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Abstract

We consider a rank regression setting, in which a dataset of N samples with features in
Rd is ranked by an oracle via M pairwise comparisons. Specifically, there exists a latent
total ordering of the samples; when presented with a pair of samples, a noisy oracle
identifies the one ranked higher with respect to the underlying total ordering. A learner
observes a dataset of such comparisons and wishes to regress sample ranks from their
features. We show that to learn the model parameters with ε > 0 accuracy, it suffices to
conduct M ∈ Ω(dN log3N/ε2) comparisons uniformly at random when N is Ω(d/ε2).
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1. Introduction

Rank regression has a broad range of applications in fields as diverse as social
science [1, 2, 3], economics [4, 5], and medicine [6, 7, 8], to name a few. For example,
disease severity can be regressed from patient records by presenting pairs to a medical
expert and asking her to rank them [6]. A dataset of such pairwise comparisons is more
informative than a dataset with class labels containing diagnostic outcomes. This is
because comparisons reveal intra-class, relative severity within, e.g., the healthy or
diseased class, that cannot be inferred from class labels alone. As an additional practical
benefit, comparison labels also often exhibit lower variability across experts: experts
are more likely to agree when comparing pairs rather than making absolute diagnoses:
this has been observed in a variety of domains, including medicine [9, 10, 11], movie
recommendations [12], travel recommendations [2], music recommendations [3], and
web page recommendations [1]. These advantages make learning from comparisons
quite advantageous in practice; in an extreme example illustrating this, Yıldız et al.
[7] used comparisons among just 80 images to train a neural network of 5.9 million
parameters that attained a 0.92 AUC on a much larger test set.
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This empirical success motivates us to study the sample complexity of algorithms
that learn from comparisons. However, doing so poses a significant challenge. In
contrast to the standard probably approximately correct (PAC) learning setting, where
samples are assumed to be i.i.d, learning from comparisons necessarily leads to a
violation of independence. Even in a simple generative model where (a) samples are
drawn independently and (b) pairs presented to the oracle are selected uniformly at
random, any two pairs sharing a sample are correlated. This dependence complicates the
application of concentration inequalities such as, e.g., Chernoff bounds in this setting.

The main contributions of our work are as follows. We propose an estimator for
the parameters of a generalized linear parametric model, which encompasses classical
preference models such as Bradley-Terry [13] and Thurstone [14]. We overcome the
aforementioned violation of independence and prove a sample complexity guarantee on
model parameters. In particular, assuming Gaussian distributed features, we characterize
the convergence of the estimator to a rescaled version of the model parameters w.r.t. the
ambient dimension d, the number of samples N , and the number of comparisons M
presented to the oracle. We show that to attain an accuracy ε > 0 in model parameters,
it suffices to conduct Ω(dN log3N/ε2) comparisons when the number of samples is
Ω(d/ε2). Finally, we confirm this dependence with experiments on synthetic data.

2. Related Work

In rank aggregation [15, 16], subsets of samples are ranked by a noisy oracle, and
a learner attempts to reconstruct a total ordering from these noisy rankings without
access to sample features. Works on noisy sorting assume that the observed pairwise
comparisons deviate from an existing underlying ordering via i.i.d. Bernoulli noise.
Braverman and Mossel [17] propose a tractable active learning algorithm that requires
Ω(N log(N)) comparisons to recover the underlying ordering with high probability.
Jamieson and Nowak [18] actively rank samples with Ω(d log2N) pairwise compar-
isons when samples are embedded into an unobserved d-dimensional space. In the
passive learning setting, assuming that the comparisons are samples from an unknown
distribution over the underlying ordering, Ammar and Shah [19] propose a maximum
entropy method with Ω(N2) pairwise comparisons. Under the same non-parametric
model, Negahban et al. [20] learn the ordering via an iterative rank aggregation al-
gorithm requiring a total of Ω(N logN) comparisons in which each pair needs to be
repeated Ω(logN) times. Shah et al. [21] show that a minimax optimal estimator can
estimate the preference matrix with O(log2N/N) error. By showing that the preference
matrix has rank r � N under a suitable transformation, Rajkumar and Agarwal [22]
show that Ω(rN logN) comparisons suffice.

Among parametric models, Hajek et al. [23] show that the maximum likelihood
estimator under Plackett-Luce model Plackett [24] requires Ω(N logN) comparisons
to learn Plackett-Luce scores. Vojnovic and Yun [25] show that estimating Thurstone
[14] scores via MLE requires O(N logN/λ) comparisons, where λ is the smallest
nonzero eigenvalue of the Laplacian of a graph generated by comparisons. Assuming
comparison labels are independent, Ailon [26] proposes an active learning algorithm
that requires Ω(ε−6N log5N) comparison labels for a risk of ε times the optimal risk,
where risk is a function that is minimized at the correct ordering. Spectral ranking
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methods also learn sample scores with theoretical guarantees. Negahban et al. [27]
show that the rank centrality algorithm learns scores in Θ(N log3N) comparisons,
while several algorithms generalize this setting and improve upon this bound [28, 29].
For example, ASR [29] learns scores in Ω(ξ−2m3Npoly(logN)) m-way comparisons,
error on BTL parameters where ξ is the spectral gap of the graph Laplacian.

The rank regression setting we study departs from the above works in regressing
rankings from sample features, as opposed to comparisons alone. Even though inference
algorithms for ranking regression and applications abound [6, 7], in contrast to rank
aggregation, sample complexity results are sparse. Using independent pairwise com-
parisons, Canonne et al. [30] propose an algorithm over sample pairs that tests whether
the empirical distribution is close to a target distribution. Kane et al. [31] propose an
active learning algorithm to infer class labels via a special pairwise comparison oracle
that indicates which sample is closer to the separating hyperplane of class labels. Both
of these settings significantly depart from the one we consider here.

Our model encompasses the Bradley-Terry [13] and Thurstone [14] models; under
both, our setting can be seen as learning a linear classifier over sample differences.
Learning linear classifiers is of course classic in both the standard PAC learning setting
[32, 33] and variants, including agnostic [34, 35] and active [36, 37] learning. We
stress that all of the above works operate on linear classifiers under the assumption of
i.i.d. samples, and therefore do not readily generalize or apply to our setting. This is
precisely because pairs of samples are correlated, a phenomenon that is not present in
standard PAC learning.

Closer to us, Niranjan and Rajkumar [38] and Chiang et al. [39] analyze pairwise
rank regression. Niranjan and Rajkumar [38] recover the correct ranking with N =
Ω(d2) samples and a number of comparisons that are polylogarithmic in N , while
Chiang et al. [39] provide a guarantee that depends on the `2-distortion (due to noise) of
the pairwise comparison matrix. Nevertheless, both works ignore dependence across
sample pairs. In particular, they analyze the concentration of labels over pairs of samples
using Rademacher complexity bounds from Bartlett and Mendelson [40], that apply only
if sample pair differences xi − xj are independent. As a result, guarantees provided in
[38] and [39] hold if every sample appears in only a single pair, an assumption we do
not make. We further elaborate on this issue in Section 3.

3. Problem Formulation

Notation. For N ∈ N, we denote by [N ] ≡ {1, 2, . . . , N} ⊂ N the set of integers from
1 to N , and use ‖·‖ for Euclidean (spectral) norm of vectors (matrices). The minimum
and maximum singular values of a matrix A is denoted with λmin(A) and λmax(A),
respectively. We denote by 1A the indicator function of a predicate A, i.e., 1A = 1 if
A is true and 0 otherwise.
Generative Model. We consider a setting in which an expert is presented with pairs of
samples from a dataset. The expert produces a (possibly noisy) comparison label for
each pair, i.e., the expert selects among two samples the one ranked higher with respect
to an underlying total ordering of the samples. Formally, we are given a dataset of 2N
samples, each denoted by i ∈ [2N ]. Each sample i has a corresponding feature vector
Xi ∈ Rd. Using the first half of the dataset (i.e., [N ]), the expert is presented with M
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Figure 1: Intuition behind the estimator in Eq. (3). We consider a dataset of i.i.d. Gaussian samples {Xi}2Ni=1.
DifferencesXIm −XJm are shown in Fig. 1a, along with β and the corresponding separating hyperplane.

Colors indicate labels Ym ∈ {−1,+1}. We can rewrite Eq. (3) as β̂ = Σ̂− 1
2 · 1

M

∑M
m=1 YmΣ̂− 1

2 (XIm−
XJm ). Multiplying vectorsXIm −XJm with Σ̂− 1

2 gives the whitened sample pairs in Fig. 1b; in this

coordinate system, the separating hyperplane has normal Σ̂
1
2 β. The resulting whitened pairs are multiplied

by the labels Ym in Fig. 1c; this results in a “mirroring” over the separating hyperplane defined by Σ̂
1
2 β.

Their average (i.e., Σ̂
1
2 β̂) is approximately co-linear with Σ̂

1
2 β. The final multiplication with Σ̂−1/2

recovers β (up to a multiplicative constant).

pairs of samples (Im, Jm) ∈ [N ] × [N ] where m ∈ [M ] and produces a comparison
label Ym ∈ {+1,−1} where Ym = +1 if Im ranks higher than Jm and −1 otherwise.
We denote the dataset of all comparisons by D = {(Im, Jm, Ym)}Mm=1.

