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Abstract—In this paper, we first describe a system we have 

implemented that takes expressions of policies, expressed in a 
fragment of English called SBVR SE (Semantics of Business 
Vocabulary and Rules Structured English), an OMG standard, 
and automatically translates them into an executable semantic 
web formalism (OWL 2 and semantic web rules). Specifically, we 
describe how these policies can be used to automatically enforce 
compliance with policies and to reconcile multiple policies 
specified by independent parties.  The scenarios implemented 
concern information sharing via XMPP (“instant messaging”). 
We then outline how situations can be characterized as policy-
compliant or policy-violating.  In some cases, situations are policy 
compliant or violating because of events and actions that they 
contain.   We show that our formalism supports this analysis. 

 
Index Terms—Situation Theory; Actions; Events; Policies; 

Deontology; Rules 

I. INTRODUCTION 
A “situation”, at a minimum, includes some number of objects 
and relations among the objects during a time interval and at a 
place [18]. “Situation awareness" is the inference of a 
characterization of a situation based on a set of lower-level 
facts pertinent to that situation about which the agent has 
information. Situation awareness often takes the form of a 
statistical, quantitative inference. As an example, think of the 
characterization of the Iraq War in terms of the charts of 
various types of incident counts and other trends that Gen. 
David Petraeus and others presented in Congressional hearings 
(Figure 1). These charts depicted the situation in Iraq in terms 
of statistical trends among various indicators (relations): that 
IED incidents were on a sustained upward or downward trend 
or that Iraqi troops at a determined readiness level were 
increasing and so on. Progress was measured against baseline 
rates based on the start of the war or other milestones. In such 
cases, the characterization of the situation was not a  
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Figure 1 Chart from Petraeus, 2007 [15]  
 

 
characterization into discrete logical categories, perhaps based  
on strict numeric thresholds. Rather, the characterization was 
mostly based on detection of strong statistical trends from 
period to period, toward or away from the baseline. As such, 
the idea of logically inferring situation types from lower-level 
situational data would, in general, seem to have limited 
practical application.  

However, at least one type of characterization of situations 
does strongly lend itself to logical inference: the 
characterization of a situation as being compliant with or in 
violation of a policy. For example, it is either true or false that 
a set of financial transactions violates a set of anti-money 
laundering policies, although there may be some uncertainty 
as to which, based on incomplete or ambiguous information. 
The violation or non-violation of the policies is not a matter of 
degree. If the prohibited conditions exist, then the situation is 
a violation of the policy. Whether the legal or illegal behavior 
is increasing or decreasing is a different matter.  

In this paper, we first describe a system we have 
implemented that takes expressions of policies, expressed in a 
fragment of English called SBVR SE (Semantics of Business 
Vocabulary and Rules Structured English) [1], an OMG 
standard, and automatically translates them into an executable 
semantic web formalism (OWL 2 and semantic web rules). 
We describe how these expressions can be executed 
automatically to enforce compliance with security policies 
they describe and to reconcile multiple policies by 
independent parties. As such, the policy engine can 
characterize the corresponding situations as policy-compliant 
or policy-violating.  

We then discuss how situations can be characterized as 
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policy-compliant or –violating both because of the actions that 
they contain or independently of such actions.  We extend our 
Situation Theory Ontology formalism to include actions and 
events as relevant individuals and show that this formal 
representation is adequate to encode relationships between 
situations, actions and policies and to derive inferences from 
them 

II.  REPRESENTING POLICIES SEMANTICALLY 
 

In this project we were concerned with the ability to use 
policies to ensure compliance during runtime as well as with 
the ability to do policy reconciliation. Policy compliance 
involves the run-time process of ensuring that all of the 
conditions defined by a policy hold true; a common example 
is the checking of credentials required before granting access 
to a document. In policy reconciliation, the goal is to take 
multiple polices and generate a policy instance that 
simultaneously satisfies all of them; a typical example here is 
determining specific conditions under which a communication 
session is to be established between nodes in a VPN where the 
ends of the connection are governed by different policies. 

1.1 Semantic and Non-Semantic Representations of 
Policies 

Policies can be implemented in a system via the hardware (e.g. 
this light will not turn on unless both of these switches are 
turned on); or in software.  In software, a policy can be 
represented either syntactically or semantically.  By a 
semantic representation, we mean a representation in which 
inferences can be made on the basis of a policy instance using 
a domain-generic inference engine.  So, for example, a 
Windows Group Policy instance has a meaning that is clear to 
everyone who knows the semantics of the policy language.  
However, no generic reasoning engine can draw inferences 
from Windows Group Policy instances in their native format.  
The representation has no meaning to those engines. Instead, 
procedures need to be written to interpret the policies. 

