

Fig. 7. Data fusion as a subclass of decision fusion.

Ddðf1; f2ÞðxÞ ¼

0 : D1ðf1ÞðxÞ ¼ 0 and D2ðf2ÞðxÞ ¼ 0

1 : D1ðf1ÞðxÞ ¼ 1 and D2ðf2ÞðxÞ ¼ 1;
0 : x < 0:78125 � ðminfxjD1ðf1ÞðxÞ ¼ 1
1 : xP 0:78125 � ðminfxjD1ðf1ÞðxÞ ¼ 1

8>><
>>:
Corollary 1. A class of data fusion systems Sf is a subclass
of decision fusion if and only if for a given function Df of
the data fusion class Sf the condition of Eq. (42) is satis-
fied.

9D1:ðL1!V1Þ!ðL!2EÞ;D2:ðL2!V2Þ!ðL!2EÞ;Dd:ððL1!V1Þ!ðL!2EÞ

�ðL2!V2Þ!ðL!2EÞÞ!ðL!2EÞ

� 8f1:L1!V1;f2:L2!V2 Dfðf1; f2Þ ¼ DdðD1ðf1Þ;D2ðf2ÞÞ ð42Þ

The following example shows the difficulty of con-

structing a decision fusion diagram out of a data fusion

diagram. Consider a data fusion system in which the

measurement functions f1, f2 have domains and ranges
equal to the closed interval ½0; 1� of real numbers and the
fusion function is defined as:

Dfðf1; f2ÞðxÞ ¼
1 : 0:5ðf1ðxÞ þ f2ðxÞÞP 0:5
0 : 0:5ðf1ðxÞ þ f2ðxÞÞ < 0:5

�
ð43Þ

Suppose the sensory inputs for a particular situation
are given as two functions f1ðxÞ ¼ x and f2ðxÞ ¼ 0:6x.
The data fusion system will generate a decision

Dfðf1; f2ÞðxÞ ¼ 1 for xP 0:625 and Dfðf1; f2ÞðxÞ ¼ 0 for

x < 0:625. For this situation, the selection of the fol-

lowing decision functions D1, D2 and the decision fusion

function Dd would satisfy the requirement of Corollary

1:

D1ðf1ÞðxÞ ¼
1 : f1ðxÞP 0:5
0 : f1ðxÞ < 0:5

�
ð44Þ

D2 can have the same form. The following decision fu-

sion function Dd, in conjunction with the functions D1

and D2, will give the same result as the data fusion

function Df .
otherwise

g þminfxjD2ðf2ÞðxÞ ¼ 1gÞ
g þminfxjD2ðf2ÞðxÞ ¼ 1gÞ

ð45Þ
While this works for these two specific functions f1 and
f2, it will not work for other functions, say f1ðxÞ ¼ 0:3x
and f2ðxÞ ¼ 0:7x. Note, however, that the condition for

a decision fusion system to be a data fusion system in-

volves quantification over all functions f1, f2, i.e., it re-
quires that the selection of D1, D2, Dd should give the

same result as Df for all such input functions f1, f2.
5. Multi-source vs. single-source

A classification of fusion systems can also be ob-

tained according to their relation to single-source sys-

tems. To introduce this classification we need to talk

about functions in terms of the sets of ordered tuples
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(argument-value pairs). More specifically, we will use

the following notation:

f ¼ fðx; f ðxÞÞjx 2 Xg ð46Þ
Consequently, D will represent the set fðx;DðxÞÞjx 2 Xg,
D1ðf1Þ will represent the set fðx;D1ðf1ÞðxÞÞjx 2 Xg, and
so on.

We will explain our classification using an example
shown in Fig. 8. The rectangle in this figure represents

the Cartesian product of the coordinate space (X ) and
the decision space (E). The bold line annotated with D
represents a ground truth function for one measure-

ment. The decision function D1ðf1Þ 2 2E is represented

by two lines: D1l––the lower bound and D1u––the upper

bound. The intent here is to show that the values of

D1ðf1Þ for a given x are between these two lines. Note
that since values of D1ðf1Þ are subsets of E, in this

example the values are intervals delimited by the points

on the upper bound and the lower bound lines respec-

tively, i.e., by D1lðxÞ and D1uðxÞ. The functions D2ðf2Þ
and Dfðf1; f2Þ are represented similarly by two lines

(lower and upper).