We assume that the feature vectors Xi ∈ Rd are independent and identically
distributed (i.i.d.) Gaussian vectors with mean µ ∈ Rd and positive definite covariance
Σ ∈ Rd×d, i.e., Xi ∼ N

(
µ,Σ

)
. We assume that the eigenvalues of Σ are ordered

so that λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Furthermore, we assume that Im, Jm are sampled
uniformly at random from [N ] and are independent of each other and {Xi}2Ni=1. Labels
Ym are independent of all other variables conditioned on Im, Jm,XIm ,XJm and are
distributed according to the following model: there exists a β ∈ Rd such that the
conditional distribution of Ym is given by

Pr(Ym = 1|XIm = x,XJm = y) = f(β>(x− y)), (1)

where the function f : R→ [0, 1] is (a) non-decreasing and continuously differentiable,
and (b) satisfies

lim
x→∞

f(x) = 1, lim
x→−∞

f(x) = 0, f(−x) = 1− f(x). (2)

For example, f(x) could be the sigmoid function, i.e. f(x) = 1/(1+e−x), which results
in the well known Bradley-Terry model [13]. Alternatively, f could be the cumulative
distribution function of standard normal distribution, i.e. f(x) = (1 + erf(x))/2,
which corresponds to the Thurstone model [14]. Both of these examples satisfy the
aforementioned properties.
Parameter Estimation. The learner observes D and estimates β via:

β̂ = 1
M

∑M
m=1 YmΣ̂−1(XIm −XJm) ∈ Rd, (3)

where Σ̂ is an estimator of Σ, computed over the second half of the samples through:

Σ̂ = 1
N−d−2

∑2N
i=N+1(Xi − µ̂)(Xi − µ̂)>, where µ̂ = 1

N

∑2N
i=N+1Xi. (4)
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Table 1: Summary of Notation

N number of samples Xi Gaussian feature vector
M number of comparisons d dimensionality of a feature vector
‖·‖ `2 (spectral) norm of vectors (matrices) i, n sample index in [N ]

Ym comparison label m comparison index in [M ]

Im, Jm uniform random variables in [N ] D comparison dataset
[N ] set of integers from 1 toN β parameter vector/model in Rd
ci constants

Note that E[Σ̂−1] = Σ−1 (see, e.g., [41]). We separate the dataset in two halves to
ensure the independence of Σ̂ from labels in D. Eq. (3) resembles a two-class linear
discriminant analysis (LDA) estimator (see, e.g., [42]) and is indeed unbiased up to
a positive multiplicative constant (see Lemma 7); this is a consequence of Stein’s
Lemma [43], stated formally in Section 4. Fig. 1 provides some intuition as to why
this is the case. Despite the simplicity of our proposed estimator, characterizing its
sampling complexity poses a significant challenge. Non-asymptotic bounds establishing
consistency typically rely on i.i.d. assumptions; this is indeed natural to assume for
samples {Xi}2Ni=1. However, pairwise comparisons introduce correlations in labels
{Ym}Mm=1: this is precisely because samples are re-used in pairs. We stress that
conditioning on {Xi}2Ni=1 does not resolve this issue, as labels are still dependent
through random variables (Im, Jm).
Discussion on Previous Bounds. The previously mentioned works [38, 39] provide
sample complexity bounds for a similar setting. In Niranjan and Rajkumar [38], a
class of generative models, namely feature low rank models, are considered. In their
analysis, each comparison is required to be repeated K times. They assess their method
w.r.t. the normalized Kendall’s Tau error metric [38, 39]; to obtain an error less than ε,
they require M = Ω(d2 logN/ε2) different comparisons and K = Ω(d2 log2N/εN2)
independent repetitions of each comparison. Most importantly, our method does not
enforce repetitions of each comparison. In contrast, our analysis captures the same
complexity for M , i.e., we require M = Ω(d2 log3N/ε4); note that our accuracy ε
is on the Euclidean norm for the unbiased parameter estimate. Moreover, the risk
bound they utilize (see Theorem 8 in Bartlett and Mendelson [40]) in the proof of their
Theorem 1 requires independent samples for inputs X and Y . This property indeed
does not hold, since in two comparisons that share the same item, inputs are correlated
due to the same feature vector appearing twice. The same theorem is used in Chiang
et al. [39] (see Lemma 1 therein), where a sample complexity of O(‖r‖2 /ε2), where
‖r‖2 is o(N). Because the same theorem is used, and the theorem requires independent
samples, the same issue arises. Our analysis takes into account these correlations and
therefore corresponds to a more realistic setting. Our contribution is theoretical in
nature; the advantage of our algorithm is that it is amenable to an analysis that handles
this dependence. Nevertheless, we compare our method empirically with the method in
Chiang et al. [39] in Section 7.

4. Technical Preliminary

In this section, we review some known results. The first is a variant of Stein’s lemma
from Liu [44]; we use this to show that our estimator is unbiased up to a constant.
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Lemma 1 (Stein’s Lemma [43, 44]). Let X ∈ Rd, X ′ ∈ Rd′ be jointly Gaus-
sian random vectors. Let the function h : Rd′ → R be differentiable almost ev-
erywhere and satisfy E [|∂h (X ′) /∂Xi|] < ∞, i ∈ [d′], then Cov (X, h(X ′)) =
Cov (X,X ′)E [∇h (X ′)].

The second lemma we utilize bounds the tail of the norm of standard Gaussian vectors.

Lemma 2 (Centralized Chi-Squared Tail Bound [45]). Let FX(x; k) be the CDF of
centralized chi-square distribution with k degrees of freedom. Then, 1− FX(zk; k) ≤
(ze1−z)k/2 for z > 1.

A consequence of the way we select random pairs is that the joint distribution of the
number of times each sample is selected is multinomial. The next inequality provides a
bound for such variables:

Lemma 3 (Bretagnolle-Huber-Carolle Inequality [46]). Let {Mi}Ni=1 be multinomial

r.v.s with parameters M , {pi}Ni=1. Then Pr
(∑N

i=1

∣∣Mi

M − pi
∣∣ ≥ ε) ≤ 2Ne−

ε2M
2 .

We also state the following classic inequality:

Lemma 4 (Hoeffding’s Inequality [47]). Let X = 1
N

∑N
i=1Xi, where ai ≤ Xi ≤ bi

andXi are independent, and µ = E[X]. Then Pr(|X−µ|≥ε) ≤ 2e−2N2ε2/
∑N
i=1(bi−ai)2

.

Recall that a random variable X ∈ R is sub-gaussian if there exists a c > 0 for all
t ≥ 0 s.t. Pr(|X| > t) ≤ 2 exp(−t2/c). Then, we define the sub-gaussian norm
of X , denoted by ‖X‖ψ2

as ‖X‖ψ2
= inf

{
t > 0 : E

[
eX

2/t2
]
≤ 2
}

. Moreover, a

random vectorX ∈ Rd is called sub-gaussian if one dimensional marginals v>X are
sub-gaussian for all v ∈ Sd−1, where Sd−1 = {x ∈ Rd : ‖x‖ = 1}. The sub-gaussian
norm of X is then defined as ‖X‖ψ2

= supv∈Sd−1

∥∥v>X∥∥
ψ2

. The next lemma
provides lower and upper bounds for the singular values of random design matrices.

Lemma 5 (Theorem 5.39 of Vershynin [48]). LetA ∈ RN×d be a matrix whose rows
Ai are independent sub-gaussian isotropic random vectors. Then for every t ≥ 0, with
probability at least 1 − 2e−ct

2

one has
√
N − C

√
d − t ≤ λmin[A] ≤ λmax[A] ≤√

N + C
√
d+ t where c, C > 0 depend only on maxi ‖Ai‖ψ2

.

We use Lemma 5 to bound the eigenvalues of the feature covariance matrix. Lastly,
the next lemma is used for bounding the norm of sub-gaussian random vectors.

Lemma 6 (Theorem 1 of Hsu et al. [49]). Let A ∈ Rm×n be a matrix, and let
Σ ≡ A>A. Suppose that x ∈ Rd is a sub-gaussian random vector with mean µ ∈ Rd
and σ = ‖x‖ψ2

. For all t > 0, Pr(‖Ax‖2 > σ2(Tr(Σ) + 2
√

Tr(Σ2)t + 2 ‖Σ‖ t) +

‖Aµ‖2 (1 + 4( ‖Σ‖
2

Tr(Σ2) t)
1/2 + 4‖Σ‖2

Tr(Σ2) t)
1/2) ≤ e−t.

5. Main Results

We first establish that β̂ is an unbiased estimator of β up to a multiplicative constant.
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Lemma 7. For β̂ in Eq. (3), E[β̂]=c1β, where c1 =4E
[
f ′
(
βT (XIm−XJm)

)]
>0.

The proof can be found in Appendix A. This result is a consequence of Stein’s
lemma [43] (see Lemma 1 in Section 4). Learning β up to a multiplicative constant
suffices, as only the direction is enough to reveal the separating hyperplane between
positive and negative sample pairs. Constant c1 captures label noise: by (2), f ′ is
non-negative and maximized at zero; for functions f that are “flatter” around zero the
maximum value of f ′ and, therefore, c1 is smaller. This is expected, as such f also
result in noisier labels. Crucially, although our guarantees depend on c1 (see Theorem. 1
below), our estimator does not depend on c1: no knowledge of c1 is required to compute
β̂ via Eq. (3). Theorem 1 establishes that the parameters β are PAC learnable.