A primary objective in our work is to develop the means 
by which operations-governing policies can be handled 
automatically by a computer using a generic inference engine. 
For this reason it is important to be able to describe policies in 
a formal, declarative way that will permit them to be 
automatically processed by formal reasoning engines. 

A formal reasoner or inference engine is a system capable 
of applying the formal axioms of a language to a body of 
data/facts/knowledge resulting in the derivation of additional 
inferable facts. A rule-based system, for example, may be used 
as a formal reasoner if it is provided with a set of axioms for 
the language in which the data/knowledge is represented. Such 
axiom sets are available for a number of ontology languages 
as discussed below.  

An important principle employed by many systems 
including policy-based reasoners is the use of the closed world 
assumption (CWA), which permits systems to assume that 
everything that is known to be true of the “world” is available 
in the facts that have been provided about it; if a fact is not 
explicitly stated it is assumed to be false. The closed world 

defined by a set of facts can be thought of as a “context” in 
which reasoning is to occur.  OWL-based systems, like the 
one we describe here, adopt the open world assumption.  In a 
policy context, this means that the engine might not know 
everything relevant to determining whether a policy is violated 
or not.   

For reconciliation to be possible there should be an 
explicit separation of policies and mechanisms that use the 
policies, and the policies should be first-class objects within 
the system about which the system can reason. In this way, 
policies will be objects that can be represented, stored and 
manipulated by the system. Moreover, in this way policies will 
have their own interpretation, or semantics. This has a very 
important impact on the accreditation process in that 
mechanisms can be accredited and then policies can be added 
dynamically. 

III. POLICY LANGUAGES 
In our project, we used SBVR Structured English (SE) for 
authoring policies in an English-like formalism.  SBVR SE 
policies are then automatically translated into proprietary 
BaseVISor Rule Language (BVR) for execution and policy 
reconciliation.  Currently, we are also working on 
automatically translating SBVR SE to Rule Interchange 
Format (RIF) Core rules, which is a W3C published 
recommended standard [20]. 

1.1.1 SBVR Structured English 

Semantics of Business Vocabulary and Business Rules 
(SBVR) [1] is an OMG standard introduced in 2008 that aims 
at a more natural format for expressing rules. Business rules 
are expressed in a subset of natural language that is readily 
understandable by business people, instead of at an 
implementation level, such as rules that are processable by a 
formal reasoning engine. The vocabulary represents the 
concepts used in the rules and can also express facts and 
relations between concepts (i.e. ontological relations).  The 
specification is based on formal logic and captures the 
semantics of implementation-independent business models. 
SBVR is located in the Business Model (also called the 
Computation-Independent Model) level in OMG’s Model 
Driven Architecture (MDA) [2] and is meant to be translatable 
to a Platform-Independent Model (PIM) that describes the 
structure and behavior of the model, and subsequently to a 
Platform-Specific Model (PSM) that includes all the platform 
dependent information necessary for a developer to implement 
executable code, such as specific programming language 
packages. SBVR is mapped to the Meta-Object Facility 
(MOF) [3] metamodel – a useful feature for transformations of 
an SBVR model to other models. 

SBVR distinguishes between alethic and deontic rules. 
Alethic rules are categorized as structural business rules, 
which are rules that must necessarily be true as part of the 
business organization.  For example, the rule that “it is 
necessary that all supervisors be full-time employees” 
expresses an alethic contraint. Deontic rules are operative 
business rules that are expected to be obeyed but can be 
violated in practice.  For example, “it is obligatory that 
employees fill out a W-2 form.”  This rule expresses an 
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obligation that is supposed to be observed, but may actually be 
violated in practice. 

