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ABSTRACT

As machine learning algorithms are deployed ubiquitously to a variety of domains,
it is imperative to make these often black-box models transparent. Several recent
works explain black-box models by capturing the most influential features for pre-
diction per instance; such explanation methods are univariate, as they characterize
importance per feature. We extend univariate explanation to a higher-order; this
enhances explainability, as bivariate methods can capture feature interactions in
black-box models, represented as a directed graph. Analyzing this graph enables
us to discover groups of features that are equally important (i.e., interchangeable),
while the notion of directionality allows us to identify the most influential features.
We apply our bivariate method on Shapley value explanations, and experimentally
demonstrate the ability of directional explanations to discover feature interactions.
We show the superiority of our method against state-of-the-art on CIFAR10, IMDB,
Census, Divorce, Drug, and gene data.

1 INTRODUCTION

The ability to interpret and understand the reasoning behind black box decision-making increases user
trust; it provides insights into how a model is working and, as a consequence, how a model can be
improved. This has led to a large body of work on the development of explanation methods (Ribeiro
et al., 2016; Chen et al., 2018; Yoon et al., 2018; Lundberg & Lee, 2017) applied to black-box models.
Such methods aim to explain black-box behavior by understanding how individual features influence
prediction outcomes. Recently, Covert et al. (2020a) proposed a unifying mathematical framework
capturing a broad array of explainability techniques, termed Removal-based Explanation methods.
Nevertheless, the overwhelming majority of explainability methods have a significant drawback: they
only provide univariate explanations and, as a result, they do not take into account feature interactions.
This is problematic precisely because many black box models, such as deep neural networks, perform
well by creating complex structures and combining features in their latent layers. To address
this, recent methods have been proposed to learn the interaction between features (Sundararajan
et al., 2020a; Maas et al., 2011). Their definition of interaction assumes features affect each other
symmetrically; however, in many real-world applications, feature interactions may be asymmetrical.
We also observe this experimentally (see Fig. 1), and argue of the importance of developing black-box
explanations that not only capture interactions, but also incorporate asymmetry. Overall, we make the
following contributions:

• We propose a method to extend any given univariate removal-based explanation to a bivariate
explanation model that can capture asymmetrical feature interactions, represented as a directed
graph. Our method is general, and can be applied to a broad array of univariate removal-based
explanations, as defined by Covert et al. (2020a).

• We show that analyzing this graph gives a semantically-rich interpretation of black boxes. In
particular, beyond the ability to identify most influential features, the graph can identify directionally
redundant features, i.e., features whose presence negates the influence of other features, as well as
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mutually redundant features, i.e., features that are interchangeable. These two concepts cannot be
captured by either univariate or symmetric bivariate explanations in existing literature.

• We systematize the analysis of the directed explanation graph, providing both formal definitions of
the aforementioned notions as well as algorithms for scrutinizing and explaining black-box model
behavior. We also provide theoretical justification for these definitions in the context of SHAP, the
Shapley value explanation map introduced by Lundberg & Lee (2017).

• Finally, extensive experiments on MNIST, CIFAR 10, IMDB, Census, Divorce, Drug, and gene ex-
pression data show that our explanation graph outperforms prior symmetrical interaction explainers
as well as univariate explainers with respect to post-hoc accuracy, AUC, and time.

2 RELATED WORK

Many methods have been proposed for explaining black box models (Guidotti et al., 2018). For
instance, LIME (Ribeiro et al., 2016) explains the prediction of a model by learning a linear model
locally around a sample, through which it quantifies feature influences on the prediction. SHAP
(Lundberg & Lee, 2017) learns an influence score for each feature based on the Shapley value
(Shapley, 2016). L2X (Chen et al., 2018) learns a set of most influential features per sample based on
the mutual information between features and labels. Recently, Covert et al. (2020a) unified many of
such explanation methods under a single framework; we present this in detail in Sec. 3.

However, all of these methods only capture the univariate influence of each feature; i.e., they do not
explain feature interactions. Discovering feature interactions has drawn recent interest in machine
learning (Bondell & Reich, 2008; Chormunge & Jena, 2018; Zeng & Figueiredo, 2014; Janizek et al.,
2021; Zhang et al., 2021; Tsang et al., 2018; 2020). Tsang et al. (2017) proposed a framework to detect
statistical interactions in a feed-forward neural network by directly interpreting the weights of the
model. Cui et al. (2020) proposed a non-parametric probabilistic method to detect global interactions.
However, most such methods study feature interactions globally (for all instances). In contrast, our
work detects interactions per individual instance. The work more related to explainability of a black
box via feature interaction is Shapley interaction. Grabisch & Roubens (1999) proposed a Shapley
interaction value to explore the interaction between features rather than feature influence. Lundberg
et al. (2018a) and Sundararajan et al. (2020a) applied Shapley interaction value to explain black box
predictions. Instance-wise Feature Grouping (Masoomi et al., 2020) explored the effects of feature
interaction by allocating features to different groups based on the similarity of their contribution to the
prediction task. These methods assume a symmetrical interaction between features; in contrast, our
method provides instance-wise explanations that can capture asymmetrical (directional) interactions.

Another type of explainers are Graph Neural Network (GNN) explainers (Yuan et al., 2020). These
methods assume that the black-box model has a GNN architecture; i.e. the model incorporates the
input graph structure in its predictions. In contrast, our method allows the black box to be any type of
function (e.g., CNN, GNN, Random Forest) and does not assume access to a graph structure: we
learn the feature interactions directly from the data. A small subset of GNN explainers, especially
local, perturbation-based methods (such as Yuan et al. (2021); Duval & Malliaros (2021); Luo et al.
(2020); Ying et al. (2019)) can be applied to black-box models. This can be done by assuming a
non-informative interaction structure on the data and allowing the explainers to mask or perturb the
interaction edges. However, non-GNN black box models are unable to utilize the graph structure.

Causal methods provide explanations through feature influence by utilizing knowledge about causal
dependencies. Frye et al. (2020) generalized the Shapley-value framework to incorporate causality.
In particular, they provided a new formulation for computing Shapley value when a partial causal
understanding of data is accessible, which they called Asymmetric Shapley values. Wang et al.
(2021a) extend this idea to incorporate the entire casual graph to reason about the feature influence
on the output prediction. Causal methods rely on prior access to casual relationships; in contrast, our
method learns the asymmetrical interaction between features rather than causal dependencies.

3 BACKGROUND

In general, explainability methods aim to discover the reason why a black box model makes certain
predictions. In the local interpretability setting (Chen et al., 2018; Lundberg & Lee, 2017; Ribeiro
et al., 2016; Sundararajan et al., 2017), which is our main focus, explanations aim to interpret
predictions made by the model on an individual sample basis. Typically, this is done by attributing the
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prediction to sample features that were most influential on the model’s output. The latter is discovered
through some form of input perturbation (Lundberg & Lee, 2017; Zeiler & Fergus, 2014). Covert
et al. (2020a) proposed a framework, unifying a variety of different explainability methods. As we
generalize this framework, we formally describe it below.

Univariate Removal-Based Explanations. The unifying framework of Covert et al. identifies three
stages in a removal-based explanation method. The first, feature-removal, defines how the method
perturbs input samples by removing features; the second, termed model-behavior, captures the effect
that this feature removal has on the black-box model predictions; finally, the summary stage abstracts
the impact of feature subset selection to a numerical score for each feature, capturing the overall
influence of the feature in the output. Formally, a black-box model is a function f : X → Y , mapping
input features x ∈ X ⊆ Rd to labels y ∈ Y . Let D ≡ {1, . . . , d} be the feature space coordinates.
Given an input x ∈ X and a subset of features S ⊆ D, let xS = [xi]i∈S ∈ Rd be the projection of x
to the features in S. In the local interpretability setting, we are given a black-box model f , an input
x ∈ X and (in some methods) the additional ground truth label y ∈ Y , and wish to interpret the
output f(x) produced by the model. The three stages of the removal based model are defined by a
triplet of functions (F, u,E), which we define below.

First, the feature removal stage is defined by a subset function

F : X × P (D) → Y, (1)

where P (D) = 2D is the power set of D. Given an input x ∈ X , and a set of features S ⊆ D, the
map F (x, S) indicates the label generated by the model when feature subset S is given. For example,
several interpretability methods (Yoon et al., 2018; Chen et al., 2018) set F (x, S) = f([0;xS ]), i.e.,
replace the “removed” coordinates with zero. Other methods (Lundberg et al., 2020; Covert et al.,
2020b) remove features by marginalizing them out using their conditional distribution p(XS̄ |XS =
xS), where S̄ = D \ S, i.e., F (x, S) = E[f(X)|XS = xs].

Having access to the subset function F , the model behavior stage defines a utility function

u : P (D) → R (2)

quantifying the utility of a subset of features S ⊆ D. For instance, some methods (Covert et al.,
2020b; Schwab & Karlen, 2019) calculate the prediction loss between the true label y for an input x,
using a loss function ℓ, i.e., u(S) = −ℓ(F (x, S), y). Other methods (Chen et al., 2018; Yoon et al.,
2018) compute the expected loss for a given input x using the label’s conditional distribution, i.e.,
u(S) = −Ep(Y |X=x)[ℓ(F (x, S), Y )].

The utility function can be difficult to interpret due to the exponential number of possible feature
subsets. This is addressed by the summary stage as follows. Let U = {u : P (D) → R} be the set of
all possible utility functions. An explanation map is a function

E : U → Rd (3)

mapping a utility function to a vector of scores, one per feature in D. These scores summarize each
feature’s value and are the final explanations produced by the removal-based explainability algorithm
(F, u,E). For instance, some methods (Zeiler & Fergus, 2014; Petsiuk et al., 2018; Schwab & Karlen,
2019) define E(u)i = u(D)− u(D \ {i}), or E(u)i = u({i})− u(∅) (Guyon & Elisseeff, 2003).
Some methods learn E(u) by solving an optimization problem (Chen et al., 2018; Ribeiro et al.,
2016; Yoon et al., 2018). For example, L2X defines E(u) = argmax

S:|S|=k

u(S) for a given k.

The Shapley Value Explanation Map. In our experiments, we focus on Shapley value explanation
maps. Shapley (Shapley, 2016) introduced the Shapley value in coalition/cooperative games as a
means to compute “payouts”, i.e., ways to distribute the value of a coalition to its constituent members.
Treating features as players in such a coalition, the Shapley value has been used by many research
works on explainability to compute feature influence (Datta et al., 2016; Lundberg et al., 2020; Covert
et al., 2020b). For instance, Lundberg & Lee (2017) proposed SHAP as a unified measure of feature
influence which uses Shapley value for summarization. They also showed that explainers such as
LIME , DeepLIFT (Shrikumar et al., 2017), LRP (Bach et al., 2015), QII (Datta et al., 2016) can
all be described by SHAP under different utility functions. Formally, given a utility function u, the
SHAP explanation map E(u) has coordinates:

E(u)i =
∑

S⊆D\{i}
|S|! (d−|S|−1)!

d! (u(S ∪ {i})− u(S)), (4)
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where S ∈ P (D). Direct computation of Eq. (4) is challenging, as the summands grow exponentially
as the number of features increases. Štrumbelj & Kononenko (2014) proposed an approximation
with Monte Carlo sampling, known as Shapley sampling values. Lundberg & Lee (2017) introduced
KernelSHAP and DeepSHAP to compute the shapley values using kernel and neural network ap-
proaches respectively, and showed that such methods require fewer evaluations of the original model
to obtain similar approximation accuracy as prior methods.