Theorem 1. For 0 < ε < 1, sample count N/ log2N = Ω
(

d
ε2λd

)
and comparison

count M = Ω
(
dN log3 N
ε2λd

)
,

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ c2N max

{(√
6 logN

N

)d
, e−

Nε2λd
c3d logN

}
, (5)

where c1 > 0 is given by Lemma 7 and c2, c3 > 0 are absolute constants.

Theorem 1, which we prove below, allows us to characterize the sample complexity
of β̂ in terms of the ambient dimension d, number of samples N , and number of
comparisons M . It implies that to attain an accuracy ε > 0 with high probability, the
estimator requires Ω(d log2N/ε2λd) samples; this is of the same order as standard PAC
learning guarantees for linear classifiers [50, 51, 52] and is also corroborated by our
experiments in Section 7. Moreover, the number of comparisons required to attain an
accuracy ε > 0 is Ω(dN log3N/ε2λd), i.e., comparisons scale almost linearly with N .

We emphasize that, to identify the separating plane, it suffices to know β up to a
non-negative multiplicative constant. This motivates the l.h.s. of Eq. (5) in Theorem 1.
Nevertheless, the above guarantee should become more stringent for smaller c1 > 0.
Recalling that c1 captures the level of label noise (smaller indicates more noise), the
latter’s impact on this bound is captured by replacing desired accuracy ε with ε′ = c1ε,
so that c1 appears as an additional constant in the r.h.s. of Eq. (5).

6. Proof of Theorem 1

The proof proceeds in the following manner. We first use a union bound to bound
the tail of

∥∥∥β̂ − c1β∥∥∥ via several constituent terms. Contrary to standard concentration
proofs, however, sums appearing in these terms involve dependent random variables.
We nevertheless bound these terms by union bounds, conditioning, and leveraging the
boundedness of random variables summed. From a technical standpoint, we leverage
the Bretagnolle-Huber-Carolle inequality (see Lemma 3), and combine it with classic
concentration inequalities (like Hoeffding’s inequality, Lemma 4, and Lemma 16, due
to [48]). We start with a simple bound on

∥∥∥β̂ − c1β∥∥∥.
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Lemma 8. For ε < 1, the estimator β̂ given by Eq. (3) satisfies:

Pr
(∥∥∥β̂ − c1β∥∥∥ > ε

)
≤ 4 Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥ · ‖E[Ym(XIm − µ)]‖ > ε/6

)
+ 4 Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1/2(XIm−µ)−E[YmΣ−1/2(XIm−µ)]

∥∥∥∥∥>
√
λdε

6

)
.

The proof, via a union bound, can be found in Appendix B. The terms Ym,XIm−µ
are not independent. This is because (a) the same sampleXi can be selected more than
once, and, crucially, (b) the labels Ym are coupled via the selection of the second sample
in each pair. As a consequence, standard concentration bounds do not immediately apply.
As a remedy, we condition on events under which the above variables are independent
and refine this bound further. To do so, we introduce several quantities of interest. Let

Wn = Σ−1/2(Xn − µ), (6)

be the normalized feature vectors. For n ∈ [N ], let the number of times Im = n be

Mn =
∑M
m=1 1Im=n. (7)

For n, j ∈ [N ], let gn,j : (Rd)2 → [−1, 1] be the expected comparison label conditioned
on the features of samples n, j ∈ [N ] selected in a pair, i.e.:

gn,j(xn,xj) = E[Ym|Im = n, Jm = j, {Xn′ = xn′}Nn′=1] = 2f(β>(xn − xj))− 1.

Let gn : Rd → [−1, 1] be the expected label conditioned on the Im-th sample:

gn(x) = E[Ym | Im = n,Xn = x] =
∫
gn,1(x,y)fX1(y)dy. (8)

We will also need a similar quantity, g̃n : (Rd)N → [−1, 1]:

g̃n({xn′}Nn′=1) = E[Ym | Im = n, {Xn′ = xn′}Nn′=1] = 1
N

∑N
j=1 gn,j(xn,xj). (9)

Note that gn and g̃n are distinct, but the latter can be seen as a quantity that concentrates
to gn as N becomes large. We denote by zn : (Rd)N → [−2, 2] their difference, i.e.:

zn({xn′}Nn′=1) = g̃n({xn′}Nn′=1)− gn(xn). (10)

Finally, let ∆n : (Rd)N→ [−2, 2] be the difference between true label averages and g̃n:

∆n({xn′}Nn′=1) = 1
Mn

∑
m: Im=n Ym − g̃n({xn′}Nn′=1). (11)

Our next lemma bounds the second term in the r.h.s. of Lemma 8.

Lemma 9. For Mn, gn, g̃n, zn,∆n given by Equations (7), (8), (9), (10), (11),∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1/2(XIm − µ)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
8



≤

∥∥∥∥∥
N∑
n=1

(
Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥+

∥∥∥∥∥ 1

M

N∑
n=1

WnMn∆n({Xn′}Nn′=1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
n=1

Wnzn({Xn′}Nn′=1)

∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
n=1

Wngn(Xn)−E[YmΣ−1/2(XIm−µ)]

∥∥∥∥∥ .
The proof can be found in Appendix C. The four terms in the r.h.s. are bounded

individually in the rest of the proof. We bound the first term in Lemma 9 with Lemma 10.

Lemma 10. For all δ0 > d,

Pr

(∥∥∥∥∥
N∑
n=1

(
Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥>ε
)
≤N

(
δ0
d
e1− δ0d

)d/2
+2Ne−

ε2M
2δ0 .

The proof can be found in Appendix D. We rely on the fact that |g̃n| ≤ 1, as well as
(a) the norm ‖Wn‖ can be bounded by a centralized Chi-Squared tail bound, while (b)
the quantity |Mn

M − 1
N | can be bounded by the Bretagnolle-Huber-Carol Inequality (see

Lemma 3 in Section 4). Next, we bound the second term in Lemma 9.

Lemma 11. For all δ1 < ε2

4d and δ2 > d,

Pr

(∥∥∥∥∥ 1

M

N∑
n=1

WnMn∆n{Xn′}Nn′=1

∥∥∥∥∥>ε
)
≤ N

(
ε2

4dδ1
e1− ε2

4dδ1

)d/2
+N

(
δ2
d
e1− δ2d

)d/2
+ 2Ne−

ε2M
8δ1δ2 + 2elogN−Mδ12N −o(

Mδ1
2N ).

The proof is in Appendix E. We bound individual terms, ‖Wn‖, |∆n|,
∣∣Mn

M − 1
N

∣∣
respectively using a centralized Chi-Squared tail bound, Hoeffding’s inequality, and the
moment generating function of the binomial distribution. Our next lemma bounds the
third term in Lemma 9.

Lemma 12. For all δ3 ≤ ε2/d,

Pr

(∥∥∥∥∥ 1

N

N∑
n=1

Wnzn({Xn′}Nn′=1)

∥∥∥∥∥ > ε

)
≤ N

(
ε2

dδ3
e1− ε2

dδ3

)d/2
+ 2Ne−

Nδ3
2 .

The proof can be found in Appendix F. We bound terms ‖Wn‖ and |zn| individually.
For the former, we again use a centralized Chi-Squared tail bound. For the latter, we
indeed show that, for large sample sizesN , g̃n concentrates around gn using Hoeffding’s
inequality. We bound the last term in Lemma 9 as follows

Lemma 13. For an absolute constant c2 > 0,

Pr

(∥∥∥∥∥ 1

N

N∑
n=1

Wngn(Xn)−E[YmΣ−1/2(XIm−µ)]

∥∥∥∥∥>ε
)
≤e
− 1

4

(√
Nε2

c2
−d−

√
d

)2

.
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The proof, which is in Appendix G, shows that individual terms are sub-gaussian
and uses a concentration bound due to Hsu et al. [49]. The second term in Lemma 8 is
bounded as follows.

Lemma 14. For the estimator Σ̂ given by Eq. (4), and for
√
N>

√
N−d−2
λd

d
√

2λ1
ε+1

+c3
√
d

where c3, c4 > 0 are absolute constants,

Pr
(∥∥∥Σ̂−1 −Σ−1

∥∥∥ · ‖E[Ym(XIm − µ)]‖ > ε
)
≤ 2e

−c4
(√

N−
√

N−d−2
λd

d
√

2λ1
ε+1
−c3
√
d
)2

.

The proof can be found in Appendix H. We use a concentration bound on the
minimum singular value of the design matrix due to Vershynin [48]. Combining
Lemmas 8, 9, 10, 11, 12, 13 and 14 via the union bound gives:

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ 8e

−c4

(
√
N−

√
N−d−2
λd

6d
√

2λ1
ε+1
−c3
√
d

)2

+ 4e
− 1

4

(√
ε2Nλd
c2
−d−

√
d

)2

+ 2N+2e−
ε2Mλd

4608δ1δ2 + 8elogN−Mδ12N −o(
Mδ1
2N ) + 8Ne−

Nδ3
2

+ 4N

(
ε2λd

2304dδ1
e1− ε2λd

2304dδ1

)d/2
+ 4N

(
ε2λd

576dδ3
e1− ε2λd

576dδ3

)d/2
+ 2N+2e−

ε2Mλd
1152δ0 + 4N

(
δ0
d
e1− δ0d

)d/2
+ 4N

(
δ2
d
e1− δ2d

)d/2
.