SBVR has two common notations: Structured English and 
RuleSpeak®.  We do not discuss the RuleSpeak notation here. 
SBVR Structured English (SBVR SE) is a controlled English 
vocabulary and grammar that uses font styling and colors to 
indicate SBVR concepts. term represents a noun concept such 
as rule and action. Name is an individual concept and usually 
is a proper noun, e.g. California. verb is part of a SBVR 
construct called a fact type and is usually a verb, preposition 
or combination of preposition and verb. Lastly, SBVR SE 
defines a set of keywords that are reserved words or phrases 
with special meaning. Examples of keywords are the articles a 
and the, modality phrases it is necessary that, and 
quantifications every and at most one. An example of a SBVR 
SE rule is:  

 
It is obligatory that a driver is qualified if the driver rents a car 
that is owned by EU-Rent 
 

Like the other languages discussed, SBVR is domain and 
application independent. The SBVR specification includes a 
proposal relating SBVR concepts to equivalent OWL 
expressions, so clearly some consideration was given to how 
SBVR should work with semantic languages. Its main strength 
over the other languages is its user friendliness. Because 
SBVR SE is an almost-natural language, it is suitable for 
expressing high-level rules.  

SBVR is sufficiently expressive for representing high level 
rules but because SBVR is at the business model level, it 
suffers from the common problem that most business model 
level components do: translation to a PIM and especially to a 
PSM requires additional details about computations and 
platform-specific information, usually supplied by an IS or IT 
person. The SBVR vocabulary can be expanded to include 
platform vocabulary and RuleSpeak includes templates to 
write computation rules, but SBVR is meant to be a high level 
language and is not executable, so SBVR is only truly useful 
when translated into a lower level executable language like 
BVR or Rule Interchange Format (RIF)-Core.   

A. BaseVISor Rule Language (BVR) 
BaseVISor (http://www.vistology.com/basevisor) is a versatile 
forward-chaining rule engine specialized for handling facts in 
the form of RDF triples (i.e., subject, predicate, and object). It 
expresses rules in BaseVISor Rule language (BVR). The 
engine implements OWL 2 RL inference rules and supports 
XML Schema Data Types.  

Generally speaking, rules are expressed in the form 
of if/then statements. The ‘if’ part of the statement is 
represented by the ‘body’ or ‘antecedent’ of the rule; the 
‘then’ part is represented by the ‘head’ or ‘consequence’. In 
BVR the contents of rule heads and bodies are made up of 
triple patterns (i.e., triples that may contain variables) and 
procedural attachments, i.e. functions such as add, assert, and 
println (print line). Users can add user-defined procedural 
attachments for use in rules. BaseVISor also supports BVR 
queries, which are special cases of rules with empty heads, 
and are useful for retrieving information from the resulting 
fact base. 

BVR is domain and application independent, compatible 
with the semantic languages OWL and RDF, designed for 
formal reasoning and executable in the BaseVISor 
environment.  It is very expressive, especially since the 
language is extensible via user-defined procedural 
attachments. 

B. RIF-Core 
The Rule Interchange Format (RIF) is a W3C 
Recommendation.  Since there are many rule languages in 
existence, RIF is envisioned as a lingua franca in which rules 
can be exchanged by expressing them in a common language.  
RIF-Core is a subset of the Rule Interchange Format.  RIF-
Core corresponds to the language of definite Horn rules 
without function symbols (often called 'Datalog') with a 
standard first order semantics. RIF-Core thus is a subset of 
RIF-BLD (Basic Logic Dialect). At the same time, RIF-Core 
is a language of production rules where conclusions are 
interpreted as assertion actions. Thus RIF-Core also is a subset 
of RIF-PRD (Production Rules Dialect). RIF-Core is based on 
built-in functions and predicates over selected XML Schema 
datatypes, as specified in RIF-(Databyes and Built-ins) DTB 
1.0. 

To give an example, the SBVR SE rule: 
 

It is necessary that a customer has_status Gold if the 
customer has_status Silver and the customer 
has_shopping_cart a shopping_cart that has_worth a value that 
is_greater_than $2000.  

 
corresponds to the RIF-Core rule: 

 
Forall ?customer ?shoppingCart ( 
 ?customer[ex1:status->"Gold"]  
 := And( 

?customer # ex1:Customer                                 
?customer[ex1:status->"Silver"]  
?shoppingCart # ex1:ShoppingCart                                       
?customer[ex1:shoppingCart-> 
   ?shoppingCart] 
?shoppingCart[ex1:value->?value]                              
pred:numeric-greater-than-or-
equal(?value 2000) 
) 

) 