4 FROM UNIVARIATE TO MULTI-VARIATE EXPLANATIONS

Univariate removal-based explanation methods presented in the previous section share a similar
limitation: they do not explain feature interactions in the black box model. Given a univariate
explanation map E : U → Rd, we propose a method to extend E to its Bivariate explanation map
which discovers feature interactions. Let u ∈ U be the utility function u : P (D) → R. Given this
u ∈ U , we define the bivariate explanation E2 : U → Rd×d as a d× d matrix: the ith column of this
matrix is E(ui), i.e., the univariate explanation applied to utility function ui, where ui is defined as:

ui : P (D) → R s.t. ∀S ∈ P (D), ui(S) =

{
u(S), if i ∈ S,

0, if i /∈ S.
(5)

Intuitively, the utility function ui is a restriction of u to sets in which when i is an included feature.
As a result, E(ui) ∈ Rd determines a feature’s influence conditioned on the presence of feature i.
1 We denote the jth element by E(ui)j = E2(u)ji which represents the importance of feature j
conditioned on feature i being present.

Bivariate Shapley Explanation Map. As a motivating example, let explanation map E : U → Rd

be the Shapley map , defined in Eq. (4). Applying the Bivariate explanation extension (5) to the
Shapley value we obtain:

E2(u)ij =
∑

j∈S⊆D\{i}
|S|! (d−|S|−1)!

d! (u(S ∪ {i})− u(S)). (6)

We provide the derivation of this formula in App. E in the supplement. An important feature of
the above bivariate explanation is that it is not symmetric: in general, E2(u)ij ̸= E2(u)ji. In
other words, feature i may influence j differently than how feature j influences i. This is in sharp
contrast with other bivariate explanation methods, such as, e.g., interaction Shapley (Grabisch &
Roubens, 1999; Sundararajan et al., 2020a), that are symmetric. Hence, E2(u) is an asymmetric
matrix, that can be represented by a weighted directed graph denoted by G = (VG , EG ,WG), where
weights WG(i, j) = E2(u)ji (see App. B for a brief review of graph terminology). We call G the
directed explanation graph. The directionality of G/asymmetry of E2 has important implications for
explainability, which we illustrate next with an example.

Illustrative Example (Univariate Shapley vs. Bivariate Shapley). In order to motivate the bivariate
explanation map, highlight its difference from the univariate Shapley explanation, and illustrate the
importance of directionality, we study the directed explanation graph of one sample of “The Large
Movie Review Dataset (IMDB) (Maas et al., 2011)”. This is a dataset of movie reviews with labels
indicating positive or negative sentiment. We used a Recurrent Neural Network (RNN) as the black
box and SHAP as the univariate explainer. Specifically, given a black box model f and a point
x, SHAP chooses F (x, S) = E[f(X)|XS = xs], u = F (x, S), and E to be the explanation map
using Shapley value. We compute both the univariate Shapley explanation E, as well as the directed
explanation graph G/bivariate explanation E2 for the sentence, “The movie is the worst; surprisingly
awful”, which is predicted to have negative sentiment. Both explanations are shown in Fig. 1. We
observe the following differences:

The influence of word ‘surprisingly’: In Fig. 1(a), we observe that SHAP explanation E identifies
‘awful’, ‘worst’, ‘surprisingly’ as the most influential features. The negative Shapley value for
‘Surprisingly’ indicates that this feature affects prediction strongly in favor of a positive label (opposite
of the black box outcome). However, looking at E2, we realize this explanation is in fact misleading.
The absence of an edge from ‘worst’ → ‘surprisingly’ suggests that in the presence of ‘worst’ the
word ‘surprisingly’ has no influence. Interestingly, the reverse edge does exist; hence, presence
of ‘surprisingly’ does not remove the influence of ‘worst’, which still influences the classification

1This approach can also be directly generalized beyond bivariate to multivariate explanations (see App. F).
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Black BoxThe movie was the worst; 
surprisingly awful

Input
Negative Sentiment

Prediction

(a) Univariate
Shapley

Top Influential Features

Directional RedundancyMutual Redundancy

1. Worst
2. Awful
3. Surprisingly

Worst & Awful are 
Mutually Redundant

Awful makes {The, 
movie, was, ;, 
surprisingly} redundant 

The 0.0

movie 0.0

Was 0.0

the 0.0

worst 0.3

; 0.0

surprisingly -0.1

awful 0.3

(b) Directed Explanation Graph 

Figure 1: a) Univariate Shapley value. The values suggest that ‘surprisingly’, ‘worst’, ‘awful’ are
the most influential features, however it does not explain feature interactions b) Using Shapley
explanation map E, we plot the Directed Explanation graph G using our method. An edge i → j
represents the conditional influence of word j when word i is present. We can then use the properties
of Graph G to derive notions of Mutual and Directional Redundancy, as well as Influential Features.

outcome. This lack of symmetry is informative, and would not be detected from either a univariate or
a bivariate but symmetric explanation.

‘awful’ vs ‘worst’: The univariate explanation E suggests that ‘awful’ and ‘worst’ are both influential.
However, from the Shapley graph, we observe the absence of an edge from ‘awful’ → ‘worst’ and
vice versa. This indicates that the presence of either word negates the influence of the other on the
classification outcome, making it redundant. Another way to interpret this is that ‘awful’ and ‘worst’
are interchangeable. This is aligned with our understanding that awful and worst have a similar
meaning, and is an observation that is not evident from the univariate SHAP E alone.

Least Influential Features: Words like ‘The’, ‘movie’ have Shapley value zero. Such
words are sources in the directed explanation graph G, i.e., have only outgoing edges towards
‘awful’, ‘worst’, and ‘surprisingly’ but no incoming edges at all. This suggests that they are, over-
all, not influential; more generally, there is a consistency between features that E identifies as
non-influential and sources in G.

Most Influential Features: The support of E (i.e., words ‘awful’, ‘worst’, ‘surprisingly’) represents
the words that have the greatest influence. In graph G, we observe that ‘awful’ and ‘worst’ are the
sinks of the graph (have only incoming edges, and no outgoing edges); even though ‘surprisingly’
is not a sink, it still has many edges pointing into it. This is intuitive: sinks, that have no outgoing
edges, indicate that all other words lose their influence when these words are present. ‘Surprisingly’
is important, but there are still other words that negate its influence (namely, ‘awful’ and ‘worst’).

In summary, the above example illustrates how E2 and G reveal more information than was present
in E alone. Although in a more nuanced way, the most and least influential features again stand
out; however, in addition to this, features deemed as influential by SHAP can be discovered to be
less influential when observed in conjunction with other features; similarly, groups of influential but
mutually redundant features may also arise. Both enhance our understanding of how the black box
makes predictions, and neither are observable from univariate explanations.

4.1 ANALYZING THE DIRECTIONAL EXPLANATION GRAPH

Motivated by the above observations, we turn our attention to means of systematizing the analysis
and interpretation of the Directional Explanation graph. In particular, we identify ways to discover
the following notions from the graph G: (a) the most influential features for the black box model,
taking their interaction into account, and the extent to which they act as sinks of G; (b) inferring
redundancies between the features, by formally defining and detecting Directional Redundancy (e.g.
‘surprisingly’ and ‘awful’) and Mutual Redundancy (e.g. ‘awful’ and ‘worst’); and (c) the transitivity
properties of mutually redundant features: if mutual redundancy is transitive, it implies the existence
of entire equivalence classes of features that are all interchangeable. Our goal in this section is to
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both state such concepts formally, but also describe algorithms through which these concepts can be
used to scrutinize and interpret E2 and G.

Most Influential Features in Graph G. Most influential features in E2 can be identified as sinks in
G. These are easy to identify in polynomial time (as nodes with no outgoing edges). Nevertheless, a
more graduated approach seems warranted, to identify nodes that are ‘almost’ sinks (like ‘surprisingly’
in Fig. 3). This can be accomplished through a random-walk inspired harmonic function on G, like
the classic PageRank (Page et al., 1999) or HITS (Kleinberg, 1999).2 These correspond to the steady
state distribution over a random walk on the graph with random restarts; as such it indeed offers
a more graduated version of the notion of “sinkness”, as desired. Variants, such as personalized
PageRank (Page et al., 1999), can also be used, whereby the random restart is to a node sampled from
a predetermined distribution over the vertices of G. Setting this to be proportional to the magnitude
of the univariate Shapley value E interpolates between the univariate map (that captures univariate
influence but not directionality) and E2 (that captures directionality and “sinkness”).

Directional Redundancy and Mutual Redundancy. In the example stated above, using a bivariate
explanation map enabled us to discover which features are redundant with respect to other features.
One of these examples was symmetric (e.g., ‘awful’ and ‘worst’) and one was one-sided (e.g., ‘awful’
makes ‘surprisingly’ redundant, but not vice-versa). Motivated by this, we define:

Definition 4.1. Given i, j ∈ D, i is directionally redundant with respect to feature j if E2(u)ij = 0.

Directionality arises in Def. 4.1 because E2(u) in general is not symmetric, i.e., E2(u)ij ̸= E2(u)ji.
Nevertheless, we can have features i, j that have the same influence on the model (e.g. ‘awful’ and
‘worst’ in the example). We formalize this idea to the E2 explanation through the following definition:

Definition 4.2. Given i, j ∈ D, features i, j are mutually redundant if E2(u)ij = E2(u)ji = 0.

Transitivity of Mutually Redundant Features. Given that mutual redundancy is symmetric, it is
natural to ask if it is also transitive: if ‘bad’ and ‘awful’ are mutually redundant, and so are ‘awful’
and ‘terrible’, would that imply that ‘bad’ and ‘terrible’ are also mutually redundant? This behavior is
natural, and suggests that groups of features may act interchangeably (here, corresponding to variants
of ‘bad’). Identifying such groups is important for interpreting the model, as it exhibits an invariant
behavior under the exchange of such features. We thus turn our attention to studying the transitivity
properties of mutual redundancy. To do this, we define unweighted directed graph H = (VH, EH),
where VH = VG and EH = {(i, j) ∈ EG |WG(i, j) = 0}. Graph H captures the redundancies
between any two features: an edge from i to j (i.e., i → j) indicates that feature j is directionally
redundant with respect to feature i. We call H the Redundancy Graph. In practice, we may use the
relaxed version of redundancy. Given a redundancy threshold γ, we define Hγ = (VH, Eγ

H) to be
a graph where VH = VG and Eγ

H = {(i, j) ∈ EG : |WG(i, j)| ≤ γ}. Intuitively, if the presence of
a feature makes the influence of the other less than the threshold γ, we still declare the latter to be
redundant. If mutual redundancy is transitive, Graph H is also transitive; formally:

Definition 4.3. An unweighted directed graph H is transitive if (i, j), (j, k) ∈ EH, then (i, k) ∈ EH.