Setting M = Ω(dN log3 N
λdε2

), δ0 = d log2N , δ1 = 4λdε
2/d log2N , δ2 = d log2N

and δ3 = ε2λd/1152d logN , the bound reduces to Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ c6N

max

{(√
6 logN
N

)d
, e−

Nε2λd
c7d logN

}
forN > c8d log2 N

ε2λd
and 0 < ε < 1, where c6, c7, c8 >

0 are absolute constants. We derive this in Appendix I.

7. Experiments

Synthetic Experiment Setup. To support our theoretical findings, we evaluate (Code
available online: https://git.io/Jkbk1) the estimator given by Eq. (3) with a
synthetic dataset as follows: We sample the true parameter β ∈ Rd from N (0, 10 I).
We sample µ ∈ Rd uniformly at random from [−5, 5]d. To assess the impact of the
minimum eigenvalue of Σ ∈ Rd×d on estimator accuracy, we generate Σ as follows.
We generate a random orthonormal basis of Rd, and choose a smallest eigenvalue
λd ∈ (0, 1]. We then a construct Σ whose eigenvectors are the selected orthonormal
basis, and d eigenvalues equidistributed in [λd, 1]. We treat λd as a tunable parameter.
Each feature vector xi ∈ Rd, i ∈ [2N ], is independently sampled from N (µ,Σ). We
sample pairs (Im, Jm),m ∈ [M ], uniformly at random from [N ]× [N ]. Noisy labels
Ym are sampled using Eq. (1) where f(x) = (1 + e−αx)−1 and 0 < α < ∞. By
adjusting α, we choose the fraction pe ∈ [0, 1] of M comparisons that are flipped, i.e.
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are incorrect. We repeat all experiments with 10 random generations of parameters β,
µ, Σ. In synthetic experiments, we know the data statistics and the true latent parameter,
therefore we can compute c1 ∈ R from Lemma 7 and the probability of a label being
flipped pe ∈ [0, 1] for a sigmoid with adjustable slope f(x) = (1 + e−αx)−1 where
α > 0. We explain how to compute these values below.
Computing c1. We remind the reader that c1 = 4E[f ′(β>(XIm −XJm)). Let the
score of item i ∈ [2N ] be si = β>Xi ∈ R and si,j = β>Xi − β>Xj ∼ N (0, σ2)
where σ2 = 2β>Σβ since Xi ∼ N (µ,Σ). Note that c1 is the result of a sigmoid-
Gaussian type integral, i.e. c1 = 4

∫
f ′(s)fsi,j (s)ds where fsi,j (s) is the probability

density function of the distribution of si,j . As this integral does not have an analytical
solution, we compute it numerically using the trapezoidal rule by taking finely spaced
values s ∈ [−4σ, 4σ].
Computing pe. We remind the reader that pe is the probability of a true label being
flipped and is a function of f(x) in Eq. (1) and β,Σ. We show that

Pr("Error in label m") = Pr (Ym = 1 ∩ si < sj) + Pr (Ym = −1 ∩ si > sj)

= Pr (Ym = 1 ∩ si,j < 0) + Pr (Ym = −1 ∩ si,j > 0) .

Note that,

Pr (Ym = 1 ∩ si,j < 0) =

∫ ∞
−∞

Pr (Ym = 1 ∩ si,j < 0|si,j = s) fsi,j (s)ds

=

∫ 0

−∞
Pr (Ym = 1|si,j = s) fsi,j (s)ds

=

∫ 0

−∞
f(s)fsi,j (s)ds,

which is again a sigmoid-Gaussian type integral. Furthermore, it is straightforward
to show that Pr (Ym = 1 ∩ si,j < 0) = Pr (Ym = −1 ∩ si,j > 0). We evaluate this
integral numerically using the trapezoidal rule by taking finely spaced values s ∈
[−4σ, 0].
Metrics. We measure the performance of the estimator β̂ with two metrics. For
consistency with our analysis, our first error metric is

∥∥∥β̂ − c1β∥∥∥. The second metric is

∠(β̂,β) = cos−1 (β̂>β/||β̂||||β||), (12)

i.e., the angle between β̂ and β. We can evaluate this without computing c1; this makes
the angle a more practical way to measure if the direction of β is correctly learned,
that can also be used when c1 is not known. We report both the average and standard
deviation across different random generations.
Convergence. To investigate the rate of convergence of β̂, we vary the number of
samples N in [300, 3 × 104], dimensionality d ∈ {10, 90, 250} while we set M =
dN logNe, and λd = 1. We select α so that pe = 0.2. In Fig. 2a, we plot the error∥∥∥β̂ − c1β∥∥∥ as a function of the dataset size N . We observe that for each d, the error

decreases as N increases and β̂ indeed converges to c1β. In Fig. 2b, we vary M in
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Figure 2: (a) The error of the estimator given by Eq. (3) indeed reduces asN increases whenM = dN logNe
and we see that the estimator is converging to c1β. (b) The error reduces when M increases while N is kept
constant, however the decay is insignificant after M = N logN , which is denoted with the black dashed line.
This agrees with our theory that M = Ω̃(N). The shaded area is the standard deviation.

[300, 5 × 104] and d ∈ {10, 90, 250} while we set N = 2.5 × 103. We observe that
increasing M reduces the error. However, the reduction in error is insignificant after
M = N logN , which is denoted with the black dashed line in Fig. 2b. This is consistent
with the bound in Theorem 1, which anticipates that M is polylogarithmic in N . This
result also shows that our Theorem 1 can possibly be improved, i.e., the factors d and
log2N can be reduced from M .
Dependence on N . We investigate the required number of samples N to attain
∠(β̂,β) = 0.3. For each d ∈ {10, 90, 250} and pe ∈ {0, 0.4} we vary N ∈
[300, 3 × 104], setting M = dN logNe, and λd = 1/200. In Fig. 3, we plot the
error ∠(β̂,β) versus the dataset size N under different noise levels pe. We observe that
as N increases, β̂ indeed achieves ∠(β̂,β) = 0.3 for all d, while the error increase
with d. This implies that irrespective of the noise level and the corresponding c1 value,
the estimator β̂ is able to recover the direction of β as N increases.
Dependence on M . We repeat our experiments on the impact of M , this time focusing
on the angle metric and varying pe. We fix N = 2.5 × 103, λd = 1/200 and vary
M ∈ [300, 5× 104], d ∈ {10, 90, 250}, and pe ∈ {0, 0.4}. Fig. 4 plots ∠(β̂,β) versus
M under different noise levels. These plots show that the benefit of increasing M again
diminishes beyond M = N logN for all pe ∈ {0, 0.2, 0.4}, represented by the dashed
black line. This is again consistent with Theorem 1.
Dependence on d. In Fig. 5, we plot the smallest N that achieves ∠(β̂,β) ≤ 0.3 while
we vary d ∈ [10, 250], λd ∈ {1/200, 0.1, 1} and pe ∈ {0, 0.4}. We observe that the
required N increases linearly in d. This is consistent with the linear dependence of N
on d anticipated by Theorem 1.
Dependence on λd. In Fig. 6, we investigate the effect of λd, the smallest eigenvalue
of Σ, on the smallest N that achieves ∠(β̂,β) ≤ 0.3 for each pe ∈ {0, 0.4} and
d ∈ {10, 90, 250}. We observe the inversely proportional relationship between λd and
N , which is consistent with the N = Ω(d/λdε

2) requirement implied by Theorem 1.
Evaluating Chiang et al. [39]. In this section, we evaluate the applicability of our
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Figure 3: The angle between the true parameter β and the estimator β̂, plotted against N for different error
probabilities pe when M = dN logNe and λd = 1/200. (a) The noiseless case. (b) The case where 40%
of the labels are flipped. Even though noise increases error, increasing N allows the estimator to reduce the
error arbitrarily. This shows that the estimator β̂ is able to recover the direction of the true parameter β as N
increases. The shaded area is the standard deviation.