C.  Translation of SBVR SE to BVR and RIF-Core 
For the automatic translation from SBVR to BaseVISor, we 

use ATL (Atlas Transformation Language) Given the 
metamodels of source and target languages, ATL transforms a 
model conforming to the source language metamodel to the 
target language. We have created a metamodel for BaseVISor 
and modified the SBVR metamodel used in a UML-to-SBVR 
effort [6]. We then wrote ATL rules to map from SBVR rules 
expressed in Structured English to BaseVISor rules.  Because 
BaseVISor Rule Language is not a standard, we are in the 
process of doing the same thing for RIF Core. 
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IV.  POLICY ONTOLOGIES 
We developed OWL ontologies to encapsulate our treatment 
of policies and to represent concepts and their relations that 
we have determined to be essential for policy compliance and 
reconciliation scenarios, including information exchange 
policies. These “core” ontologies are the basis for any domain-
specific application of policy reasoning, i.e., domain-specific 
scenarios should extend these ontologies with their domain-
specific knowledge and rules. The design of the ontologies, 
such as treating actions and operations as first-class entities, 
are grounded in our study and investigation of formal security 
models, which involve policies. 

A.  Representing Modal Notions in OWL 
Our system, called PolVISor involves both forms of modality, 
both deontic and alethic.  Modal expressions qualify the truth 
of a statement.  For example, to say that “John is possibly 
dyslexic” is not to assert that “John is dyslexic”, but a more 
qualified statement that the statement might be true.  Modality 
is expressed logically as operators over propositions.  Op(p) 
means that some modal operator Op is being asserted of the 
proposition p:  It is Op that p.  The operator identifies the way 
in which the truth of the bare proposition p is being qualified. 

Alethic modality is the logic of possibility (it is 
possible that p) and necessity (it is necessary that p).  As 
specified by SBVR, alethic notions are encoded directly in the 
ontology.  Necessity relations between classes are expressed in 
terms of subclass relations that apply to all instances.  Thus, to 
say that necessarily, all bachelors are unmarried is to say that 
the class Bachelor is a subclass of Unmarried Things.  Without 
such a subclass relation, it might be the case that all of the 
instances of Bachelor are instances of Unmarried, but that 
would be a contingent coincidence, not a necessary truth, with 
respect to that ontology.   We encode that it is possible for a 
member of class F to be a member of class G in the ontology 
by failing to have classes F and G as disjoint classes.  If F and 
G are marked as disjoint classes, then necessarily, no Fs are 
Gs, (and, necessarily, no Gs are Fs), according to that 
ontology. 

“It is necessary that a user has a password” expresses 
a necessary relation between the class of Users and the class of 
things that have a password.  This necessary relation would be 
expressed by saying that the class of Users is a subclass of the 
class of things that have Passwords.  This encodes the 
necessity relation in the ontology directly. Ontologies express 
constraints on how the world can be.  To say that users may 
have a password is expressible by saying that the class of 
Users and the class of things that have a password are not 
disjoint. 

Deontic Logic [5] is the study of the logic of the 
concepts “may” (or deontic ‘can’) and “must” and their duals 
“may not” and “must not”.  These concepts are crucial in 
expressing policies: policies express what may or may not be 
done, under certain conditions, and what must and must not be 
done, again, under certain conditions. May and must are modal 
notions. Sentences employing modal notions, like may and 
must, do not express the way the actual world is, but qualify 
the truth of the proposition they modify, in this case 
expressing conditions on how possible worlds must be if they 

are to comply with the deontic notions our ontology encodes.  
That is, if I say that “John may go to the store” or “John must 
(or must not) go to the store”, I do not say anything about how 
the actual world is with respect to John’s going to the store.  
What I express has to do with the consistency of John’s going 
to the store with the ways in which John is permitted to act or 
with the ways in which John must act. 

In our inference engine, BaseVISor, propositions are 
expressed as RDF or OWL triples (subject, predicate, object). 
BaseVISor does not allow for modal operators over triples. 
Therefore, rather than give modal operators their usual 
semantics as quantifiers over possible worlds or ways the 
world could be or ways a person could act, we treat Actions as 
a class that can be subdivided into Permissible (may), 
Omissible (may not), Optional (may and may not), Obligatory 
(must) and Prohibited (must not) subclasses. 

The structure of the ontology is represented in Figure 2: 
 

Figure 2. Classes and subclasses of Deontic Ontology 
 
First, Actions are subclassified as Permissible or Omissible. 

An action is Permissible if it may be done.  For example, if 
getting married is permissible (without restriction) , then the 
class of actions that are Marriages could be represented as a 
subclass of the class of permissible actions.    