In other words, a transitive graph comprises a collection of cliques/fully connected graphs, captured by
mutual redundancy, along with possible ‘appendages’ (pointing out) that are due to the non-symmetry
of directed redundancy. Not every explanation graph G leads to a transitive H. In the following
theorem however, we prove that the Shapley explanation map E indeed leads to the transitivity of
mutual redundancy and, thereby, the graph H:

Theorem 1. For i, j, k ∈ D, assume that maxj∈S⊆N |u(S ∪ {i}) − u(S)| ≤ εj and
maxi∈S⊆N |u(S ∪ {k}) − u(S)| ≤ εi. Then, the following inequalities hold: |E2(u)ij | ≤ d!

2 εj ,
|E2(u)ki| ≤ !

2εi, and |E2(u)kj | ≤ d!
2 (2εj + εi).

In short, Theorem 1 states that for a given path i → j → k the summation of upper bounds for
edges i → j and j → k can be used to upper bound the weight of the edge i → k. An immediate
implication of this “triangle-inequality”-like theorem is that if all ϵ = 0, as is the case in directed
redundancy, the weight of edge i → k must also be zero. In other words:

Corollary 1.1. Graph H for Shapley explanation map with a monotone utility function is transitive.

2In the context of HITS, “almost” sources and sinks correspond to “hubs” and “authorities”, respectively.
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Most importantly, Theorem 1 proves something stronger than that. In fact, it allows for ‘almost
transitivity’ of graph Hγ in the case of approximate Shapley value computation: even if we set the
threshold γ to a non-zero value, short paths (of length γ/ϵ) will also be guaranteed to be transitive.
The proofs for Thm. 1 and Corollary 1.1 are provided in the supplement.

Sources and Sinks in the Redundancy Graph. Beyond identifying classes of mutually redundant
features, the redundancy graph H can also be used to identify (classes of) features under which all
remaining features become redundant. This can be accomplished in the following fashion. First, the
strongly connected components/classes of mutually redundant features need to be discovered. As a
consequence of Thm. 1, such strongly connected components will be cliques if the exact Shapley
explanation map is used, or almost cliques if the threshold γ is non-zero. Collapsing these connected
components we obtain a DAG, also known as the quotient graph (see App B). The sources of this
quotient graph (which may correspond to entire classes) correspond to feature classes that make
all other features redundant (possibly through transitivity). Note the distinction between sinks in G
and sources in H, that may be a different set of nodes, and capture a different kind of importance.
Again, rather than determining importance simply from the fact that a node in H is a source, a more
graduated approach, using a harmonic function of nodes like Pagerank (over H) could be used.

5 EXPERIMENTS

In this section, we investigate the ability of Bivariate Shapley for discovering (a) mutual redundancy,
(b) directional redundancy, and (c) influential features, from black-box models. Fully evaluating
Shapley values is computationally expensive; we implement Bivariate Shapley using two different
Shapley approximation methods for comparison, Shapley Sampling (BivShap-S) and KernelSHAP
(BivShap-K). The algorithms are outlined in App. G.1.1. The KernelSHAP approximation signifi-
cantly reduces computational time (Tbl. 1) at the cost of slightly reduced Post-hoc accuracy results
(Tbl. 3). In our method comparisons, we take 500 test samples from each dataset (less if the test
set is smaller than 500) and generate their respective G and H graphs. We select γ = 10−5 for the
threshold in converting G to H, which generally corresponds to 50% average graph density across
the datasets (see App. G.2.4 for details). All experiments are performed on an internal cluster with
Intel Xeon Gold 6132 CPUs and Nvidia Tesla V100 GPUs. All source code is publicly available.3

Data. We evaluate our methods on COPDGene (Regan et al., 2010), CIFAR10 (Krizhevsky, 2009)
and MNIST (LeCun & Cortes, 2010) image data, IMDB text data, and on three tabular UCI datasets
(Drug, Divorce, and Census) (Dua & Graff, 2017). We train separate black-box models for each
dataset. MNIST, CIFAR10, COPDGene, and Divorce use neural network architectures; Census and
Drug use tree-based models (XGBoost (Chen & Guestrin, 2016) and Random Forest). Full dataset
and model details can be found in App. G.1.3.

Competing Methods. We compare our method against both univariate and bivariate, instance-wise
black-box explanation methods. Univariate methods Shapley sampling values (Sh-Sam), KernelSHAP
(kSHAP), and L2X are used to identify the top important features, either through feature ranking or
by choosing a subset of features. Second-order methods Shapley Interaction Index (Sh-Int) (Owen,
1972), Shapley-Taylor Index (Sh-Tay) (Sundararajan et al., 2020b), and Shapley Excess (Sh-Exc)
(Shoham & Leyton-Brown, 2008) capture symmetric interactions, on which we apply the same
PageRank algorithm as Bivariate Shapley to derive a feature ranking. We also compare to a GNN
explanation method GNNExplainer (GNNExp). Further details are provided in App. G.1.

(a) Mutual Redundancy Evaluation.

We evaluate the validity of mutually redundant features through the change in model accuracy after
masking redundant features, with post-hoc accuracy results shown in Fig. 2. We identify such features
as groups of strongly connected nodes in graph H, which we find using a depth-first search on H
using Tarjan’s algorithm (Tarjan, 1972). After finding the mutually redundant groups, we test their
exchangeability by randomly selecting subsets of features within the group to mask. We evaluate
post-hoc accuracy at different levels of masking. Masking all but one feature results in the quotient
graph S, which is represented by each dataset’s marker in Fig. 2. Note that these groups can be
discovered by other second-order methods by similarly interpreting the resulting feature interactions
as an adjacency matrix; we include the results for applying the same algorithm to Sh-Int, Sh-Tay and

3https://github.com/davinhill/BivariateShapley
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IMDB MNIST Divorce CensusDrugCIFAR10COPD

Figure 2: Post-hoc accuracy evaluated on Mutual Redundancy masking derived from graph H.
Strongly connected nodes in H are randomly masked with increasing mask sizes until a single node
remains, represented by the final marker for each dataset. Note that we cannot run Sh-Tay and Sh-Exc
on COPD due to their computational issues with large numbers of features.

Time Complexity: Seconds per Sample
Dataset #Features BivShap-S BivShap-K Sh-Int Sh-Tay Sh-Exc
COPD 1077 5942 36 2877 112900 838200

CIFAR10 255 218 2.5 101 2819 6267
MNIST 196 116 1.5 48 1194 2350
IMDB ≤400 207 1.9 160 1279 1796
Census 12 2.7 0.20 2.6 11.6 5.3
Divorce 54 18.2 0.34 6.5 63.2 93.3

Drug 6 2.3 0.07 1.21 10.1 0.96

Table 1: Execution time comparison. Results are
calculated on the time to produce the interaction
matrix (including all features) for a single sample,
as measured by seconds per sample.

Post-hoc Accy % Feat Masked
Dataset H-Sink

Masked
H-Source
Masked

H-Sink
Masked

H-Source
Masked

COPD 99.5 62.7 1.5 98.5
CIFAR10 94.6 15.0 6.2 93.8
MNIST 100.0 13.4 77.7 22.3
IMDB 100.0 54.0 3.5 96.5
Census 100.0 82.0 23.8 76.2
Divorce 100.0 51.5 22.2 77.8

Drug 100.0 48.5 43.5 56.5

Table 2: Post-hoc accuracy of BivShap-S after
masking H-source nodes, representing features
with minimal redundancies, and H-sink nodes,
representing directionally redundant features.

Sh-Exc. We observe that masking an arbitrary number of mutually redundant features has minimal
impact to accuracy under the BivShap method. In contrast, the groups identified by the other methods
do not share the same level of feature interchangeability. In terms of finding mutual redundancy,
this suggests that incorporating directionality is critical in identifying mutually redundant features;
undirected methods do not capture the full context of feature interactions. We also note that no
mutually redundant features were found by GNNExplainer, which indicates that the edges of its
explanation graph are unable to capture feature interchangeability.

(b) Directional Redundancy Evaluation. We validate directional redundancy using post-hoc
accuracy as shown in Tbl. 2. Additional results for BivShap-K are shown in App. G.2.3. We identify
directionally redundant features as H-sink nodes, which we identify using PageRank. We collapse
the strongly connected components in graph H to its quotient graph S , then apply PageRank to each
connected graph in S . The maximum and minimum ranked nodes in each connected graph correspond
to the sinks and sources in S , respectively. The condensed sinks and sources are expanded to form H-
sinks and H-sources. We then evaluate the relevance of the identified nodes using post-hoc accuracy
of masked samples. To validate our claims of directionality, we compare the results of masking
H-source nodes and H-sink nodes, where H-sink nodes represent the directionally redundant features.
We observe in Tbl. 2 that masking sinks has little effect on accuracy, suggesting that these features
contain redundant information given the unmasked source nodes. In contrast, masking H-source
nodes and keeping sinks results in large decreases in accuracy, indicating that prediction-relevant
information is lost during masking.

(c) Influential Feature Evaluation. While mutual and directional redundancy can be investigated
individually using graph H, we can combine both concepts in a continuous ranking of features
based on the steady-state distribution of a random walk on graph G. We add a small ϵ ≈ 0 value
to the adjacency matrix of G to ensure that all nodes are connected, then directly apply PageRank.
The resulting feature scores are ranked, with high-scoring features representing high importance.
We observe the experimental results in Fig. 3. BivShap-S consistently performs the best across
data sets, including against BivShap-K, which suggests some small accuracy tradeoff for the faster
approximation. Note that Bivariate Shapley does not explicitly utilize feature importance, but
rather each feature’s steady-state distribution. However, we can also incorporate feature importance
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Bivariate 
Methods

Univariate 
Methods

GNN 
Methods

Figure 3: Comparison of explanation methods on a feature removal task. Methods are evaluated
on their ability to maintain post-hoc accy while removing the least influential features. We apply
PageRank to graph G to derive a univariate ranking based on feature redundancy. We compare to
other explanation methods by iteratively masking the lowest ranked features. Note that we cannot run
Sh-Tay and Sh-Exc on COPD due to their computational issues with large numbers of features.

information, defined by univariate Shapley, through Personalized PageRank. Personalization increases
the steady state probabilities for important features.

Additional Illustrative Examples from MNIST and CIFAR10 Datasets

Original 
Sample

Pred: 3

Mutual 
Redundancy

Directional 
Redundancy

Label: 3
Pred: 1

Label: 1
Pred: 5
Label: 3

Pred: bird
Label: bird

Pred: automobile
Label: automobile

Pred: dog
Label: deer

Figure 4: We explore samples from MNIST and CIFAR10. Middle
row: we identify Mutually Redundant features from graph H,
indicated by the white pixels in each image. Bottom row: We
apply redundancy ranking on graph G and show a heatmap of
PageRank scores; important nodes have higher PageRank scores.