Theorem 1 to the algorithm RABF-log defined in Chiang et al. [39]. We generate data
the same as before with smaller values for N and d: We span N ∈ [200, 2000] and
d ∈ {10, 100}. In training RABF-log, we divide the dataset into train and validation
splits to choose hyperparameters via grid search for 4 values that are logarithmically
spaced in [10−6, 103]. We also set α so that pe = 0.4 and λd = 1.
Convergence of RABF-log. Fig. 7a shows that for RABF-log, the error reduces as N
increases when M = N logN . In Fig. 7b we keep N = 1000 and increase M . The
black dashed line is the point where M = N logN . We observe that for all d values, as
M increases the error reduces. We also observe that for small d values, whenM exceeds
N logN , the reduction is insignificant. However, for large d values, increasingM keeps
reducing error. These are in line with our bound that requires M = Ω(dN log3N/ε2).
Dependence of RABF-log to d and λd. In Fig. 8a, we plot the minimum N value
that achieves angle 0.5 as d increases and we let M = N logN . We observe that for
different λd values, the curves are linear. This supports the linear dependence of N to d.
In Fig. 8b, we plot plot the minimum N value that achieves angle 0.5 as λd increases
when M = N logN . We observe that for different d values, the curves depend on λd
inversely proportionally; this is inline with our Theorem 1 that states N = Ω(d/λd).
Comparison to RABF-log. Empirically, the sampling complexity the RABF-log be-
haves similarly with our method as shown in Fig.s 7, 8. However, RABF-log is quite
similar to an MLE solution for the parameters under our generative model, which is a
convex optimization problem and RABF-log performs better in the chosen error metrics.
This can be observed in Fig. 9a. One disadvantage of RABF-log is due to its optimization
involving a parameter for each item in the dataset (N additional parameters compared
to d alone). Therefore, it is significantly slower than our method; this can be observed
in Fig. 9b.
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Figure 4: The angle between the true parameter β and the estimator β̂, plotted against M for different error
probabilities pe when N = 2.5× 103 and λd = 1/200. (a) The noiseless case. (b) The case where 40% of
the labels are flipped. Increasing M reduces the error for all pe values. However, once M = N logN which
is denoted with the black dashed line, the reduction is insignificant. This is due to the fact that a higher N is
required for smaller ε as N = Ω(d/λdε

2), i.e. N needs to scale inversely quadratic with ε. This supports our
theory that the estimator β̂ does better as M increases; however, for arbitrarily small ε, N needs to increase
too. The shaded area is the standard deviation.

8. Conclusion

Our results suggest that learning parameters of a generalized linear preference model
from comparisons come with guarantees, despite the lack of independence between
comparisons. In particular, our results hold under u.a.r. comparisons and repetitions are
permitted (due to sampling with replacement); our work can be used as a template to
manage dependence of pairs in other learning settings where pairs are sampled with
repetition. Though our bound on N is tight in terms of d (as the number of samples
cannot be lower than d), our experimental results suggest that the bound on M could
be sharpened w.r.t. d and N . Our approach serves as a starting point to the design and
analysis of more sample efficient algorithms w.r.t. d as well as other parameters, such as
the error ε or the smallest eigenvalue of the covariance λd. Finally, lower bounds on
both N and M remain open, and would be an interesting future direction to investigate.
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Appendix A. Proof of Lemma 7

We first show an intermediate result. For a random variable X ∼ N (0, σ2) where
σ > 0, we have

E[f(x)] =

∫ ∞
−∞

f(x)fX(x)dx =

∫ ∞
0

f(x)fX(x)dx+

∫ ∞
0

f(−x)fX(−x)dx

=

∫ ∞
0

f(x)fX(x)dx+

∫ ∞
0

(1− f(x))fX(x)dx as fX is symmetric around 0,

= 1/2 +

∫ ∞
0

f(x)fX(x)dx−
∫ ∞

0

f(x)fX(x)dx = 1/2. (A.1)

Hence, the expected value of our estimator is

E[β̂] = E

[
1

M

M∑
m=1

YmΣ̂−1(XIm −XJm)

]
by Eq.(3),

= E
[
YmΣ̂−1(XIm −XJm)

]
(A.2)

= E
[
Σ̂−1

]
E [Ym(XIm −XJm)] by Σ̂−1 ⊥⊥ Ym,XIm ,XJm ,

= Σ−1E [Ym(XIm −XJm)] by [41],
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= Σ−1E [(XIm −XJm)E [Ym|XIm −XJm ]]

= Σ−1E
[
(XIm −XJm)

(
2f
(
β>(XIm −XJm)

)
− 1
)]

= Σ−1Cov
[
XIm −XJm , 2f

(
βT (XIm −XJm)

)
− 1
]

by Eq. (A.1),

= 2Σ−1Cov
[
XIm−XJm ,β

T (XIm−XJm)
]
E
[
f ′
(
βT (XIm−XJm)

)]
= 2Σ−1E

[
(XIm −XJm)(XIm −XJm)T

]
E
[
f ′
(
βT (XIm −XJm)

)]
β

= 4Σ−1ΣE
[
f ′
(
βT (XIm −XJm)

)]
β = 4E

[
f ′
(
βT (XIm −XJm)

)]
β

= c1β, (A.3)

where the fourth to last line is by Lemma 1 and c1 = 4E
[
f ′
(
βT (XIm −XJm)

)]
. Note

that c1 is strictly positive as f(x) is non-decreasing, and has limits limx→∞ f(x) = 1,
limx→−∞ f(x) = 0 by Eq. (2). Therefore, there exists an s ∈ R at which f ′(s) > 0.
By continuity, f ′(x) is therefore strictly positive in an interval around s. As a result, the
integral in the expectation which defines c1 is strictly positive.

Appendix B. Proof of Lemma 8

Note that, due to Equations (A.2) and (A.3) in Appendix A, we have c1β =
E[YmΣ−1(XIm −XJm)]. We thus have∥∥∥β̂ − c1β∥∥∥ =

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm −XJm)− E[YmΣ−1(XIm −XJm)]

∥∥∥∥∥
=

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− 1

M

M∑
m=1

YmΣ̂−1(XJm − µ)

− E[YmΣ−1(XIm − µ)] + E[YmΣ−1(XJm − µ)]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥
+

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XJm − µ)− E[YmΣ−1(XJm − µ)]

∥∥∥∥∥ ,
where the last line is by the triangle inequality and the first line is by Eq. (3) and
Lemma 7. Then, we show that these terms are bounded by the same probability. We
start by defining Y ′m = −Ym and note that

Pr(Y ′m |XIm = x,XJm = y) = Pr(−Ym |XIm = x,XJm = y)

= 1− f(β>(x− y)) by Eq. (1),

= f(β>(y − x)) by Eq. (2). (B.1)

Then, we have

Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XJm − µ)− E[YmΣ−1(XJm − µ)]

∥∥∥∥∥ > ε

)
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= Pr

(∥∥∥∥∥ 1

M

M∑
m=1

−YmΣ̂−1(XJm − µ)− E[−YmΣ−1(XJm − µ)]

∥∥∥∥∥ > ε

)

= Pr

(∥∥∥∥∥ 1

M

M∑
m=1

Y ′mΣ̂−1(XJm − µ)− E[Y ′mΣ−1(XJm − µ)]

∥∥∥∥∥ > ε

)

= Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ > ε

)
, (B.2)

where the last line follows by Eq. (B.1). We use this result to show that

Pr
(∥∥∥β̂ − c1β∥∥∥ > ε

)
≤ Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥
+

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XJm − µ)− E[YmΣ−1(XJm − µ)]

∥∥∥∥∥ > ε

)

≤ Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ > ε/2

)

+ Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XJm − µ)− E[YmΣ−1(XJm − µ)]

∥∥∥∥∥ > ε/2

)

= 2 Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm−µ)− E[YmΣ−1(XIm−µ)]

∥∥∥∥∥>ε/2
)
, (B.3)

where the last line follows by Eq. (B.2). Then,∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− 1

M

M∑
m=1

YmΣ−1(XIm − µ)

∥∥∥∥∥
+

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥
≤
∥∥∥Σ̂−1 −Σ−1

∥∥∥∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)

∥∥∥∥∥
+

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥
≤
∥∥∥Σ̂−1 −Σ−1

∥∥∥∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)− E[Ym(XIm − µ)]

∥∥∥∥∥
+
∥∥∥Σ̂−1 −Σ−1

∥∥∥ ‖E[Ym(XIm − µ)]‖
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+

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ , (B.4)

where the first and last inequalities follow by the triangle inequality and the second
inequality follows by the Cauchy-Schwarz inequality. Note that,

Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)− E[Ym(XIm − µ)]

∥∥∥∥∥ > ε

)
≤ Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥ > √ε)

+ Pr

(∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)− E[Ym(XIm − µ)]

∥∥∥∥∥ > √ε
)

≤ Pr
(∥∥∥Σ̂−1 −Σ−1

∥∥∥ > ε
)

+ Pr

(∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)− E[Ym(XIm − µ)]

∥∥∥∥∥ > ε

)
,

since
√
ε > ε for ε < 1. These terms appear in the bound more than once, therefore we

can ignore the higher order term by multiplying the lower order terms with a constant
number, e.g., 2. This yields

Pr
(∥∥∥β̂ − c1β∥∥∥ > ε

)
≤ 2 Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ̂−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ > ε/2

)

≤ 2 Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)− E[Ym(XIm − µ)]

∥∥∥∥∥
+
∥∥∥Σ̂−1 −Σ−1

∥∥∥ ‖E[Ym(XIm − µ)]‖

+

∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ > ε/2

)

≤ 2 Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥∥∥∥∥∥ 1

M

M∑
m=1

Ym(XIm − µ)− E[Ym(XIm − µ)]

∥∥∥∥∥ > ε/6

)

+ 2 Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥ ‖E[Ym(XIm − µ)]‖ > ε/6

)

+ 2 Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ > ε/6

)

≤ 4 Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥ ‖E[Ym(XIm − µ)]‖ > ε/6

)
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+ 4 Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1(XIm − µ)− E[YmΣ−1(XIm − µ)]

∥∥∥∥∥ > ε/6

)

≤ 4 Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥ ‖E[Ym(XIm − µ)]‖ > ε/6

)

+ 4 Pr

(∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1/2(XIm−µ)−E[YmΣ−1/2(XIm−µ)]

∥∥∥∥∥>√λdε/6
)
,

for ε < 1 where in the last line we divide and multiply by Σ−1/2 (recall that λd is the
minimum eigenvalue of Σ).