An action is Omissible if one may not do it.  For 
example, eating okra is omissible.  One may abstain from 
eating okra.   The class of actions that is okra-eating could 
thus be represented as a subclass of the Omissible actions. 

In fact, one both may and may not eat okra (and one 
may or may not get married), so both of these classes of 
actions would be subclasses of the intersection of the 
Omissible and Permissible classes: the Optional actions. 

Obligatory actions (actions one must do) are a subset 
of the Permissible actions.  If an action must be done, then it 
may be done. The Obligatory actions and the Omissible 
actions are disjoint: if an action must be done, it is not the case 
that it may not be done. 

Similarly, Prohibited actions (actions one must not 
do) are a subset of the Omissible actions (actions one may not 
do). The Prohibited actions and the Permissible actions are 
disjoint: if an action must not be done, then it is not the case 
that it may be done. 

We have expressed these relations in an OWL 
ontology.  The ontology may be downloaded at 
http://vistology.com/ont/2010/secpol/Deontic.owl.  

By means of this ontology, one can state that all 
instances of actions of a certain type are, for example, 
prohibited (e.g. theft, murder) or permissible (e.g. expressing 
one’s opinion, forming associations) across the board. Policy 
rules allow one to express conditions under which actions of a 
certain type are classified as permissible or prohibited or 
optional based on additional facts about them.  For example, 
one could express the policy that it is permissible to marry 
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only if one is at least a certain age, not currently married, and 
so on.    

Because of the open world assumption in OWL, the 
fact that an action is obligatory does not lead to the inference 
of a policy violation if there is no such action yet.  Stating that 
an action is obligatory entails that there must be such an action 
at some point.  We can infer a contradiction if an action is 
asserted to be both obligatory and omissible, however.  
Further, we can say that if an action must be completed within 
a certain time frame, if the time frame contains no such action, 
then this is a violation. 

In the next section, we illustrate our approach by 
showing how certain information sharing actions can be 
inferred to be policy violating or compliant via formal 
inference. 

V. XMPP INFORMATION EXCHANGE POLICIES 
Extensible Messaging and Presence Protocol (XMPP) [6] is a 
popular open-standard protocol for instant messaging (IM) 
widely used in military applications. There are a number of 
extensions to the protocol that define protocols for other 
functionality, for example Voice Over IP (VoIP) can use 
XMPP for internet telephony.  

Each user signs into his XMPP account identified by a jid, 
commonly of the form name@domain.server, e.g. 
juliet@montague.net. Each jid has a contact list called a roster. 
The server hosting the user automatically sends a presence to 
each of his contacts, except for those he has blocked, to 
indicate that he is now online. The contact’s server forwards 
the presence to the receiver, unless she specified that she does 
not wish to receive presences from the sender. The contact’s 
server also sends back a presence to the sender if she has not 
blocked presence-outs to the sender. Now the two clients can 
start chatting with each other. Users can also join chatrooms, 
participate in conversations as a group, and send messages to 
individuals in the room. 

Using Openfire [7], an open source XMPP server available 
from Ignite Realtime [8], for our server, we developed a 
plugin that intercepts incoming and outgoing XMPP stanzas. 
The stanzas of interest in our scenarios are presences and 
messages, but all stanzas are intercepted so our 
implementation is extensible. Users connect to the servers via 
Spark IM Client [9], an open source IM client application also 
provided by Ignite Realtime. 

We wrote policies in SBVR SE corresponding to the 
scenarios outlined below and converted them to an executable 
rule language (BVR).  We installed the policies on XMPP 
servers and used them to control who could talk to whom 
according to the policies and making use of descriptions of the 
users encoded in either the friend-of-a-friend (FOAF) or 
vCard vocabularies for describing persons.   

To demonstrate server policies that limit who can 
communicate with whom, based on facts about the persons 
involved, we developed the rules and ontologies for one server 
that restricted chat based on gender and another server that 
restricts chat based on the first letter of the jid.  The first 
server allowed men to be visible Monday, Wednesday, Friday, 
and women the other days. The second server, allowed jids 
that began with the first half of the alphabet to be visible the 

first half of the week; the remainder, the second half.  The 
policy engine correctly interpreted and enforced the policies 
on each server, prohibiting messages and presences from 
being sent when the users were not compliant with the policy 
on that day. 