In Fig. 4, we investigate exam-
ples from MNIST and CIFAR10
for illustrative purposes. We see
that images with homogenous
background pixels show larger
amounts of redundancy as identi-
fied using graph H in the middle
row. This redundancy is also ev-
idenced in the directional redun-
dancy ranking in the bottom row,
where the mutually redundant
pixels are shown to have similar
PageRank scores. We observe
that pixels with higher scores
make sense and correspond to
pixels where the foreground ob-
ject lies in the image and at key
areas of the object.

Time Comparisons and Additional Results. Tbl. 1 reports the time in seconds per sample to
calculate feature interactions. Note that BivShap-K performs the best among Bivariate methods. Full
details of timing setup is listed in App. G.2.5. In the appendix we also provide additional evaluation
results based on AUC (App. G.2.1) as well as a Gene Ontology enrichment analysis of the feature
rankings identified in the COPD dataset (App. G.2.6).

6 CONCLUSION

We extend the removal-based explanation to bivariate explanation that captures asymmetrical feature
interactions per sample, which we represent as a directed graph. Using our formulation, we define two
concepts of redundancy between features, denoted as mutual redundancy and directional redundancy.
Our theoretical contribution leads to a systematic approach for detecting such redundancies through
finding the cliques and sources in graph H. Experiments show the benefit of capturing directional
redundancies and the superiority of our method against competing methods. We discuss societal
impacts in App. A.

9



Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENTS

The work described was supported in part by Award Numbers U01 HL089897, U01 HL089856,
R01 HL124233, R01 HL147326 and 2T32HL007427-41 from the National Heart, Lung, and Blood
Institute, the FDA Center for Tobacco Products (CTP).

REFERENCES

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and Sabine Süsstrunk. SLIC Superpixels
Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2274–2282, November 2012. ISSN 0162-8828, 2160-9292. doi:
10.1109/TPAMI.2012.120.

Yoav Arnson, Yehuda Shoenfeld, and Howard Amital. Effects of tobacco smoke on immunity,
inflammation and autoimmunity. Journal of autoimmunity, 34(3):J258–J265, 2010.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al.
Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai. Information Fusion, 58:82–115, 2020.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.

Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications. Springer
Science & Business Media, 2008.

Roderick Bloem, Harold N Gabow, and Fabio Somenzi. An algorithm for strongly connected
component analysis in n log n symbolic steps. Formal Methods in System Design, 28(1):37–56,
2006.

Thomas Bonald, Nathan de Lara, Quentin Lutz, and Bertrand Charpentier. Scikit-network: Graph
analysis in python. Journal of Machine Learning Research, 21(185):1–6, 2020. URL http:
//jmlr.org/papers/v21/20-412.html.

Howard D Bondell and Brian J Reich. Simultaneous regression shrinkage, variable selection, and
supervised clustering of predictors with oscar. Biometrics, 64(1):115–123, 2008.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1721–1730, 2015.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 883–892. PMLR, 10–15 Jul 2018. URL
http://proceedings.mlr.press/v80/chen18j.html.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794, August 2016. doi: 10.1145/2939672.2939785.

Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation. In
Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 2014.

Smita Chormunge and Sudarson Jena. Correlation based feature selection with clustering for high
dimensional data. Journal of Electrical Systems and Information Technology, 5(3):542–549, 2018.

10

http://jmlr.org/papers/v21/20-412.html
http://jmlr.org/papers/v21/20-412.html
http://proceedings.mlr.press/v80/chen18j.html


Published as a conference paper at ICLR 2022

Ian Covert, Scott Lundberg, and Su-In Lee. Feature removal is a unifying principle for model
explanation methods. CoRR, abs/2011.03623, 2020a. URL https://arxiv.org/abs/
2011.03623.

Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions with
additive importance measures. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17212–17223. Cur-
ran Associates, Inc., 2020b. URL https://proceedings.neurips.cc/paper/2020/
file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf.

Tianyu Cui, Pekka Marttinen, and Samuel Kaski. Learning global pairwise interactions with bayesian
neural networks. In Giuseppe De Giacomo, Alejandro Catala, Bistra Dilkina, Michela Milano,
Senen Barro, Alberto Bugarin, and Jerome Lang (eds.), ECAI 2020 - 24th European Conference
on Artificial Intelligence, including 10th Conference on Prestigious Applications of Artificial
Intelligence, PAIS 2020 - Proceedings, Frontiers in Artificial Intelligence and Applications, pp.
1087–1094, United States, August 2020. IOS Press. doi: 10.3233/FAIA200205.

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In 2016 IEEE symposium on security and privacy
(SP), pp. 598–617. IEEE, 2016.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
neural networks. arXiv preprint arXiv:2104.10482, 2021.

Razieh Faghihpirayesh, Sebastian Ruf, Marianna La Rocca, Rachael Garner, Paul Vespa, Deniz
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APPENDIX A SOCIETAL IMPACTS

As machine learning algorithms are widely deployed to a variety of domains such as health care,
criminal justice system, and financial markets (LeCun et al., 2015; Doshi-Velez & Kim, 2017;
Faghihpirayesh et al., 2021; Wang et al., 2021b; Lipton, 2018; Caruana et al., 2015; Kim et al., 2015;
Wu et al., 2018), it is important to make these often black-box models transparent. Understanding the
reasoning behind the decisions in black-box models may enable users’ trust in the model. This paper
proposes a novel method to explain black-box models. In particular, we extend univariate feature
removal-based explanations to higher-order bivariate explanations that allows discovery of directional
feature interactions. Explainability opens up future research directions that can help data scientists
check for bias, fairness, and vulnerabilities of the models they use (Arrieta et al., 2020; Guidotti
et al., 2018).

This paper provides a general machine learning approach for explaining black-box models that can
be applied to any data. We care about possible societal impact of applying machine learning to
advance our understanding of disease. In this paper, our explanation method allows us to find the
most influential genes for differentiating smokers versus non-smokers, potentially leading to a better
understanding of the relationship between smoking and lung disease by identifying how genes interact
with each other for a smoker versus a non-smoker. We plan to pursue further analysis of our results
with careful guidance and insights from our medical expert collaborators. Machine learning (ML)
can be applied to a variety of applications (to do harm or good), we encourage our colleagues to
apply ML to beneficial applications such as health. Nevertheless, to be done correctly, one needs to
work closely with domain experts to make proper judgments and lead to accurate conclusions. To
increase the impact of our method, we make our source code publicly available.4

APPENDIX B GRAPH PRELIMINARY

Directed Graph (Digraph):

A Directed Graph G is defined by a pair (V,E), where V is a non-empty finite set of elements called
vertices and E is a finite set of ordered pairs of distinct vertices called arcs or edges

Subdigraph:

A digraph H = (VH, EH) is subdigraph of a digraph G = (VG , EG) if VH ⊆ VG and EH ⊆ EG and
every edge in EH has both end-vertices in VH. One says H is induced by VH and call H an induced
subdigraph of G (Bang-Jensen & Gutin, 2008).

Degree of a Directed Graph

Given v ∈ V the indegree of v is denoted as d−(v) which is the number of edges that points to v and
the outdegree is denoted d+(v) which is the number of edges that points out from v to some other
vertices. A node v ∈ V is a source if d−(v) = 0 and it is a sink if d+(v) = 0 (Bang-Jensen & Gutin,
2008).

Weighted Directed Graph: It is a Directed Graph G = (V,E) with a mapping W : E → R which
assigns values to each edge. Hence, G can be shown as a triplet (V,E,W ) (Bang-Jensen & Gutin,
2008).

Walk:

A walk in directed graph G = (V,E) is an alternating sequence W = x1a1x2a2x3 . . . xk−1ak−1xk

where xi ∈ V, 1 ≤ ∀i ≤ k and ai ∈ E such that ai = (xi, xi+1) (Bang-Jensen & Gutin, 2008).

Strongly connected components (SCC)

In a directed graph G vertex y is reachable from vertex x if there is walk from x to y. A directed
graph G is strongly connected if for every pair of x, y ∈ V , x is reachable from y and vice versa.

A strongly connected component of an directed graph G is a maximal induced subgraph that is
strongly connected.

4https://github.com/davinhill/BivariateShapley
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Complete Graph. A directed graph G = (V,E) is complete, if for every pair x, y ∈ V , we have
(x, y), (y, x) ∈ E (Bang-Jensen & Gutin, 2008).

Cliques: A clique is complete subdigraph of a given graph (Meeusen & Cuyvers, 1975).

Quotient Graph S
Given the graph H = (V,EH), we denote S = (VS , ES) as a quotient graph through strong
connectivity equivalence relation, i.e., i ∼ j ⇐⇒ i and j are strongly connected. More precisely:

Definition Given the graph H = (V,EH), we denote S = (VS , ES) as a reduced graph where:

• The set of vertices is the quotient set, i.e., VS = V/ ∼= {SCC(v) : v ∈ V }
• Two equivalence classes SCC(u), SCC(v) ∈ VS forms an edge if and only if (u, v) ∈ EH.

In particular (Bloem et al., 2006):

ES = {(C,C ′) |C ̸= C ′ and ∃v ∈ C, v′ ∈ C ′ : (v, v′) ∈ EH} (7)

Graph Density of Digraphs:

Graph density computes ratio of number of edges in the graph to the maximal number of edges, i.e.,

d =
m

n(n− 1)
(8)

where n is the number of nodes and m is the number of edges in the directed graph.

APPENDIX C PROOF OF THE THEOREM 1 AND COROLLARY 1.1.

We restate the Theorem 1:

C.1 THEOREM1

For i, j, k ∈ D, assume that

max
j∈S⊆D

|u(S ∪ {i})− u(S)| ≤ εj (I)

max
i∈S⊆D

|u(S ∪ {k})− u(S)| ≤ εi (II)

Then, the following inequalities hold:

|E2(u)ij | ≤
d!

2
εj , |E2(u)ki| ≤

d!

2
εi (A)

|E2(u)kj | ≤
d!

2
(2εj + εi) (B)

Proof. Part A)

Using Eq (6), |E2(u)ij | is equal to:

|E2(u)ij | = |
∑

j∈S⊆D\{i}

|S|! (d− |D| − 1)!

d!
(u(S ∪ {i})− u(S))| ≤ (9)

∑
j∈S⊆D\{i}

|S|! (d− |S| − 1)!

f !
|(u(S ∪ {i})− u(S))| triangular inequality (10)

≤
∑

j∈S⊆D\{i}

|S|! (d− |S| − 1)!

d!
εj = (

∑
j∈S⊆D\{i}

|S|! (d− |S| − 1)!

d!
)εj =

∗ d!