Appendix C. Proof of Lemma 9

We remind the reader thatWn = Σ−1/2(Xn − µ) and we show that∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1/2(XIm − µ)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
=

∥∥∥∥∥ 1

M

N∑
n=1

Wn

∑
m:Im=n

Ym − E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
=

∥∥∥∥∥ 1

M

N∑
n=1

WnMnE[Ym|Im = n, {Xn′ = xn′}Nn′=1]− E[YmΣ−1/2(XIm − µ)]

+
1

M

N∑
n=1

WnMn

[
1

Mn

∑
m:Im=n

Ym−E[Ym|Im = n, {Xn′=xn′}Nn′=1]

]∥∥∥∥∥
≤

∥∥∥∥∥ 1

M

N∑
n=1

WnMng̃n({Xn′}Nn′=1)−E[YmΣ−1/2(XIm−µ)]

∥∥∥∥∥ by Eq. (9),

+

∥∥∥∥∥ 1

M

N∑
n=1

WnMn∆n({Xn′}Nn′=1)

∥∥∥∥∥ , (C.1)

where the last line follows by Eq. (11) and the triangle inequality. We expand the first
term in Eq. (C.1) as follows:∥∥∥∥∥ 1

M

N∑
n=1

WnMng̃n({Xn′}Nn′=1)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
=

∣∣∣∣∣
∣∣∣∣∣ 1

M

N∑
n=1

WnMng̃n({Xn′}Nn′=1)− 1

N

N∑
n=1

Wng̃n({Xn′}Nn′=1)

+
1

N

N∑
n=1

Wng̃n({Xn′}Nn′=1)− E[YmΣ−1/2(XIm − µ)]

∣∣∣∣∣
∣∣∣∣∣
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≤

∥∥∥∥∥ 1

M

N∑
n=1

WnMng̃n({Xn′}Nn′=1)− 1

N

N∑
n=1

Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
n=1

Wng̃n({Xn′}Nn′=1)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
=

∥∥∥∥∥
N∑
n=1

(
Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
n=1

Wng̃n({Xn′}Nn′=1)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥ . (C.2)

For the second term in Eq. (C.2), we have∥∥∥∥∥ 1

N

N∑
n=1

Wng̃n({Xn′}Nn′=1)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

N

N∑
n=1

Wn

(
g̃n({Xn′}Nn′=1)− gn(Xn)

)∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
n=1

Wngn(Xn)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
=

∥∥∥∥∥ 1

N

N∑
n=1

Wnzn({Xn′}Nn′=1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
n=1

Wngn(Xn)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥ , (C.3)

by Eq. (10). By combining Equations (C.1), (C.2), (C.3) we get∥∥∥∥∥ 1

M

M∑
m=1

YmΣ−1/2(XIm − µ)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

M

N∑
n=1

WnMn∆n({Xn′}Nn′=1)

∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
n=1

Wnzn({Xn′}Nn′=1)

∥∥∥∥∥
+

∥∥∥∥∥
N∑
n=1

(
Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
n=1

Wngn(Xn)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥ .
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Appendix D. Proof of Lemma 10

The term of interest is

Pr

(∥∥∥∥∥
N∑
n=1

(
Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥ > ε

)

≤ Pr

(
N∑
n=1

∥∥∥∥(Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥ ≥ ε
)

by the triangle inequality,

≤ Pr

(
N∑
n=1

∣∣∣∣Mn

M
− 1

N

∣∣∣∣ ‖Wn‖ ≥ ε

)
by the fact that

∣∣g̃n({Xn′}Nn′=1)
∣∣ ≤ 1,

= Pr

( N∑
n=1

∣∣∣∣Mn

M
− 1

N

∣∣∣∣ ‖Wn‖ > ε | ∩Nn=1

{
‖Wn‖ ≤

√
δ0

})
×

Pr

(
∩Nn=1

{
‖Wn‖ ≤

√
δ0

})
+ Pr

( N∑
n=1

∣∣∣∣Mn

M
− 1

N

∣∣∣∣ ‖Wn‖ > ε | ∪Nn=1

{
‖Wn‖ ≥

√
δ0

})
×

Pr

(
∪Nn=1

{
‖Wn‖ ≥

√
δ0

})
≤ Pr

({ N∑
n=1

∣∣∣∣Mn

M
− 1

N

∣∣∣∣ ‖Wn‖ > ε

}
∩ ∩Nn=1

{
‖Wn‖ ≤

√
δ0

})
+ Pr

(
∪Nn=1

{
‖Wn‖ ≥

√
δ0

})
≤ Pr

( N∑
n=1

∣∣∣∣Mn

M
− 1

N

∣∣∣∣ > ε/
√
δ0

)
+

N∑
n=1

Pr

(
‖Wn‖ ≥

√
δ0

)
, (D.1)

where the last line is by a union bound and letting A =
∑N
n=1

∣∣Mn

M − 1
N

∣∣ ‖Wn‖ >

ε ∩ ∩Nn=1

{
‖Wn‖ ≤

√
δ0

}
and noticing that the event A implies the event B =∑N

n=1

∣∣Mn

M − 1
N

∣∣ > ε/
√
δ0 and therefore A ⊆ B and Pr(A) ≤ Pr(B). Since Mn are

binomial distributed with parameter 1/N , we have

Pr

( N∑
n=1

∣∣∣∣Mn

M
− 1

N

∣∣∣∣ > ε/
√
δ0

)
≤ 2Ne−

ε2M
2δ0 by Lemma 3. (D.2)

As ‖Wn‖2 is centralized chi-squared distributed with d degrees of freedom,

Pr

(
‖Wn‖>

√
δ0

)
=Pr

(
‖Wn‖2>δ0

)
≤
(δ0
d
e1− δ0d

)d/2
, (D.3)
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for δ0 > d by Lemma 2. By combining Equations (D.1), (D.2) and (D.3), we get

Pr

(∥∥∥∥∥
N∑
n=1

(
Mn

M
− 1

N

)
Wng̃n({Xn′}Nn′=1)

∥∥∥∥∥ > ε

)

≤ 2Ne−
ε2M
2δ0 +N

(δ0
d
e1− δ0d

)d/2
. (D.4)

Appendix E. Proof of Lemma 11

We omit the dependence on {Xn′}Nn′=1 for ∆n

(
{Xn′}Nn′=1

)
and note that

Pr

(∥∥∥∥∥ 1

M

N∑
n=1

WnMn∆n

∥∥∥∥∥ > ε

)
≤ Pr

( N∑
n=1

∥∥∥∥ 1

M
WnMn∆n

∥∥∥∥ > ε

)

= Pr

( N∑
n=1

∥∥∥∥ 1

M
WnMn

∥∥∥∥ ∣∣∆n

∣∣ > ε

)

= Pr

( N∑
n=1

∥∥∥∥ 1

M
WnMn

∥∥∥∥ ∣∣∆n

∣∣ > ε | ∩Nn=1

{∣∣∆n

∣∣ <√δ1})×
Pr

(
∩Nn=1

{∣∣∆n

∣∣ <√δ1})
+ Pr

( N∑
n=1

∥∥∥∥ 1

M
WnMn

∥∥∥∥ ∣∣∆n

∣∣ > ε | ∪Nn=1

{∣∣∆n

∣∣ ≥√δ1})×
Pr

(
∪Nn=1

{∣∣∆n

∣∣ ≥√δ1})
≤ Pr

({ N∑
n=1

∥∥∥∥ 1

M
WnMn

∥∥∥∥ ∣∣∆n

∣∣ > ε

}
∩ ∩Nn=1

{∣∣∆n

∣∣ <√δ1})
+ Pr

(
∪Nn=1

{∣∣∆n

∣∣ ≥√δ1})
≤ Pr

( N∑
n=1

∥∥∥∥ 1

M
WnMn

∥∥∥∥ > ε/
√
δ1

)
+N Pr

({∣∣∆n

∣∣ ≥√δ1}), (E.1)

where we follow a similar approach as in Eq. (D.1). The first term in Eq. (E.1) can be
expanded as

Pr

( N∑
n=1

∥∥∥∥ 1

M
Σ−1/2(Xn−µ)Mn

∥∥∥∥ > ε√
δ1

)

= Pr

(
N∑
n=1

∥∥∥∥Mn

M
Wn −

1

N
Wn +

1

N
Wn

∥∥∥∥ ≥ ε√
δ1

)

28



≤ Pr

(
N∑
n=1

∥∥∥∥(Mn

M
− 1

N

)
Wn

∥∥∥∥+

N∑
n=1

∥∥∥∥ 1

N
Wn

∥∥∥∥ ≥ ε√
δ1

)

≤ Pr

(
N∑
n=1

∥∥∥∥(Mn

M
− 1

N

)
Wn

∥∥∥∥ ≥ ε

2
√
δ1

)
+ Pr

(
N∑
n=1

∥∥∥∥ 1

N
Wn

∥∥∥∥ ≥ ε

2
√
δ1

)
.