In a second scenario, we implemented security level 
markings for jids. We added policies limiting communications 
to those with the appropriate security level.  For example, 
someone with a clearance of Top Secret could send and 
receive messages classified as Top Secret or any “lower” level 
like Secret or Unclassified.   In this scenario, the policy 
engines correctly prevented communications between users 
involving illicit classification levels. 

In both of these scenarios, there was no policy 
reconciliation involved.  In order for both servers to comply 
with all of the applicable policies, it was only necessary for 
each server to enforce its own policies on incoming and 
outgoing messages and presences. 

In a third scenario, we implemented explicit reconciliation 
of policies between servers. In this scenario, both Server 1 and 
Server 2 had security policies restricting who can join what 
chatroom. Their policies must be successfully reconciled and 
the attempt to join must satisfy the reconciled policy in order 
for the attempt to be allowed. By satisfying the reconciled 
policy, the request also satisfies each server’s policy.  The 
servers exchange policies, compute a reconciled policy, and 
implement it.   We were able to successfully compute a 
reconciled policy, propagate it to the other server, and enforce 
it. 

In a fourth scenario, we implemented the same policy 
reconciliation scenario but with each server expressing facts 
about its users in a different ontology (using vocabularies 
corresponding to the FOAF and vCard standards) that must be 
aligned automatically before reconciliation takes place. 

With these scenarios, we demonstrated that: 
1. Policies authored in a restricted natural language 

format (SBVR Structured English) can be automatically 
converted to an executable formalism (BaseVISor rule 
language and OWL 2 RL) effectively. 

2. Policies written in the ontology-based rule language 
can provide an effective and flexible way to specify expressive 
policies regulating actions that can be automatically enforced 
using ontology-based reasoning. The core ontologies used as 
the basis for domain-specific knowledge are grounded by our 
investigation of established security models. 

3. Policies written in the ontology-based rule language 
can be effectively reconciled to allow for dynamic, policy-
based information exchange between an open set of XMPP 
servers.    

4. While policy reconciliation typically requires the 
sharing of a common vocabulary, we have shown that 
effective ontology matching can be implemented to allow 
policy reconciliation across different (but similar) 
vocabularies. 

Video demos of these scenarios can be viewed at: 
http://173.14.188.57:9999/secpol/ 
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VI. SITUATIONS 
In the previous section, we illustrated formal reasoning 

about constraints on actions imposed by policies.  In this 
section, we extend the analysis of policy violation and 
compliance to the notion of a situation that contains or 
involves an action constrained by a policy.  We do this by 
extending an ontology we have developed previously to 
include actions as individual entities.  Doing so allows us to 
extend the notion of policy compliance from the level of an 
individual action to the context (situation) in which it occurs. 

Situation Theory, as initiated by Barwise and Perry [16] and 
developed by Devlin [17], is a theory of information flow 
among cognitive agents, particularly by means of language.  
Barwise and Perry begin with the assertion that people use 
language to talk about (i.e., exchange information about) 
limited parts of the world, which they call situations. (For 
example, scenes are situations that are visually perceived by 
some observer.)  Abstract and concrete situations are partial 
possible worlds, and the information an agent has about a 
given situation at any moment is limited to information about 
elements of the situation.   

In situation theory, information about a situation is 
expressed in terms of infons. Situations support (|=)  infons. 
Infons are written as 

<<R, ai, …, an, l, t, 0/1>>  

where R is an n-place relation and a1, . . .,an are objects 
appropriate for R. Infons have slots for time and location 
parameters, which, by convention, are encoded as the two 
slots before the final polarity parameter (0 or 1).  Each slot is 
associated with a type of individual that must fill it (e.g. times, 
locations, persons).  A polarity of 1 indicates that the situation 
contains the described state of affairs.  A polarity of 0 
indicates the opposite. Infons may be recursively combined to 
form compound infons.  

In [18], a (partial) computer-processable implementation for 
Situation Theory was developed that is compatible both with 
Barwise and Perry and with Endsley’s model of human 
situation awareness [19].  To achieve this, Situation Theory 
was encoded using a formal ontology (STO) in OWL (Figure 
3, excluding red boxes).  An ontology-based approach to 
situation awareness supports the inference of new facts about 
the situation from the encoded facts.   

It has been shown that the OWL ontology encoding 
Situation Theory can be used to model and track situations as 
they unfold.  Implicit features in Situation Theory notation are 
made explicit in the STO OWL notation. 