2
εj (11)
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*:All the possible combinations of features are d! but half of these times j ∈ S and half of these times
j /∈ S, because given a sequence of features a1, . . . , ad where j ∈ S as follows:

(a1 . . . j . . . a|S|)︸ ︷︷ ︸
|S|

i (a|S|+2 . . . ad)︸ ︷︷ ︸
d−|S|−1

(12)

There is an exact sequence on j /∈ S as follows:

(a|S|+2 . . . ad)︸ ︷︷ ︸
d−|S|−1

i (a1 . . . j . . . a|S|)︸ ︷︷ ︸
|S|

(13)

so it is d!
2 elements that j ∈ S, similarly one can derive the other inequality in part A which is

|E2
ki| ≤ d!

2 εi.

Part B)

We start by writing E2
kj from Eq (6), i.e.:

|E2
kj(u)| = |

∑
j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
(u(S ∪ {k})− u(S))|

≤
∑

j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
|(u(S ∪ {k})− u(S))|

(14)

where we used triangular inequality, now we look at the element inside the summation separately
when i ∈ S and i /∈ S, note that in all cases j ∈ S, in particular we have:

• if i ∈ S, then from the assumption 2 we have |u(S ∪ {k})− u(S)|is less or equal than εi
• if i /∈ S: In this case we have the following:

|u(S ∪ {i})− u(S)| ≤ εj , we use (I)
|u(S ∪ {i} ∪ {k})− u(S ∪ {i})| ≤ εi, i ∈ S ∪ {i}, we use (II)
|u(S ∪ {i} ∪ {k})− u(S ∪ {k})| ≤ εj j ∈ S ∪ {k} , we use (I)

(15)

Using these three inequalities we have:

|[u(S ∪ {i})− u(S)] + [u(S ∪ {i} ∪ {k})− u(S ∪ {i})]− [u(S ∪ {i} ∪ {k})− u(S ∪ {k})]| =

|u(S ∪ {k})− u(S)|
∗∗
≤ |[u(S ∪ {i})− u(S)]|+ |[u(S ∪ {i} ∪ {k})− u(S ∪ {i})]|+

|[u(S ∪ {i} ∪ {k})− u(S ∪ {k})]| ≤ εi + εj + εj
(16)

where ** uses triangular inequality. Hence we have each element is at most 2εj + εi for both cases
when i ∈ S or i /∈ S, thus we have:

max
j∈S⊆D

|(u(S ∪ {k})− u(S))| ≤ (2εj + εi) (17)

using the similar arguments as in part A, we have the following:

|E2
kj | =≤

∑
j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
|(u(S ∪ {k})− u(S))|

=
∑

j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
(2εj + εi) =

d!

2
(2εj + εi)

(18)
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C.2 COROLLARY 1.1.

For the corollary we did not mention what u is, to compute E2(u), we need u. In this corollary
we assume that the utility function is monotone. In particular, Utility function u : P (D) → R is
monotone iff

∀S, S′ s.t S ⊆ S′ ⊆ P (D) =⇒ u(S) ≤ u(S′).

This assumption on utility states that more features given to the model does not hurt. An exmple of
such utility function is mutual information, i.e., u(S) = I(XS ;Y ).

Corollary 1.1. (Transitivity): If E is the Shapley explanation map and u be a monotone utility
function, then graph H is transitive.

Proof. If E2(u)ij = 0 and E2(u)ki = 0 we want to show E2(u)kj = 0

Based on the assumption u is monotone, hence every marginal gain is greater or equal than zero, i.e.,
u(S ∪ {i})− u(S) ≥ 0, for all S ⊆ P (D) an i ∈ D.

Based on the assumption we have E2(u)ij = 0, i.e.,

E2(u)ij = 0 =⇒
∑

j∈S⊆D\{k}

|S|! (d− |S| − 1)!

d!
(u(S ∪ {i})− u(S)) = 0 (19)

But every element of the sum is greater or equal than zero hence, maxj∈S⊆D |u(S∪{i})−u(S)| = 0,
similarly from E2(u)ki = 0 we have maxi∈S⊆D |u(S ∪ {k})− u(S)| = 0. Using Theorem 1 result
we have:

|E2
kj | ≤

d!

2
(2εj + εi) = 0 =⇒ E2

kj = 0. (20)

APPENDIX D PAGERANK

D.1 PAGERANK

PageRank (Page et al., 1999) is an algorithm used by Google search in order to give a importance
ranking for web pages in their search engine. Page rank output is a probability distribution which
represent the likelihood of a person random clicking on different links to end up in a specific web
page form (Page et al., 1999).In here we overview the PageRank algorithm. The PageRank scores
si ∈ [0, 1], where

∑
i∈V si = 1, are given as the solution of the following system of equations:

si = pi · α+
∑

j:(j,i)∈E

wji

dj
sj for all i ∈ V,

where α ∈ [0, 1] is a dampening factor (default value of 0.85),

dj =
∑

k:(j,k)∈E

wjk

is the outgoing weighted degree of node j ∈ V and [pi]i∈V is a probability distribution over V . In
standard PageRank, pi = 1

|V | , i.e., p is the uniform distribution. In personalized pagerank, a different
distribution, possibly differentiated per node, is used.

Intuitively, the PageRank scores correspond to the steady state random walk over the weighted graph
with random restarts: with probability (1 − α) the walker transitions to an edge selected with a
probability proportional to neighboring edge weights. With probability α, the walker jumps to a
random node in V , sampled from probability distribution p. Usually, they are via iterative applications
of the above random walk transition equations, applied to a starting distribution over V (Newman,
2018; Page et al., 1999).
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APPENDIX E DERIVATION OF BIVARIATE SHAPLEY EXPLANATION MAP
FORMULA

To prove the equation (6), we need to compute the E2(u)ij elements of the matrix E2(u)ij . E2(u)ij
is the element in intersection jth column and ith row. Based on the definition of E2, we jth column is
represented as E(uj) where uj is defined as in eq (5). In the case of shapley explanation E(uj)i has
specific form based on Shapley value eq (4), i.e.,

E2(u)ij = E(uj)i =
∑

S⊆D\{i}
|S|! (d−|S|−1)!

d! (uj(S ∪ {i})− uj(S)) (21)

From the definition of uj we know it is zero if j /∈ S, thus we can remove those from the summation,
i.e.,

E2(u)ij =
∑

j∈S⊆D\{i}
|S|! (d−|S|−1)!

d! (uj(S ∪ {i})− uj(S))+∑
j /∈S,i⊆D\{i}

|S|! (d−|S|−1)!
d! (uj(S ∪ {i})− uj(S)) =∑

j∈S⊆D\{i}
|S|! (d−|S|−1)!

d! (u(S ∪ {i})− u(S)) + 0

(22)

APPENDIX F EXTENSION OF BIVARIATE EXPLANATION MAP TO
MULTIVARIATE EXPLANATION

To generalize the bivariate explanation map E2, define Ek : U → R

k times︷ ︸︸ ︷
d× · · · × d, which outputs a

tensor, let T be the tensor output, each element of this tensor would be denoted as T i1...ik ∈ R, hence
each column would be defined as T i1...ik−1 ∈ Rd and similar to E2 is defined as E(ui1...ik−1

), where
ui1...ik−1

is defined as follows:

ui1...ik−1
: P (D) → R =⇒ ∀S ∈ P (D), ui1···k−1

(S) =

{
u, if {i1, . . . ik−1} ⊆ S

0, if {i1, . . . ik−1} ̸⊆ S
(23)

APPENDIX G DETAILS OF EXPERIMENTAL SETUP AND ADDITIONAL
EXPERIMENTAL RESULTS

G.1 EXPERIMENT SETUP

G.1.1 ALGORITHMS

Approximating Graph G with Shapley Sampling. Computation over all subsets of features is
computationally expensive. In practice we can use a approximate the Bivarate Shapley value over a
fixed number of samples by adapting the sampling algorithm introduced by Štrumbelj & Kononenko
(Štrumbelj & Kononenko, 2014), as seen in Alg. 1. Note that computing the G matrix adds no
complexity to the original algorithm; we simply keep track of when feature j is absent (i.e. j /∈ S
and set the value function output to zero when this condition occurs. We can therefore calculate the
bivariate and univariate shapley values concurrently. Note that since we are discarding or "filtering
out" the samples where j is absent, we need to double the number of samples to achieve the same
approximation accuracy as the univariate calculation.

Approximating Graph G with KernelSHAP.

As mentioned in Section 4, our method can be generalized to any removal-based Shapley approxima-
tion or other removal-based explainer. More concretely, each column of the d× d interaction matrix,
representing interactions between d features, can be considered an independent explanation where
the column feature is always present. Therefore our method is extremely flexible; the user can decide
which explanation method to use based on the constraints of their intended application. However, we
can also improve performance by taking advantage of different approximation methods.
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Algorithm 1 Approximate Graph G with Shapley Sampling Algorithm
Input : Data Sample x ∈ X ⊂ Rd, Utility Function f , Number of Samples M
Output : Adjacency Matrix G ∈ Rd×d

Initialize G = 0
for i=1...d do

for m=1...M do
Create random permutation O of size d
Define ĩ as permuted index of feature i
Define the set of indices s = {O1...̃i−1} and the set of all indices D = {O}
Sample random baseline w ∈ X

b1 = xs∪i ⊕ wD\{s∪i} \\ Symbol ⊕ indicates concatenation
b2 = xs ⊕ wD\s

for j ∈ s do
Gij = Gij + f(b1)− f(b2)

end
end

end
G = 1

M
G

Return G

Performance is improved through the use of two properties in KernelSHAP. First, we can save the
sampled model outputs and reuse these values when recalculating KernelSHAP over all d features.
This allows for a fixed number of model samples independent of the number of data features. Second,
note that KernelSHAP attributions are calculated through a weighted linear regression mechanism.
Bivariate Shapley simply changes the model output (setting the output to zero) depending on whether a
feature is present or removed, which corresponds to applying a binary mask over the linear regression
labels. Therefore we can save the intermediate linear regression calculation and evaluate each column
of the interaction matrix with two matrix multiplications with the sparse labels. This results in
significant speed improvements and allows scaling to datasets with large number of features, such as
the COPD dataset with 1,077 features.

Mutual Redundancy on Graph H. Given the unweighted graph H, we want to find groups of
mutually redundant features as investigated in Fig. 2. These features are identified as strongly
connected nodes within the graph. We use the package NetworkX (Schult, 2008), which implements
Tarjan’s algorithm (Tarjan, 1972) to identify such nodes. Tarjan’s algorithm is a depth-first search that
runs in linear time. This algorithm for identifying mutually redundant features is outlined in Alg. 3.

To generate the results of Fig. 2, we apply a binary mask for each sample such that a given percentage
of its mutually redundant features are set to their baseline value. Note that the number of features
masked for a given percentage may vary between samples, since the H is calculated on an instance-
wise basis. We then record the accuracy for the set of masked samples.