Note that the single-source systems are not correct
(see Definition 1), i.e., it is not guaranteed that the
ground truth is within the bounds of the decisions of

these systems. In mathematical terms, it is not guaran-

teed that the following relation holds: DðxÞ 2 D1ðf1ÞðxÞ.
In particular, for D1ðf1Þ this condition is satisfied in the

intervals ½a; b� and ½d; f �. For D2ðf2Þ this condition is

satisfied for intervals ½a; c� and ½e; g�. The fusion system,

on the other hand, satisfies this condition for all x.
In the following we analyze special kinds of infor-

mation fusion which occur when we add some natural

constraints. In this discussion we will not necessarily

assume the correctness of either a single-source system

or the fusion system.

Definition 7. Given two single-source decision systems

S1, S2 and a data fusion system Sf , the fusion system is

called:
a b c d e hf g

D1l

D1u

D2l

D2u

Dfl

Dfu
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Fig. 8. Comparison of single decision systems vs. a data fusion system.
1. overlapping, if Dfðf1; f2Þ � D1ðf1Þ \ D2ðf2Þ,
2. inclusive, if Dfðf1; f2Þ � D1ðf1Þ \ D2ðf2Þ,
3. alternative, if Dfðf1; f2Þ � D1ðf1Þ [ D2ðf2Þ,
4. preferential, if Dfðf1; f2Þ � D1ðf1Þ,
5. covering, if Dfðf1; f2Þ � D1ðf1Þ [ D2ðf2Þ

for all f1, f2.

The overlapping fusion system gives the smaller sets

as values than any of its components. For instance, if the

set E consists of 10 objects and if S1 gives three objects
for a given f1 and a given x, and S2 gives two objects, the
overlapping system will give at most two objects as

output. In other words, it will always give a decision that
is in agreement with both single-source systems and will

never contradict any of the single-source systems when

they agree. However, such a system cannot be guaran-

teed to be complete, i.e., the fusion function Df is not

guaranteed to be global.

The inclusive fusion system will always give at least as

large sets as the overlapping system. Again it is not

guaranteed to be complete. It will include those deci-
sions on which both systems agree, and possibly more.

The alternative system will give only such decisions

that agree with at least one of the single-source systems.

Again, this system is not guaranteed to cover the whole

coordinate space.

The preferential system will give decisions that are

always in agreement with the preferred system. If for

the decisions of S1 and S2 do not overlap, the resulting
decision set will be overlapped with the set D1ðf1ÞðxÞ
and will have no common part with the set D2ðf2ÞðxÞ.
This does not mean that S2’s input will be ignored.

It may be taken into account, but only to the extent

that the result does not violate the preference condi-

tion.

And finally the covering system will include all of the

decisions of the single-source systems and possibly
more. This system gives less sharp decisions since the

output sets are larger than the output sets of the com-

ponents. This system is guaranteed to be complete,

although still not necessarily correct.
6. Measure of effectiveness

While correctness seems like a natural property to

require, it is not sufficient for guiding designers of fusion

systems. Note, for instance, that a system that gives the

output E (i.e., all possible values) for all f and for all x
would be correct, but not very useful. This kind of an

answer would mean ‘‘I don’t know’’ in every case. To be

able to assess various fusion systems we need to have a

quantitative measure of performance of such systems.
While various measures can be proposed, we give just

one example to make our presentation of formalization

of fusion relatively complete. The measure captures the
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closeness to the ground truth and thus can be thought

of as a quantitative measure of correctness.

Consider two single-source systems S1, S2 and a

fusions system Sf . Assume existence of a measure

l : L� E ! ½0; 1� ð47Þ
We can extend specifications of S1, S2 and a fused system
Sf by adding the measure l to these specifications. We
then can define the following measure of effectiveness

of a decision D1:

�ðD1ðf1ÞÞ ¼
lðD \ D1ðf1ÞÞ

lðD1ðf1ÞÞ
ð48Þ

The effectiveness measure for D2 takes the same form.