(E.2)

We have

Pr

(
N∑
n=1

∥∥∥∥(Mn

M
− 1

N

)
Σ−1/2(Xn−µ)

∥∥∥∥≥ ε

2
√
δ1

)
≤2Ne−

ε2M
8δ1δ2 +N

(
δ2
d
e1− δ2d

)d/2
(E.3)

by Eq. (D.4). Then,

Pr

(
N∑
n=1

∥∥∥∥ 1

N
Σ−1/2(Xn−µ)

∥∥∥∥≥ ε

2
√
δ1

)
≤

N∑
n=1

Pr

(∥∥∥∥ 1

N
Σ−1/2(Xn−µ)

∥∥∥∥≥ ε

2N
√
δ1

)

=

N∑
n=1

Pr

(
‖Wn‖ ≥

ε

2
√
δ1

)
≤

N∑
n=1

(
ε2

4dδ1
e1− ε2

4dδ1

)d/2
by Lemma 2,

= N

(
ε2

4dδ1
e1− ε2

4dδ1

)d/2
, (E.4)

where the first line holds by a union bound. The second term in Eq. (E.1) is bounded by

Pr

(∣∣∆n({Xn′}Nn′=1)
∣∣ ≥√δ1)

= Pr

(∣∣∣∣ 1

Mn

∑
m:Im=n

Ym − g̃n({Xn′}Nn′=1)

∣∣∣∣ ≥√δ1) by Eq. (11),

=

M∑
k=0

[∫
Pr

(∣∣∣∣ 1

Mn

∑
m:Im=n

Ym−g̃n({xn′}Nn′=1)

∣∣∣∣≥√δ1 |Mn=k,{Xn′=xn′}Nn′=1

)
N∏

n′=1

fX(xn′)dxn′

]
· Pr(Mn = k). (E.5)

Due to conditioning on {Xn′ = xn′}Nn′=1, labels Ym are independent. Therefore,

Pr

(∣∣∣∣ 1

Mn

∑
m:Im=n

Ym − g̃n({xn′}Nn′=1)

∣∣∣∣ ≥√δ1 |Mn = k, {Xn′ = xn′}Nn′=1

)

= Pr

(∣∣∣∣1k ∑
m:Im=n

Ym−g̃n({xn′}Nn′=1)

∣∣∣∣≥√δ1 | {Xn′=xn′}Nn′=1

)
≤2e−

kδ1
2 ,

29



where the last line is by Lemma 4. Substituting this result back into Eq. (E.5) yields

Pr

(∣∣∆n

∣∣ ≥ √δ1

)
≤

M∑
k=0

∫
2e−

kδ1
2

( N∏
n′=1

fX(xn′)dxn′
)

Pr(Mn = k)

= 2

M∑
k=0

e−
kδ1
2 Pr(Mn = k). (E.6)

By construction, Mn, n ∈ [N ] are binomial distributed with number of trials M and
p = 1

N . The moment generating function of Mn is (1− p+ pet)M . The summation in
Eq. (E.6) is the moment generating function of Mn with t = −δ1/2, which yields

N∑
n=1

Pr

(∣∣∆n

∣∣ ≥√δ1) ≤ 2N

(
1− 1

N
+

1

N
e−

δ1
2

)M
. (E.7)

We want to use an equivalent of this quantity in the form of an exponential since it will
be easier to compare it with other terms. For this reason, we use the following lemma.

Lemma 15. Let {an}∞n=1 and {bn}∞n=1 be positive sequences such that an →∞. Let
α ∈ R. Then,

(
1 +

α

an

)bn
= e

αbn
an

+o

(
αbn
an

)
. (E.8)

Proof. By the Taylor approximation log(1 + x) = x+ o(x) as x→ 0,

(
1 +

α

an

)bn
= e

bn log

(
1+ α

an

)
= e

bn

(
α
an

+o

(
α
an

))
= e

αbn
an

+o

(
αbn
an

)
.

Recall the Taylor expansion ex = 1 + x+ o(x) as x→ 0 and note that

2N

(
1− 1

N
+

1

N
e−

δ1
2

)M
= 2N

(
1 +

1

N

(
e−

δ1
2 − 1

))M

= 2N

(
1 +

1

N

(
− δ1

2
− o
(
δ1
2

)))M
+ 2N

(
1 +

(
− δ1

2N
− o
(
δ1
2N

)))M

= 2Ne
−Mδ12N −o

(
Mδ1
2N

)
= 2e

logN−Mδ12N −o

(
Mδ1
2N

)
, (E.9)

where the second line is by the Taylor expansion of ex and the last line is by Lemma 15.
Combining Equations (E.1), (E.2), (E.3), (E.4), (E.7), (E.9), we get

Pr

(∥∥∥∥∥ 1

M

N∑
n=1

WnMn∆n

∥∥∥∥∥ > ε

)
≤ 2Ne−

ε2M
8δ1δ2 +N

(
δ2
d
e1− δ2d

)d/2
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+N

(
ε2

4dδ1
e1− ε2

4dδ1

)d/2
+ 2e

logN−Mδ12N −o

(
Mδ1
2N

)
.

Appendix F. Proof of Lemma 12

For brevity, we use zn instead of zn({Xn′}Nn′=1) below. Note that
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(∥∥∥∥∥ 1
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)
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N
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∥∥∥∥ |zn| > ε
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+ Pr

(
∪Nn=1

{∣∣zn∣∣ ≥√δ3})
≤ Pr

( N∑
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N
Wn

∥∥∥∥ > ε/
√
δ3

)
+N Pr

(∣∣zn∣∣ ≥√δ3), (F.1)

where the first line follows by the triangle inequality and by following a similar approach
as in Eq. (D.1). We have

Pr

( N∑
n=1

∥∥∥∥ 1

N
Wn

∥∥∥∥ > ε/
√
δ3

)
≤ N

(
ε2

dδ3
e1− ε2

dδ3

)d/2
, (F.2)

by Lemma 2 for δ3 ≤ ε2/d. We also have

Pr

(∣∣zn({Xn′}Nn′=1)
∣∣ ≥√δ3)

=

∫
Pr

(∣∣zn({Xn′}Nn′=1)
∣∣ ≥√δ3 |Xn = x

)
fX(x)dx. (F.3)

For the probability inside the integral, we have

Pr

(∣∣zn{Xn′}Nn′=1

∣∣ ≥√δ3 |Xn = x

)
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= Pr

(∣∣g̃n({Xn′}Nn′=1)− gn(Xn)
∣∣ ≥√δ3 |Xn = x

)
= Pr

(∣∣∣∣ N∑
j=1

gn,j(x,Xj) Pr(J = j)− gn(x)
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N

N∑
j=1

gn,j(x,Xj)− gn(x)

∣∣∣∣ ≥√δ3),
(F.4)

where the first line follows by Eq. (10). Notice that

gn(x) = E[Ym | IM = n,Xn = x]

=

N∑
j=1

E[Ym | Im = n, Jm = j,Xn = x] Pr(Jm = j)

=
1

N

N∑
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∫
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(y)dy

=
1

N
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1

N

∑
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∫
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=
1

N
gn,n(x,x) +

N − 1

N

∫
gn,j(x,y)fXj

(y)dy.

Then we continue with

Pr
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N

N∑
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1
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∑
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N

∑
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∫
gn,j(x,y)fX(y)dy

∣∣∣∣ ≥√δ3)

= Pr

(∣∣∣∣ 1

N

∑
j∈[N ]\n

gn,j(x,Xj)−
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N

∫
gn,j(x,y)fX(y)dy

∣∣∣∣ ≥√δ3)

= Pr

(∣∣∣∣ 1
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∑
j∈[N ]\n

gn,j(x,Xj)−
∫
gn,j(x,y)fX(y)dy

∣∣∣∣ ≥ N

N − 1

√
δ3

)

≤ 2e
− N3δ3

2(N−1)2 ≤ 2e−
Nδ3

2 , (F.5)

where the last line is due to Lemma 4 and the fact that 1 < N/(N − 1) ≤ 2 for N > 1.
Substituting Eq. (F.5) into Eq. (F.3) gives

Pr

(∣∣zn({Xn′}Nn′=1)
∣∣ ≥√δ3) ≤ ∫ 2e−

Nδ3
2 fX(x)dx = 2e−

Nδ3
2 . (F.6)
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By combining Equations (F.1), (F.2) and (F.6), we get

Pr

(∥∥∥∥∥ 1

N

N∑
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Wnzn{Xn′}Nn′=1

∥∥∥∥∥>ε
)
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Appendix G. Proof of Lemma 13

We have,

Pr

(∥∥∥∥∥ 1

N

N∑
n=1

Wngn(Xn)− E[YmΣ−1/2(XIm − µ)]

∥∥∥∥∥ > ε

)
. (G.1)

We first prove thatWng(Xn) is sub-gaussian. By Proposition 2.5.2 (iv) of Vershynin
[53], for every sub-gaussian random variable X , there exists a constant C > 0 such that

E
[
eX

2/C
]
≤ 2. (G.2)