Directional Redundancy on Graph H. Directional redundancy is defined in terms of H-sinks and
H-sources on graph H, which we investigate in Table 2. There are a number of methods to identify
source and sink nodes on a graph; in our implementation we use the PageRank algorithm (Page et al.,
1999) and take the maximally and minimally-ranked node as the sink and source, respectively (Alg.
4). Note that using PageRank in such manner will only identify singular sinks and sources, therefore
we first separate graph H into its connected subgraphs and apply PageRank to the condensation graph
of each subgraph. We use the PageRank implementation in the Scikit-Network package (Bonald

5Note that π(x) =∞ when |x| ∈ {0, d}, therefore in practice we remove two variables during the linear
regression calculation and enforce the following two constraints. 1) ϕ0 = f(E[X ]), where ϕ0 is defined as the
bias / intercept term in the regression, and 2)

∑
i ϕi = f(x)− f(E[X ]).
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Algorithm 2 Approximate Graph G with KernelSHAP Algorithm
Input : Data Sample x ∈ X ⊂ Rd, Utility Function f , Number of Samples M
Output : Univariate Shapley Values ϕ ∈ Rd, Adjacency Matrix G ∈ Rd×d

Initialize G ∈ Rd×d

Initialize matrix X̃ ∈ {0, 1}M×d

Initialize matrix Π as an identity matrix IM
Initialize vector Y ∈ RM

Define the KernelSHAP weighting kernel π(x) = (d−1)
(d choose |x|)|x|(d−|x|)

\\ Randomly draw M samples around x
for m=1...M do

Sample random baseline w ∈ X
Sample binary vector x̃ ∈ {0, 1}d
Calculate perturbed labels y = f(x̃⊙ x+ (1− x̃)⊙w) \\ Symbol ⊙ indicates Hadamard product

X̃m,: ← x̃ \\Xi,j indicates indices i and j in matrix X. : indicates the entire row / column.
Ym ← ỹ
Πm,m ← π(x̃m)

end

\\ Solve a constrained 5, weighted linear regression
Define Γ = (X̃TΠX̃)−1X̃TΠ
Define Γ+ = Γ−d,: \\ remove the last row of Γ
Define Γ− = Γ−1,: \\ remove the first row of Γ

\\ Remove the last feature in regression calculation with the constraint that
∑

i ϕi = f(x)− f(E[X ])
Define ϕ = Γ+[Y −X:,d × (f(x)− f(E[X ]))]
ϕ← ϕ⊕ (f(x)− f(E[X ])−

∑
i ϕi) \\ Enforce constraint. ⊕ indicates concatenation.

\\ Iterate regression calculation over filtered labels
for j=1...d do

Define Y + = Y ⊙ X̃:,j \\ Set Ym = 0 if feature j was not selected in X̃m,:

Define ϕ+ = Γ+[Y + −X:,d × f(x)]

Define Y − = Y ⊙ (1− X̃:,j) \\ Set Ym = 0 if feature j was selected in X̃m,:

Define ϕ− = Γ−[Y − +X:,d × f(E[X ])]

ϕ+ ← ϕ+ ⊕ (ϕd − ϕ−
d−1) \\ Utilize the property that ϕ = ϕ− + ϕ+

G:,j ← ϕ+

end

Return ϕ, G

et al., 2020) with no personalization and default damping = 0.85. In practice, we found that changing
the damping parameter had no effect on identified features.

In Table 2 we show the results of completely masking all H-sources and H-sinks. We apply a binary
mask, setting the value of all H-source or H-sink features to their baseline values, then record the
sample accuracy.

Redundancy Ranking on Graph G. We want to create a continuous ranking of feature redundancy
given graph G, as investigated in Fig. 3. We first add ϵ = 10−70 to each element in G to eliminate
disconnected subgraphs. Note that for certain value functions, such as those used in our experiments,
the graph G can contain negative values. We normalize these negative values by applying an element-
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Figure 5: Comparison of graph G and graph H for the the given IMDB example "The movie was
the worst; surprisingly awful", which is classified as negative sentiment. Note that the sinks and
sources of graph G and graph H are reversed in terms of influential and redundant features. I.E. the
source nodes of graph G represent redundant features, whereas the sink nodes of graph H represent
(directionally) redundant features.

Algorithm 3 Mutual Redundancy on Graph H
Input : Unweighted Directed GraphH
Output : Groups of Mutually Redundant Features

Define S = {s1, ..., sm} as the set of strongly connected subgraphs inH

Return S

Algorithm 4 Directional Redundancy on Graph H
Input : Unweighted Directed GraphH
Output : Source Nodes and Sink Nodes

DefineW = {w1, ..., wm} as the set of weakly connected subgraphs inH
for i = 1,...,m do

Create condensed graph ci = Condensation(wi)
Source Node αi = argmax PageRank (ci)
Sink Node ωi = argmin PageRank (ci)

end
Source Nodes = Condensation−1({α1, ..., αm})
Sink Nodes = Condensation−1({ω1, ..., ωm})

Return Source Nodes, Sink Nodes

wise Softplus function: Softplus(x) = ln(1 + ex). We then directly apply the PageRank algorithm
from Scikit-Network to obtain feature rankings. We again use the default damping parameter of 0.85
for all datasets.

One issue we observed during testing was the occurrence of nodes with identical PageRank scores,
indicating a similar level of redundancy. With no other information, this would necessitate random
selection when generating the feature ranking. With this motivation, we experiment with using the
univariate shapley values as personalization values. In personalized PageRank, the personalization
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values dictate the distribution over nodes for which a random jump will land. With no personalization,
a random jump will land in each node with equal probability; i.e. the personalization is assumed to
be uniform. By setting the personalization to the univariate shapley values, we bias the stationary
distribution towards nodes that have high shapley values. Therefore, nodes of similar redundancy
would be further ranked by their respective univariate shapley values. In practice, using personaliza-
tion slightly improves post-hoc accuracy results in Fig. 3 for larger masking percentages. The full
algorithm for generating the redundancy ranking of features is outlined in Alg. 5.

Algorithm 5 Directional Redundancy Ranking on Graph G.
Input : Weighted Directed Graph G, optional Univariate Feature Ranking R ∈ Rd

Output : Score vector S ∈ Rd, representing relative feature importance for each feature.

Define A as the adjacency matrix for Graph G

Ã = A+ 10−70 \\ Add ϵ ≈ 0 to ensure all nodes are connected
Ã = SoftPlus(A) \\ Element-wise Softplus function to normalize negative values

if Personalization then
S = PageRank(Ã) with Personalization Values R

else
S = PageRank(Ã)

end
Return S

G.1.2 IMPLEMENTATION DETAILS FOR BIVARIATE SHAPLEY AND COMPETITORS.

Unless otherwise specified, we use the default parameters when implementing comparison methods
using publicly available code.

Removal-based methods typically assign a value to act as a proxy for a feature’s absence during
feature removal. This value is commonly referred to as a baseline, or reference value, and is often
assigned to be some a priori neutral value. While different removal-based methods may have different
baseline values as default, we assign a single baseline value used for all methods for a given dataset.
This is to maintain comparability, since the objective of our experiments is to evaluate the explanation
calculation rather than the choice of baseline value. For tabular data, we define the value for all
removed features to be zero, except the Divorce dataset where a value of ‘3’ indicates the average
response, and the Census dataset where we fix the baseline to be the average value for each feature.
For images, we use a pixel value of zero. For text, we set the word embedding for the selected feature
to be the zero vector.

Bivariate Shapley - Sampling. We apply Bivariate Shapley on a variety of prediction models
(detailed in section G.1.3), using a value function v(S) = Ew∼B[P (Y = ŷ|X = xS ∪wS̄)], where ŷ
is the model’s predicted class, S̄ is the complement of S, and w represents samples drawn from a
baseline distribution B. As previously discussed, this baseline distribution is fixed to a value that is
dependent on the given dataset. We set m, the number of samples drawn in alg. 1 to be 1000.

Bivariate Shapley - Kernel. We utilize the algorithm described in sec.G.1.1 by adapting the publicly
available package for kernelSHAP (Lundberg & Lee, 2017). We keep the same default parameters as
KernelSHAP, except we double the number of default samples to account for the Bivariate Shapley
filtering.

Shapley Excess. Shapley Excess refers to the surplus value from contribution of players in a coalition
game grouped in a singleton coalition as compared to their individual contributions. This can be
written formally as:

ϕs −
∑
i∈s

ϕi
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where ϕs is the shapley value of a group of players when considered as a singleton player. We
implement this formula using the KernelSHAP approximation by combining features and evaluating
the resulting excess Shapley value.

Shapley Interaction Index. Introduced by (Grabisch & Roubens, 1999), Shapley Interaction
Index has gained popularity due to the efficient implementation by (Lundberg et al., 2018b) on
tree-based prediction models. In order to apply this method efficiently with the entirety of the
datasets in our experiments, we use the KernelSHAP approximation to calculate Shapley Interaction
Index. This implementation results in significantly faster calculations compared to Shapley Sampling
approximations (as seen in tbl 8. We use the default parameters of KernelSHAP, applied 2× d times
per sample, where d is the number of features.

Shapley Excess. Shapley Excess refers to the surplus value from contribution of players in a coalition
game grouped in a singleton coalition as compared to their individual contributions. This can be
written formally as:

ϕs −
∑
i∈s

ϕi

where ϕs is the shapley value of a group of players when considered as a singleton player. We
implement this formula using the KernelSHAP approximation by combining features and evaluating
the resulting excess Shapley value.

Shapley Taylor Index. Introduced by Sundararajan et al. (2020b). As of this writing, there is no
publicly available code for the Shapley Taylor Index. Therefore we build our own implementation
using the Shapley Sampling approximation as outlined in the original paper. We choose a sample size
of m = 200 for each element of the interaction matrix.

GNNExplainer. Introduced by Ying et al. (2019), GNNExplainer is a method for explaining a
GNN-based black-box model. It can be used on a variety of GNN tasks, such as node or graph
classification, and identifies a compact subgraph and subset of node features that best explains the
GNN output. This is accomplished through the use of a soft mask on the edges and node features of
the input graph. Specifically, GNNExplainer trains a neural network to generate the edge and node
feature masks, with the objective of maximizing mutual information between the black-box output of
the masked graph and the label.

While GNNExplainer was originally intended to explain GNN models, it can be used in conjunction
with non-GNN models. In our implementation, our objective is to identify the important edges
between the features of a data sample. Therefore we define a fully-connected graph with the features
as the graph nodes. When applying GNNExplainer to this fully-connected graph, GNNExplainer
returns edge importance values for the given data sample. This output can be converted to a subgraph
using specifying a threshold, below which the edges are removed. In our experiments, we directly
use the edge importance values as the weights of a directed, weighted graph. This resulting graph
is then evaluated and compared with Bivariate Shapley using the same algorithms for identifying
mutually redundant features, directionally redundant features, and feature redundancy ranking, as
outlined in App. G.1.1. We implement GNNExplainer using the Pytorch Geometric package (Fey &
Lenssen, 2019) with default parameters.

Note that while GNNExplainer can indeed be applied to non-GNN models, these models may not be
able to incorporate the graph structure in its predictions. For example, even though GNNExplainer
applies an edge mask to the input graph, this edge information is meaningless if the black-box model
is not designed to use this structure in its prediction. In this case, the GNNExplainer will receive
non-informative black-box outputs in its mutual information maximization objective.