For the fusion system the effectiveness measure is:

�ðDfðf1; f2ÞÞ ¼
lðD \ Dfðf1; f2ÞÞ

lðDfðf1; f2ÞÞ
ð49Þ

It is a measure of the intersection of the decision func-

tion with the ground truth function, relative to the

decision function. By definition, the measure of effec-

tiveness would be a number between 0 and 1, which
equals 1 when Dfðf1; f2Þ � D, provided that the set

Dfðf1; f2ÞÞ is not of measure zero.
Having defined a measure of effectiveness, we can

prove various theorems about the performance of vari-

ous classes of systems in terms of the measure of effec-

tiveness. Below is a theorem about overlapping fusion

systems.

Theorem 2. Let S1, S2 be correct single-source decision
systems, and Sf a correct overlapping fusion system that
includes S1 and S2. Then the fusion system is at least as
effective as any of its parts.

Proof. We need to show that �ðD1ðf1ÞÞ6 �ðDfðf1; f2ÞÞ for
all f1, f2. More specifically, we need to show that

lðD \ D1ðf1ÞÞ
lðD1ðf1ÞÞ

6
lðD \ Dfðf1; f2ÞÞ

lðDfðf1; f2ÞÞ
ð50Þ

Recall that (Definition 7) for an overlapping system
Dfðf1; f2Þ � D1ðf1Þ \ D2ðf2Þ. This means that the left-

hand denominator in Eq. (50) is greater than the right-

hand. Since the numerators are the same (because both

S1 and Sf are correct systems) then the conclusion fol-

lows. h

Notice that the effectiveness of this kind of fusion

system increases with the set D1ðf1Þ \ D2ðf2Þ becoming
smaller. This means that such a fusion strategy has the

‘‘narrowing’’ effect on the decision set. However, to

prove a similar result for systems that are not necessarily

in the class of correct systems we would need to make

additional independence assumptions. Many more the-

orems could be proved for the classes of systems in

Definition 7, but this is beyond the scope of this paper.
Since the goal of this paper is to provide a formalization

of fusion, our intention was simply to show examples of

uses of the formalization.

The measure of effectiveness � gives an assessment of

the quality of a given decision. This measure then could
be used for defining a measure of effectiveness of the

fusion system. Consequently, the signature of the fusion

functions Df and Dd could be changed by adding the

measure of effectiveness of either each decision, or of the

system. Below we show a case when each decision carries

a value of the measure of effectiveness:

Df : ðX1 ! V1Þ � ðX2 ! V2Þ ! ðX ! E � ½0; 1�Þ ð51Þ
In this case the value of the measure of effectiveness of

each decision is within a unit interval, i.e., it could be a

probability of correct decision.
7. Data association

Finally, we need to discuss the issue of data associa-
tion, which is at the core of any fusion problem. We

discuss this problem using the diagram of Fig. 9. This

diagram, similarly as all previous diagrams, shows how
to unify the distinguished sorts. It also shows how to

unify other sorts and operations. Once sorts are mapped

by appropriate morphisms (similarly as in Eq. (12)), the

mapping of values of particular sorts is uniquely de-

fined. I.e., if we unify two sorts both of which are iso-

morphic with say natural numbers, then the number ‘‘5’’

in one sort must be mapped to ‘‘5’’ in the other sort.

However, ‘‘5’’ in one coordinate system may correspond
to ‘‘36’’ in the world coordinate system. Consequently,

data association must map ‘‘5’’ to ‘‘36’’. To achieve this

goal, we add an additional specification Sh, which is a

definitional extension of Sf . The association is then done
through the transformation of coordinates:

x,x1 � x1ðxÞ ð52Þ

x,x2 � x2ðxÞ ð53Þ
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The specification Sh imports Sf and adds four additional

functions: x1 and x2, as described in the above equation,

and f 0
1 and f 0

2, defined by the following equations:

f 0
1ðxÞ ¼ f1ðx1ðxÞÞ ð54Þ

f 0
2ðxÞ ¼ f2ðx2ðxÞÞ ð55Þ

The functions f 0
1, f

0
2 play the role of f1 and f2 from the

initial specification.