Let v ∈ Sd−1 and Wn = v>Wn ∼ N (0, 1). Note that Wn is sub-gaussian and
|gn(Xn)| ≤ 1. Then, for s > 0 we have

Pr
(
|v>Wng(Xn)|>t

)
= Pr

(
s
(
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)2
>st2

)
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(
es(v

>Wng(Xn))
2

> est
2
)

≤ e−st
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E
[
es(v

>Wng(Xn))
2]

by Markov’s inequality,

≤ e−st
2

E
[
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>Wn)
2]

= e−st
2

E
[
esW

2
n

]
≤ 2e−

t2

C , (G.3)

where the last line holds by Eq. (G.2) for an appropriate constant C > 0 and by setting
s = 1/C. As the tail of v>Wng(Xn) decays super-exponentially for all v ∈ Sd−1,
ξn = Wngn(Xn)−E[YmΣ−1/2(XIm−µ)] is indeed sub-gaussian for n ∈ [N ]. From
Proposition 2.6.1 of [53], we know that the sum of independent zero-mean sub-gaussian
random variables is sub-gaussian and∥∥∥∥∥

N∑
n=1

ξn

∥∥∥∥∥
2

ψ2

≤ c′
N∑
n=1

‖ξn‖2ψ2
, (G.4)

where c′ > 0 is a constant. We have
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= Pr
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N∑
n=1

ξn

∥∥∥∥∥>Nε
)
≤e
− 1
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√ 2N2ε2
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,

where the last lines follow by Lemma 6, Eq. (G.4) and we denote c2 = c′ ‖ξn‖2ψ2
> 0;

note that this an absolute constant does not depend on d or N .

Appendix H. Proof of Lemma 14

We define W = [WN+1, . . . ,W2N ]> ∈ RN×d such that Wi = Σ−1/2(Xi − µ)
where i ∈ [2N ]/[N ]. Also, let λmin[A] be the minimum singular value of a matrixA.
We first prove that the minimum singular value of sum of symmetric matrices is lower
bounded.

Lemma 16. LetA,B ∈ Rd×d be symmetric matrices. Then,

λmin[A] + λmin[B] ≤ λmin[A+B].

Proof. We have,

λmin[A+B] = min
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x>x

}
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Hence,
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by Eq. (4),
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+
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Notice that the rows ofW are independent isotropic Gaussian vectors. Therefore, we
can apply Lemma 5 to get,
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for
√
N >

√
N−d−2
λdε+1 + c3

√
d where c3, c4 > 0 are constants. Furthermore, we have

‖E[Ym(XIm − µ)]‖ ≤ E[‖Ym(XIm − µ)‖] by Jensen’s inequality,

≤ E[‖XIm − µ‖] ≤ E
[∥∥∥Σ1/2

∥∥∥ · ∥∥∥Σ−1/2(XIm − µ)
∥∥∥]

≤
√
λ1E[‖WIm‖] =

√
2λ1

Γ
(
d+1

2

)
Γ
(
d
2

) .

Finally,

Pr
(∥∥∥Σ̂−1 −Σ−1

∥∥∥ · ‖E[Ym(XIm − µ)]‖ > ε
)

≤ Pr

(∥∥∥Σ̂−1 −Σ−1
∥∥∥√2λ1

Γ
(
d+1

2

)
Γ
(
d
2

) > ε

)
≤ 2e

−c4

(
√
N−

√√√√√ N−d−2

Γ( d2 )λd
Γ( d+1

2 )
√

2λ1

ε+1

−c3
√
d

)2

≤ 2e

−c4

(
√
N−

√
N−d−2
λd

d
√

2λ1
ε+1
−c3
√
d

)2

, (H.2)
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for
√
N >

√
N−d−2
λd

d
√

2λ1
ε+1

+ c3
√
d where c3, c4 > 0 are constants that do not depend on

d or N .

Appendix I. Choosing trade-off variables

We have

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ 8e

−c4

(
√
N−

√
N−d−2
λd

6d
√

2λ1
ε+1
−c3
√
d

)2

+ 2N+2e−
ε2Mλd

4608δ1δ2

+ 4N

(
δ2
d
e1− δ2d

)d/2
+ 8e

logN−Mδ12N −o

(
Mδ1
2N

)
+ 2N+2e−

ε2Mλd
1152δ0

+ 4N

(
ε2λd

576dδ3
e1− ε2λd

576dδ3

)d/2
+ 8Ne−

Nδ3
2 + 4e

− 1
4

(√
ε2Nλd
c2
−d−

√
d

)2

+ 4N

(
δ0
d
e1− δ0d

)d/2
+ 4N

(
ε2λd

2304dδ1
e1− ε2λd

2304dδ1

)d/2
, (I.1)

for
√
N >

√
N−d−2
λd

6d
√

2λ1
ε+1

+ c3
√
d and 0 < ε < 1 where c1, c2, c3, c4 > 0 are absolute

constants. The bounds we use require δ2 > d, δ1 < ε2λd/2304d, δ1 > 2N log(N)/M ,
δ0 > d, δ3 < ε2λd/576d and N > dc2/ε

2λd. Terms δ0, δ1, δ2 and δ3 need to be
defined as functions of N,M and d such that the conditions arising from the tail bounds
hold and the exponential terms’ limit are 0 as N,M →∞. In order to achieve this, we
start dealing with δ0 first. The condition δ0 needs to satisfy is

d(1 + log(δ0/d)) + 2 logN < δ0 <
ε2Mλd

1152N log 2
.

The condition for δ1 is

2N logN

M
< δ1 <

ε2λd

2304
[
d
(

log
(

ε2λd
2304dδ1

)
+ 1
)

+ 2 logN
] .

The condition for δ2 is

d(1 + log(δ2/d)) + 2 logN < δ2 <
ε2Mλd

4608Nδ1 log 2
.

The condition for δ3 is

2 logN

N
< δ3 <

ε2λd

576
[
2 logN + d

(
log
(

ε2λd
576dδ3

)
+ 1
)] .
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We let M = O
(
dN log3 N
λdε2

)
together with, δ0 = d log2N, δ1 = 4λdε

2

d log2 N
, δ2 =

d log2N, δ3 = ε2λd
1152d logN . Substituting these quantities in (I.1) gives,

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ 8e

−c4

(
√
N−

√
N−d−2
λd

6d
√

2λ1
ε+1
−c3
√
d

)2

+ 2N+2e
− N log3 N

18432λdε
2

+ 4N(log2Ne1−log2 N )d/2 + 8e−4N(logN−1) + 2N+2e−
N logN

1152

+ 4N(2 logNe1−2 logN )d/2 + 8Ne−
Nε2λd

2304d logN + 4N(log2Ne1−log2 N )d/2

+ 4e
− 1

4

(√
ε2Nλd
c2
−d−

√
d

)2

+ 4N

(
log2N

9216
e1− log2 N

9216

)d/2
, (I.2)

for
√
N >

√
N−d−2
λd

6d
√

2λ1
ε+1

+c3
√
d where c1, c2, c3, c4 > 0 are constants, N > dc2/ε

2λd,

N > 2304d log2 N
ε2λd

, logN > 347, logN > 18(λdε
2)1/3. We can simplify this bound

for large enough N . We consider terms with log2N and 1− 2 logN first. One of the
log2N terms is divided by 9216. When log2N is higher than this number, it will be
dominated by the 2 logN term. Therefore, for logN > c5 where c5 = 18432 we have,

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ 8e

−c4

(
√
N−

√
N−d−2
λd

6d
√

2λ1
ε+1
−c3
√
d

)2

+ 2N+2e
− N log3 N

18432λdε
2

+ 8e−4N(logN−1) + 16N(2 logNe1−2 logN )d/2 + 8Ne−
Nε2λd

2304d logN

+ 4e
− 1

4

(√
ε2Nλd
c2
−d−

√
d

)2

+ 2N+2e−
N logN

1152 . (I.3)

Now we consider the terms with the exponent N log3N and N logN . For logN >
4ε
√
λd, we can reduce the bound to

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ 8e

−c4

(
√
N−

√
N−d−2
λd

6d
√

2λ1
ε+1
−c3
√
d

)2

+ 8Ne−
Nε2λd

2304d logN

+ 16N(2 logNe1−2 logN )d/2 + 2N+3e−
N logN

1152 + 4e
− 1

4

(√
ε2Nλd
c2
−d−

√
d

)2

, (I.4)

for
√
N >

√
N−d−2
λd

6d
√

2λ1
ε+1

+ c3
√
d, N > dc2/ε

2λd, N > 2304d log2 N
ε2λd

, logN >

18(λdε
2)1/3, logN > c5, logN > 4ε

√
λd where c1, c2, c3, c4, c5 > 0 are absolute

constants. Note that under given conditions, we have 2 terms that are competing, i.e.
the term with logN and the term with N/ logN . Therefore, the bound reduces to

Pr
(∥∥∥β̂ − c1β∥∥∥ ≥ ε) ≤ c6N max

{(√
6 logN

N

)d
, e−

Nε2λd
c7d logN

}
, (I.5)

for N > c8d log2 N
ε2λd

and 0 < ε < 1 where c1, c6, c7, c8 > 0 are absolute constants.
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