G.1.3 DATASETS AND MODELS

COPDGene. The COPDGene dataset is an observational study with a cohort of 10,000 participants
designed to identify the genetic risk factors for COPD. The study contains participants with and
without COPD; COPD diagnosis, subtyping, and progression are monitored using high-resolution
CT scans. We are interested in investing the relation between gene expression and smoking status
(see section G.2.6 for details). The dataset contains RNA-sequencing count data for 1,077 genes
and the associated binary label for smoking status. We use a neural network with 4 fully-connected
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Domain Genetics Image Text Tabular
Dataset COPDGene CIFAR10 MNIST IMDB Census Divorce Drug

Classes 2 10 10 2 2 2 2
Train/Test Samples 1,641/407 50k/10k 60k/10k 25k/25k 26k/6.5k 102/68 1413/472

Model 4-Layer MLP Resnet18 2-Layer CNN 1-Layer GRU XGBoost 3-Layer MLP Random Forest
Model Accuracy 88.2 89.8 99.0 88.1 87.3 98.5 85.3

Table 3: Summary of the datasets and models in our investigation

layers of 200 hidden units, batch normalization, and relu activation. The model is trained using Adam
(Kingma & Ba, 2017) with learning rate 10−3 for 800 epochs, achieving a test accuracy of 88.2%.

CIFAR10. CIFAR10 (Krizhevsky, 2009) consists of 60k images of dimension 32× 32 with RGB
channels. We train a Convolution Neural Network (CNN) to classify the 10 different classes, using
a Resnet18 architecture (He et al., 2016) with default parameters. We apply color jittering and
horizontal flip data augmentations, as well as data normalization. The model is trained using Adam
with learning rate 10−3 for 80 epochs, achieving a test accuracy of 89.8%.

While it is possible to use individual pixels when calculating Bivariate Shapley, we choose to
use superpixels to reduce computation and improve the interpretability of results. Superpixels are
contiguous clusters of pixels that are treated as a single feature for feature importance purposes;
i.e. all individual pixels within the superpixel are masked or selected jointly. We use the simple
linear iterative clustering (SLIC) algorithm (Achanta et al., 2012) in our image experiments. SLIC
divides the image into similarly sized superpixels based on clustering in the CIELAB color space.
For CIFAR10, we use SLIC with 255 superpixels and minimal smoothing (σ = 5).

MNIST. MNIST (LeCun & Cortes, 2010) consists of 28× 28 greyscale images with the handwritten
numerals 0− 9. We train a CNN with two convolution layers and a single batch normalization layer.
Each convolution uses a 6× 6 kernel size, stride 2, and a 200 channel mapping. We train the model
using stochastic gradient descent (SGD) with learning rate 10−2 for 20 epochs, achieving a test
accuracy of 99.0%. We again use SLIC to create superpixels; for MNIST we use 196 superpixels and
σ = 5.

IMDB. The Large Movie Review Dataset (IMDB) (Maas et al., 2011) consists of 50k movie reviews
which we use for the task of sentiment analysis. We train a Recurrent Neural Network (RNN) classifier
with a single Gated Recurrent Unit (GRU) (Cho et al., 2014) layer of 500 hidden units to predict
either positive or negative sentiment. We tokenize each review using the NLTK package (Loper &
Bird, 2002) and map each token to a pretrained word embedding. We use the 300-dimensional GloVe
(Pennington et al., 2014) embedding with 840B tokens, pretrained on the Common Crawl dataset.
We limit the vocabulary to 10k tokens and text sample length to 400 tokens. The model was trained
using Adam with learning rate 10−4 for 15 epochs, achieving test accuracy of 88.1%.

Census. The UCI Census Income dataset aggregates data from the 1994 census dataset. We use 12
features, including both continuous and discrete data, to predict whether an individual has an annual
income greater than $50k. Our model is trained using XGBoost (Chen & Guestrin, 2016) with a
maximum of 5000 trees, η = 0.01, and subsample = 0.5, achieving 87.3%test accuracy.

Divorce. The UCI Divorce Predictors dataset (Yöntem et al., 2019) consists of a 54-question survey
with 170 participants regarding various activities and attitudes towards their partners. Each question
is answered with a ranking on a scale from 1 − 5. We train a 3-layer MLP with relu activation,
predicting if the participant was divorced. Each hidden layer contained 50 hidden units. The model
was trained using SGD with learning rate 0.1 and achieved test accuracy of 98.5%. During the
Bivariate Shapley calculation, we use a baseline value of 3 to indicate a feature’s absence, as this
represents the value representing a neutral response.

Drug. The UCI Drug Consumption dataset (Fehrman et al., 2017) consists of 1,885 responses to
an online survey concerning the consumption habits of various drugs. We use binary features for
the six drugs nicotine, marijuana, cocaine, crack, ecstasy, and mushrooms, indicating whether the
respective drug has been previously consumed. We build a model to predict whether the participant
has also consumed a seventh drug, LSD. We use a random forest model with 100 trees, achieving a
test accuracy of 85.3%
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Clinical Center Institution Title Protocol Number
National Jewish Health National Jewish IRB HS-1883a
Brigham and Women’s Hos-
pital

Partners Human Research Committee 2007-P-000554/2;
BWH

Baylor College of Medicine Institutional Review Board for Baylor College of
Medicine and Affiliated Hospitals

H-22209

Michael E. DeBakey
VAMC

Institutional Review Board for Baylor College of
Medicine and Affiliated Hospitals

H-22202

Columbia University Medi-
cal Center

Columbia University Medical Center IRB IRB-AAAC9324

Duke University Medical
Center

The Duke University Health System Institutional
Review Board for Clinical Investigations (DUHS
IRB)

Pro00004464

Johns Hopkins University Johns Hopkins Medicine Institutional Review
Boards (JHM IRB)

NA00011524

Los Angeles Biomedical Re-
search Institute

The John F. Wolf, MD Human Subjects Committee
of Harbor-UCLA Medical Center

12756-01

Morehouse School of
Medicine

Morehouse School of Medicine Institutional Re-
view Board

07-1029

Temple University Temple University Office for Human Subjects Pro-
tections Institutional Review Board

11369

University of Alabama at
Birmingham

The University of Alabama at Birmingham Institu-
tional Review Board for Human Use

FO70712014

University of California,
San Diego

University of California, San Diego Human Re-
search Protections Program

70876

University of Iowa The University of Iowa Human Subjects Office 200710717
Ann Arbor VA VA Ann Arbor Healthcare System IRB PCC 2008-110732
University of Minnesota University of Minnesota Research Subjects’ Pro-

tection Programs (RSPP)
0801M24949

University of Pittsburgh University of Pittsburgh Institutional Review
Board

PRO07120059

University of Texas Health
Sciences Center at San An-
tonio

UT Health Science Center San Antonio Institu-
tional Review Board

HSC20070644H

Health Partners Research
Foundation

Health Partners Research Foundation Institutional
Review Board

07-127

University of Michigan Medical School Institutional Review Board
(IRBMED)

HUM00014973

Minneapolis VA Medical
Center

Minneapolis VAMC IRB 4128-A

Fallon Clinic Institutional Review Board/Research Review Com-
mittee Saint Vincent Hospital – Fallon Clinic –
Fallon Community Health Plan

1143

Table 4: IRB Information for COPDGene Dataset

G.1.4 LICENSES FOR COPDGENE DATA

All participants provided their informed consent, and IRB approval was obtained from all concerned
institutions. IRB information is provided in Tab. 4.

G.2 ADDITIONAL EXPERIMENTAL RESULTS

G.2.1 INSERTION AND DELETION AUC

Insertion AUC (iAUC) and Deletion AUC (dAUC), introduced by (Petsiuk et al., 2018), quantify
the ability for an explainer to find the most influential features of a given black-box model. We use
iAUC and dAUC as a supplementary metric to evaluate the redundancy-based ranking we explore in
figure 3.

To summarize, dAUC iteratively removes the highest-ranked features of a given image and measures
the change in model output compared to the baseline prediction, as summarized by the area under
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Insertion AUC (Higher is better) Deletion AUC (Lower is better)
Dataset COPD CIFAR10 MNIST IMDB Census Divorce Drug COPD CIFAR10 MNIST IMDB Census Divorce Drug
Ours-SS 0.48 0.75 0.85 0.45 0.43 0.30 0.30 0.01 0.05 0.03 0.02 0.32 0.05 0.10
Ours-K 0.49 0.65 0.84 0.43 0.42 0.30 0.30 0.00 0.08 0.03 0.02 0.32 0.05 0.10
Sh-Sam 0.48 0.75 0.85 0.45 0.43 0.30 0.30 0.01 0.05 0.03 0.02 0.32 0.05 0.10
kSHAP 0.42 0.48 0.77 0.29 0.42 0.29 0.30 0.09 0.17 0.17 0.03 0.36 0.05 0.11
Sh-Int 0.20 0.35 0.46 0.32 0.43 0.16 0.17 0.23 0.31 0.52 0.29 0.33 0.14 0.20
Sh-Tay – 0.34 0.78 0.34 0.42 0.30 0.16 – 0.27 0.19 0.19 0.31 0.05 0.19
Sh-Exc – 0.32 0.51 0.30 0.37 0.15 0.08 – 0.31 0.48 0.29 0.38 0.15 0.29

GNNExp 0.25 0.15 0.25 0.30 0.38 0.25 0.26 0.25 0.15 0.25 0.30 0.38 0.25 0.27

Table 5: Influential Feature Evaluation through Insertion and Deletion AUC. We calculate a feature
ranking by applying PageRank on the G graph, iteratively removing the most influential feature, then
evaluating AUC on the resulting curve. Note that we cannot run Sh-Tay and Sh-Exc methods on the
COPD dataset due to their computational issues with the large number of features.