For an example of data association, consider the two

sensors from Section 2. The points of origin of the

coordinates ðx10; y10Þ ¼ ð0; 0Þ and ðx20; y20Þ ¼ ð0; 0Þ for

the two sensors must be aligned with the world coordi-

nate system, say

ðx10; y10Þ ¼ ða1; b1Þ ð56Þ

ðx20; y20Þ ¼ ða2; b2Þ ð57Þ

Assuming that the coordinates are simply shifted, the

coordinate mapping functions then are:

ðx1ðxÞ; y1ðyÞÞ ¼ ðx� a1; y � b1Þ ð58Þ

ðx2ðxÞ; y2ðyÞÞ ¼ ðx� a2; y � b2Þ ð59Þ
The new measurement functions then are:

f 0
1ðx; yÞ ¼ f1ðx� a1; y � b1Þ ð60Þ

f 0
2ðx; yÞ ¼ f2ðx� a2; y � b2Þ ð61Þ

For instance, if the measurement function for the first

sensor is f1ðx1; y1Þ ¼ 2x1 þ 3y1, then the new function is
f 0
1ðx; yÞ ¼ 2ðx� a1Þ þ 3ðy � b1Þ. A similar transforma-

tion would take place for the second sensor. Conse-

quently, after the association, the measurements of both

sensors are aligned with the world coordinates. Thus

the formalism of specifications presented in this paper

provides a natural framework for data association.
8. Other conceptualizations of information fusion

Various aspects of fusion have been addressed in the

literature under the names of data fusion, sensor fusion,
sensor integration and information fusion. It seems rather
clear that the framework presented in this paper is more

abstract than other frameworks for fusion known in the

literature. Consequently, it should be possible to capture
the aspects of other conceptualizations of fusion within

our framework. A mapping of each of the approaches is

beyond the scope of this paper. Below we just outline the

relation of our approach to some of the conceptualiza-

tions known in the fusion community, without trying

to be complete.

The most influential conceptualization and classifi-

cation of fusion systems was provided by the JDL model
[5]. The JDL model classifies fusion systems with respect
to the data that they take as input and the outputs they

generate. For instance, Level 1 fusion inputs raw sen-

sory data and generates either object IDs or object

states. Level 2, on the other hand takes object infor-

mation from Level 1 and derives relations among the
objects. This classification is especially tuned to the

military domain, although it is also used in the com-

mercial applications as well. Although particular classes

of algorithms are suggested for particular levels (see for

instance a classification provided in [27]), the assignment

is rather loose. It is often stated (cf. [28]) that the algo-

rithms are standard algorithms for computing uncer-

tainty associated with particular decisions and not
specific to fusion.

Our formalization presented in this paper differs from

this approach in many respects. For one, our formal-

ization focuses on the processing rather than on data,

although data are included in the formalization as well.

Note that our formalization views fusion as a function

together with its inputs and outputs. It also captures the

relationships among the functions, for instance it cap-
tures the process of constructing a fusion function out of

component functions. Finally, our formalization does

not contradict the JDL model in any way. Using our

approach, one can formalize the fusion function of each

of the levels in the JDL model. However, since such a

formalization would have to specify the classes of

functions used for fusion on particular levels of the JDL

model, it would be an extension to the JDL model.
While this would be a very interesting and challenging

work, it is beyond the scope of this paper.

Another classification of fusion was proposed by

Dasarathy (cf. [19]). First of all, he proposed to view

fusion systems in terms of what in software engineering

terms can be viewed as data flows. Data flows can be

characterized by inputs, outputs, and processes (func-

tions). In this paper we made this fact more explicit by
specifying the sensors and the processes as functions.