Similarly to Barwise and Perry, we consider situations to be 
associated with spatiotemporal regions, although STO does 
not explicitly identify the class for location or time; these are 
just special types of Attribute. Endsley defines Situation 
Awareness as "the perception of elements in the environment 
within a volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future."   
That is, for Endsley, situation awareness is not the perception 
of some thing, a situation.  Rather, it is a perception of "what 
is going on" with entities in a spatiotemporal region and a 

projection of their status in the future, in order to support 
decision making. 

 
Figure 3  Situation Theory Ontology (STO) extended to 
include Events, Actions and Thematic Roles 

 
   

Situations evolve, and by this we mean that situations 
exhibit differences across time, just as they exhibit differences 
across space. Situations have an associated spatiotemporal 
extent.   

Clearly, situations can have discontiguous spatiotemporal 
regions: for example, a phone conversation is a situation that 
takes place at two discontiguous locations.  Similarly, a play 
with an intermission can be thought of as a situation with a 
discontiguous time span. 

How can we represent that a situation complies with a 
policy or violates a policy? 

Our Situation Theory Ontology does not contain a class of 
events.  Therefore, what is the relation between our situation 
ontology and the event-based ontology that our policy 
reasoning employs?  (Actions are events with agents; they are 
events that someone makes happen, as opposed to events that 
simply occur, like rain or snow.) 

In order to bridge the gap between the two vocabularies, 
one involving events and actions over which policies are 
defined, and the other involving situations over which 
situation awareness is defined, for the purposes of this paper, 
we consider events to be a subclass of Individual within a 
situation.  Actions are a subclass of Event: an Event that has 
something as an agent.   For the purposes of this paper, we use 
the “F” event model ontology (“Event Model F”)  described in 
[23].   This ontology is based on the Descriptive Ontology for 
Linguistic and Cognitive Engineering (DOLCE) (Figure 4).  
See [24] for a comparison of similar ontologies. 

  
Figure 4 Event Model F (diagram from [23]) 
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We depict the extended Situation Theory Ontology in 

Figure 3.  The class of Event (from Event Model F) is made a 
subclass of Individual.  The class of Thematic Role is a 
subclass of Relation.  Thematic Roles have domain Event and 
range Individual.  They include agent, theme, instrument, 
source, goal, and so on.  Thematic roles are ways in which 
individuals participate in events.1  For example, something 
that bears the agent relation to an event is the participant who 
brings about the action, and something that bears the theme 
relation to the event is the entity that undergoes the action or 
event.  Something that bears the goal relation to an event is the 
participant at which (to whom) the action is directed, as in 
John sent a message to Mary. 

To illustrate, we encode a situation in which John joins 
Chatroom 1 at t, John sends a presence to Mary at t+1 and 
John sends Message M to Mary at t+2 as follows (suppressing 
location, for simplicity): 

 
s |= <agent,e1, John, t, 1> 
s |= <theme,e1, Chatroom1, 1> 
 

where e1 is of rdf:type Join, and Join is rdfs:subclassOf Event 
 
s |= <agent, e2, John, t+1, 1> 
s |= <theme, e2, Mary, t+1, 1> 

 
where e2 is of rdf:type SendPresence, and SendPresence is 
rdfs:subclassOf Event. 
 

s |= <agent, e3, John, t+2, 1> 
s |= <theme, e3, Message_M, t+2, 1> 
s |= <goal, e3, Mary, t+2, 1> 

 
where e3 is of rdf:type SendMessage, SendMessage is 
rdfs:subclassOf Event. 
 
The Relations agent, theme and goal are Thematic Roles, 
which are a subclass of Relation, with domain Event and range 
Individual.  In this way, we represent that several events take 
place within the context of a single information exchange 
situation. 

In addition to allowing us to express the relation between 
situations and actions, this also has the virtue of allowing us to 
more explicitly encode n-ary relationships within the STO 
ontology.  In the STO ontology, argument places are denoted 
simply by anchor1, anchor2 and anchor3 object properties.  
These do not have any explicit meaning.  To say that Bob is 
the first argument of the Chase relation and John is the second 
argument, it is not clear who is the agent of the chasing and 
who is being chased.  The domain and range of the Chase 
relation do not help us to distinguish the roles here.  In the 
extended ontology, we represent this as follows (ignoring time 
and location for now): 

 
s |= <Agent,e,Bob,1>, <Theme,e,John,1> 

 
1 Thematic Role.  Utrecht Dictionary of Linguistics. 

http://www2.let.uu.nl/UiL-OTS/ Lexicon/zoek.pl?lemma=Thematic+role 
&lemmacode=150 

 
where e  is of rdf:type Chase, a subclass of Event. 
 