10% Features Mask 50% Features Mask
Dataset Ours Shap Sampl Int KernelSHAP L2X Ours Shap Sampl Int KernelSHAP L2X
COPD 100 ± 0.0 100 ± 0.0 82.8 ± 1.9 99.3 ± 0.4 92.6 ± 1.3 100 ± 0.0 100 ± 0.0 68.3 ± 2.3 100 ± 0.0 86.0 ± 1.7

CIFAR10 99.4 ± 0.3 99.0 ± 0.4 70.2 ± 2.0 86.6 ± 1.0 71.4 ± 2.0 93.0 ± 1.1 92.4 ± 1.2 32.8 ± 2.1 54.9 ± 1.4 23.2 ± 1.9
MNIST 100 ± 0.0 100 ± 0.0 84.6 ± 1.6 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 62.8 ± 2.2 99.9 ± 0.4 100 ± 0.0
IMDB 100 ± 0.0 100 ± 0.0 92.6 ± 1.2 100 ± 0.0 94.0 ± 1.2 100 ± 0.0 100 ± 0.0 64.4 ± 2.1 100 ± 0.0 57.9 ± 2.2
Census 100 ± 0.0 100 ± 0.0 100 ± 0.0 96.0 ± 0.9 96.6 ± 0.8 96.8 ± 0.8 96.8 ± 0.8 94.8 ± 1.0 90.0 ± 1.3 84.8 ± 1.6
Divorce 100 ± 0.0 100 ± 0.0 98.5 ± 1.5 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 58.8 ± 6.0 98.5 ± 1.5 98.5 ± 1.5

Drug 100 ± 0.0 100 ± 0.0 91.7 ± 1.3 100 ± 0.0 100 ± 0.0 99.2 ± 0.4 99.2 ± 0.4 77.1 ± 1.9 100 ± 0.0 75 ± 2.0

Table 6: Accuracy results for masking redundant features as identified using PageRank on graph G.
These results mirror Figure 3 but with the result variance, as represented by ± standard deviation.
Note that for datasets with < 10 features, the given feature mask percentage is approximate.

the curve. Lower dAUC values indicate that the explainer can accurately assess the features most
influential towards the model output. Conversely, iAUC starts with an uninformative baseline sample
then iteratively inserts the highest-ranked features, then measures change in model output through
AUC. Higher values of iAUC indicate better performance. We evaluate Bivariate Shapley, as well as
a variety of popular univariate and bivariate black-box explainers, on these two metrics in table 5.

G.2.2 SAMPLING VARIANCE OF POST-HOC ACCURACY RESULTS

The Bivariate Shapley method, like other shapley-based methods, does not involve any training
or optimization of weights. Therefore it does not suffer from issues related to data variability. In
addition, the quantitative results from our experiments are averaged over ≈ 500 test samples (less for
divorce and drug, due to dataset size). We show the variance results for Figure 3 in Table 6.

G.2.3 BIVSHAP-K RESULTS FOR SINK AND SOURCE MASKING ON GRAPH H

The BivShap-K results for sink and source masking on graph H are omitted in table 2 due to space
constraints. We present the full full results in table 7.

G.2.4 SENSITIVITY OF GRAPH Hγ TO γ

In Section 4.1 we define a relaxed version of the redundancy graph Hγ = (VH, Eγ
H) where VH = VG

and Eγ
H = {(i, j) ∈ EG : |WG(i, j)| ≤ γ}. Intuitively, γ ∈ R+ acts as a threshold to define

redundant edges in Hγ . As γ increases, the number of edges in Hγ also increases, resulting in larger
mutually redundant clusters and a higher sensitivity to directional redundancy. From the perspective
of accurately representing the black-box model, the choice of γ presents a tradeoff akin to sensitivity
and specificity: larger γ values more easily identify true redundancies within the data (increased
sensitivity), at the cost of potentially mislabeling non-redundancies (reduced specificity).

While it is trivial to choose γ through cross-validation using post-hoc accuracy (or equivalent metric),
such methods are not ideal for instance-wise explanation purposes where the practitioner may not
have access to a sufficient number of validation samples. We therefore attempt to establish guidelines
for choosing γ. In particular we investigate the effect of γ on graph density (Figure 6). Note that
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Bivariate Shapley-S
PH-Accy % Feat Masked

Dataset Sink
Masked

Source
Masked

Sink
Masked

Source
Masked

COPD 99.5 62.7 1.5 98.5
CIFAR10 94.6 15.0 6.2 93.8
MNIST 100.0 13.4 77.7 22.3
IMDB 100.0 54.0 3.5 96.5
Census 100.0 82.0 23.8 76.2
Divorce 100.0 51.5 22.2 77.8

Drug 100.0 48.5 43.5 56.5

Bivariate Shapley-K
PH-Accy % Feat Masked

Dataset Sink
Masked

Source
Masked

Sink
Masked

Source
Masked

COPD 97.3 62.7 13.6 86.4
CIFAR10 82.6 19.4 10.4 89.6
MNIST 100.0 17.6 13.6 86.4
IMDB 97.2 54.0 23.7 76.3
Census 100.0 82.0 33.3 66.7
Divorce 100.0 51.5 22.0 78.0

Drug 100.0 48.5 43.5 56.5

Table 7: Posthoc-accy of BivShap-S and BivShap-K after masking H-source nodes, representing
features with minimal redundancies, and H-sink nodes, representing directionally redundant features.

Figure 6: Sensitivity analysis of graph H to parameter γ. We compare the density of H as γ increases
to the post-hoc accuracy after masking all directionally redundant features found in H.

increasing γ also increases the density of graph H. We can see that at a certain density, post-hoc
accuracy exhibits a sharp decrease, suggesting that the identified redundancies are not truly redundant.
The ideal γ depends on the level of redundancy in the dataset, therefore the value should be chosen
based on the given task. For experimental purposes, we use a constant γ = 10−5 for all datasets.

We also explore how increasing γ affects the identification of mutually redundant features in Figure 7.
We similarly see that increasing γ increases the number of edges in graph H, which correspondingly
increases the number of mutually redundant features identified. For datasets with inherently low
mutual redundancy, such as CIFAR10, this has the effect of reducing Post-hoc accuracy when γ is
increased past a certain threshold. Therefore in practice γ should be selected either through cross
validation, or by examining the density curve as in Figure 6.

G.2.5 TIME COMPLEXITY DETAILS WITH UNIVARIATE COMPARISON.

Table 8 includes the full feature attribution timing results. Note that L2X requires an initial training
stage for neural network-based explainer model, which is not included in these results. Once this
explainer model is trained, the topk features are obtained through single forward pass, which is the
activity measured in Table 8. All experiments are performed on an internal cluster equipped with
Intel Gold 6132 CPUs. The evaluations on CIFAR10, MNIST, IMDB datasets were calculated using
GPUs (Nvidia Tesla V100), whereas the other datasets were trained without a GPU. Finally, the
calculated times were averaged over all samples used in the experiments (500 samples, unless the
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COPD IMDB MNIST Divorce CensusDrugCIFAR10

Figure 7: Posthoc Accuracy evaluated on Mutual Redundancy masking derived from graph H.
Strongly connected nodes in H are randomly masked with increasing mask sizes until a single node
remains, represented by the final marker for each dataset. Each row represents a different selection of
threshold parameter γ. Note that we cannot run Sh-Tay and Sh-Exc methods on the COPD dataset
due to their computational issues with the large number of features.

Bivariate Methods Univariate Methods GNN Methods
Dataset # Features Ours-SS Ours-K Sh-Int Sh-Tay Sh-Exc Sh-Sam kSHAP L2X GNNExp
COPD 1077 5942 36 2877 112900* 838200* 3047 1.4 0.00 10.9

CIFAR10 255 218 2.5 101 2819* 6267* 140 0.65 0.00 0.79
MNIST 196 116 1.5 48 1194* 2350* 57 0.34 0.00 0.42
IMDB ≤400 207 1.9 160 1279* 1796* 103 0.40 0.00 0.73
Census 12 2.7 0.20 2.6 11.6 5.3 1.6 0.83 0.00 0.17
Divorce 54 18.2 0.34 6.5 63.2 93.3 11.3 0.16 0.00 0.15

Drug 6 2.3 0.07 1.21 181 0.96 1.26 0.10 0.00 1.54

Table 8: Time comparison in seconds per data sample for the methods used for the post-hoc accuracy
and AUC calculations. Fields indicated by * which were averaged over 5 samples due to computational
cost, otherwise time calculations were averaged over 500 samples (or the total number of test samples
if fewer than 500)

dataset has less than 500 samples total), except for the fields indicated by * which were averaged
over 5 samples due to computational cost.

As previously mentioned in Sec G.1.1, the Bivariate Shapley method can be applied naively to any
removal-based explanation method repeating the explainer’s calculations d times, where d is the
number of data features. It follows that our method’s time complexity is dependent on the choice
explanation method and, when implemented naively, linearly scales that method’s complexity by
the number of features. Certain methods, such as KernelSHAP, can be adapted to realize even more
efficient implementations of Bivariate Shapley, which we outline in App G.1.1. We provide time
comparisons to competing methods in Table 1.
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Group Pathway Name Genes q-value
Smoker GSE25123_WT_VS_PPARG_KO_MACROPHAGE_IL4_STIM_DN 23 0.02

GSE32986_GMCSF_VS_GMCSF_AND_CURDLAN_LOWDOSE_STIM_DC_UP 24 0.16
GSE45365_WT_VS_IFNAR_KO_CD11B_DC_UP 18 0.20
GSE22886_NAIVE_VS_MEMORY_TCELL_DN 32 0.20
GSE40274_FOXP3_VS_FOXP3_AND_LEF1_TRANSDUCED_ACTIVATED_CD4_TCELL_UP 25 0.21
GSE32986_UNSTIM_VS_CURDLAN_LOWDOSE_STIM_DC_DN 28 0.32

NonSmoker GSE25123_WT_VS_PPARG_KO_MACROPHAGE_IL4_STIM_DN 23 0.01
GSE32986_UNSTIM_VS_CURDLAN_LOWDOSE_STIM_DC_DN 28 0.13
GSE32986_GMCSF_VS_GMCSF_AND_CURDLAN_LOWDOSE_STIM_DC_UP 24 0.21

Table 9: GO enrichment results for the redundancy-based ranking of graph G for Smoker and
Nonsmoker subgroups. Gene pathways with q-value < 0.05 are bolded.

G.2.6 GENE ONTOLOGY ENRICHMENT ANALYSIS OF COPDGENE DATASET

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung disease. The relation
between COPD and smoking is well-established; it has been shown that smoking increases the
risk of developing lung disease through a variety of ways, such as increasing lung inflammation
(Arnson et al., 2010). Here, we investigate the relation between gene expression data and smoking
status in COPDGene data. We show the interpretation power of our methods by relating our most
influential genes to biological pathways which correspond to smoking. We performed Gene Set
Enrichment Analysis (GSEA) using the GenePattern web interface (Reich et al., 2006) on the ranking
of influential features, which we generate as follows. We first calculate graph G locally, as in Alg. 1.
We then create the global G graph for each subgroup, smokers and non-smokers, by averaging the
G adjacency matrix over all samples within each subgroup (Fig. 8). We directly apply the ranking
algorithm outlined in Section G.1.1 to obtain subgroup-specific importance scores. We use the list
of 1,079 unique gene names with their associated importance score as input into the GenePattern
interface. Gene set enrichment for these two groups was calculated using the GSEAPreranked
module with 1000 permutations, using the Hallmark (h.all.v7.4.symbols.gmt) and Immunologic gene
sets (c7.all.v7.4.symbols.gmt). We observed genetic pathways corresponding to Macrophages as
statistically significant at a q-value ≤ 0.05 (the pathway table is in the App., Table. 9). Macrophages
are a type of immune cells that can initiate inflammation, and they also involve the detection and
destruction of bacteria in the body. The relation between such cells and smoking has been observed
in biological domain; many studies have observed that smoking induces changes in immune cell
function in COPD patients (Yang & Chen, 2018; Strzelak et al., 2018).
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Figure 8: Adjacency matrix for graph G, averaged over Smoker and Nonsmoker subgroups and
displayed as a heatmap.
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