Similarly as in [19] we distinguished data fusion and

decision fusion. The difference is that we showed deci-

sion fusion within the context of a complete sensor

information processing module, rather than showing it

by itself. In our formalization of data fusion we showed

the output to be in the set of decisions, E. But nothing in
our formalization prevents one from interpreting E to be
a (fused) data space. Our Definition 7 was also influ-

enced by [19]. For instance, our overlapping fusion is a

case of what in [19] is called ‘‘AND’’ fusion, our pref-

erential fusion is similar to the serial sensor suite.

Most of the literature on fusion deals with various

approaches to deriving the uncertainty of decisions.

However the algorithms are standard algorithms of

probability and statistics, fuzzy logic, Dempster-Shafer
possibilistic reasoning or neural nets. The aspects spe-

cific to fusion are in the schemes of processing rather

than in the algorithms themselves. In other words, it is
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the arrangement of algorithms into a processing archi-
tecture that distinguishes fusion from other data analysis

systems. Examples of such schemes are presented in [29–

35] and many others. All of the architectures presented

in these papers and books could be formally specified
using our formal approach. The benefit of such an

exercise would be an ability to perform reasoning about

the algorithms using automatic computer-based tools

(theorem provers).

A more general conceptualization of fusion, based on

the notion of random set, was presented in [36]. The

distinguishing feature of this approach is that the

uncertainty of decisions is combined with the decisions
themselves by the means of set-valued functions. This

conceptualization then allows one to view various kinds

of uncertainty as special cases of the generic scheme.

While we did not go into any of the details of algorithms

that use this kind of approach, the influence of this

conceptualization on our approach can be seen in the

fact that our general model starts with the assumption

that the result of fusion is a set-valued function (see, for
instance, Eq. (22)). Our examples, on the other hand,

use only object-valued functions. The framework of

category theory used in our approach if flexible enough

to capture the formalism proposed in [36].
9. Conclusions

This paper presents an approach to the formalization

of information fusion. The approach is general enough

to capture all kinds of fusion, including data fusion,

feature fusion, decision fusion and fusion of relational

information. The paper gives only a taste of what for-

malization would look like rather than giving a complete

formalization of any kind of a fusion system.

We envision two kinds of advantage of such a for-
malization. First of all, the formalization of information

fusion presented in this paper can be viewed as a first

step in developing a formal theory of fusion. Using this

approach, the scientist working in the fusion domain

can specify various fusion concepts in a clear and

unambiguous language so that other scientists can

interpret the concept in a unique way. Moreover, the

scientist can provide formal proofs of the features of the
proposed new fusion related concepts so that other sci-

entists can verify the proofs.

It is our hope that the development of a theory of

fusion would be followed by the development of tools

that the developer of fusion systems could use. A formal

framework for developing fusion systems would allow

the designer to first formally specify algorithms in a

formal language and then follow the formal method
approach to synthesizing and analyzing a fusion system.

This expectation strongly depends on the popularity of

formal methods in software development.
Everybody in the fusion community seems to agree

that fusion is a process that accepts some data (from

multiple sources) as input and produces some outputs

(decisions). However, in the fusion literature, only the

input/output data are used to specify various fusion
systems, while the processing part is treated as a second-

class concept. The main contribution of this paper is

that all aspects of multi-source information processing,

i.e., both data and processing, are captured in this for-

malization. And even more, the processing elements

(algorithms) can be combined in a consistent way. The

concept of subclass introduced in this paper allows for

comparison of various fusion systems and for proving
that one system is a special case of another.

In conclusion, we would like to stress that we do not

view this formalization as the only one and correct

formalization of information fusion. Others may have

different views of information fusion and thus their

formalizations might be different than this one. The

contribution of this paper is that it gives a precise formal

statement of one view of information fusion. Everybody
can analyze this conceptualization and present findings

in a precise mathematical language.

The directions for future work have been mentioned

in the paper in various places. For one, as mentioned

above, one could use this framework to formalize and

extend the JDL model of data fusion. In particular, this

framework would allow one to formalize processes of

fusion, in addition to data. Various classifications of
information fusion processes could be formally specified

and then used in the process of formal development of

information fusion systems. Relations among particular

classes of processes could be formulated as theorems,

which then would have to be formally proved.
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