Secondly, we can encode a taxonomy of action types.  For 

example, we can say that Chase is a subclass of Move.  
Therefore, we can infer that if Bob is the agent of an action 
that is a Chase, then he is an agent of a Move action (a 
motion). 

Finally, we can encode relations of arbitrary arity in an 
explicit way.  For example, to say that a situation involves 
John sending Mary in London a book via Fedex, we can 
assert: 

 
s |= <agent,e,John,1>,  
s |= <theme,e,book,1>,  
s |= <goal,e,Mary,1>,  
s |= <in, Mary, London, 1>,  
s |= <instrument,e,Fedex, 1>,  

 
where  e is of rdf:type Send. 

A situation contains an action if it supports a positive infon 
in which the action appears. 

We can now define when an action performed in a specific 
situation is compliant with a set of policies. If an action is 
inferred to be forbidden by a policy, then the action violates 
the policy. Every situation that contains an action that violates 
a policy is noncompliant with that policy.  So, for example, 
suppose that John’s sending Mary his presence is forbidden by 
a policy (as in one of the scenarios described above) because 
of John’s gender and the day of the week.  (The policy of one 
server states that men can only send presences only on 
Mondays, Wednesdays and Fridays).  As such, if it is a 
Tuesday, the action e2 is forbidden by the policy.  Thus, 
action e2 is policy non-compliant, and therefore, situation s 
which supports a positive infon that contains e2 is also policy 
non-compliant. 

A corresponding action and corresponding situation would 
be policy compliant in respect to the policy described if it had 
taken place on a Monday, Wednesday or Friday, or if a female 
had sent the presence on Tuesday.  Thus, actions of the same 
action type and situations that are identical in most respects 
can be policy-compliant or policy-violating depending upon 
the circumstances and the individuals involved. 

A situation, expressed in the STO vocabulary, is policy-
compliant if it contains no actions that violate a specified set 
of policies, in the sense of supporting no positive infons that 
involve forbidden events 

By means of this encoding of the situation or context that an 
action occurs in, we can also encode rules or ontological 
constraints on actions that occur in a context in which a 
forbidden action occurs or in which an obligatory action 
occurs.  For example, if an exchange of information violates 
security levels, then all subsequent exchanges of information 
in that context are tainted.  
   In other situations, we can say that the entire situation 
involving a number of actions is policy violating even without 
knowing what action was forbidden.    

This can be illustrated by the scam known as “change 
raising”.  Videos illustrating the scam may be readily found 
online.  In one such clip (“The Change Rasising Con”), from 
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the BBC program “The Real Hustle”, the scammer first starts 
a transaction of getting change for a 20 pound note.  Then, he 
exchanges some of the smaller bills for a 10.  Finally, he ends 
up calling the whole transaction off, ending up with 10 pounds 
more than he started   The steps are illustrated in Table 1.  
Positive numbers represent receipts.  Negative numbers 
represent disbursals.  The conman nets 10 pounds by 
misguiding the shopkeeper, who doesn’t realize her mistake.   
 
Table 1 Change-Raising Scam, broken down into 
component actions 

 
 

Perhaps no known policy forbids any action on the 
shopkeeper’s part or the scammer’s part.  Nevertheless, the 
entire situation might be seen as violating a policy: the policy 
that change-making situations, in which cash is exchanged 
only for cash, should not end up with a net loss.  Thus, the 
situation is policy-violating, even though it is not clear which 
action within the situation is prohibited. 

VII. CONCLUSION 
In this paper, we have shown how policies can be expressed in 
SBVR SE and translated into an executable rule language that 
can constrain information exchange actions in XMPP 
scenarios.  We then went on to show how our Situation 
Theory Ontology could be extended to include actions and 
events as individuals.  This enabled us to extend formal 
reasoning about policy compliance to situations as a whole, 
which we illustrated with various examples.  We showed that 
situations may be inferred to be policy compliant because of 
actions in infons they support.  Policy violations within a 

context can then affect the status of other actions.  We also 
outlined a case in which situations can be policy (non-) 
compliant based on the cumulative effect of several actions. 
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