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ABSTRACT

We consider learning from comparison labels generated as follows: given two samples in a dataset, a
labeler produces a label indicating their relative order. Such comparison labels scale quadratically
with the dataset size; most importantly, in practice, they often exhibit lower variance compared to
class labels. We propose a new neural network architecture based on siamese networks to incorporate
both class and comparison labels in the same training pipeline, using Bradley-Terry and Thurstone
loss functions. Our architecture leads to a significant improvement in predicting both class and
comparison labels, increasing classification AUC by as much as 35% and comparison AUC by as
much as 6% on several real-life datasets. We further show that, by incorporating comparisons, training
from few samples becomes possible: a deep neural network of 5.9 million parameters trained on 80
images attains a 0.92 AUC when incorporating comparisons.

Keywords neural network · joint learning · comparison · classification · siamese network

1 Introduction

Neural networks have been tremendously successful in tackling supervised learning problems in a variety of domains,
including speech recognition [1], natural language processing [2], and image classification [3; 4; 5], to name a few.
Unfortunately, in many real-life applications of interest, including medicine [6; 7; 8] and recommender systems
[9; 10; 11], class labels are generated by humans and exhibit high variance. This is further exacerbated by the fact that
in many domains, such as, e.g., medicine, datasets are often small. Training neural networks over noisy, small datasets
is challenging, as high-dimensional parametric models are prone to overfitting in this setting [12; 13].

We propose to overcome this limitation by incorporating comparisons in a neural network’s training process. In doing
so, we exploit the fact that in many domains, beyond producing class labels, labelers can assess the relative order
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between two inputs. For example, in a medical diagnosis problem with two classes of images (e.g., diseased and
normal), an expert can generate not only diagnostic labels but also order pairs of images w.r.t. disease severity. Similarly,
in a recommender system, class labels (e.g., star ratings) are ordered, and labelers can produce relative preferences
between any two data samples.

Incorporating comparison labels to the training process has two advantages. First, in the presence of a small dataset,
soliciting comparisons in addition to class labels increases the training set size quadratically. Compared to class labels
on the same data samples, such labels indeed reveal additional information: comparisons express both inter- and
intra-class relationships; the latter are not revealed via class labels alone. Second, in practice, comparisons are often less
noisy than (absolute) class labels. Indeed, human labelers disagreeing when generating class judgments often exhibit far
less variability when asked to compare pairs of samples instead. This has been extensively documented in a broad array
of domains, including medicine [14; 15], movie recommendations [16; 17; 18; 19], travel recommendations [10], music
recommendations [11], and web page recommendations [9], to name a few. As a result, incorporating comparisons in
training is advantageous even when datasets are large and class labels are abundant; we demonstrate this experimentally
in Section 4.1.

We make the following contributions:

• We propose a neural network architecture that is trained on (and can be used to estimate) both class and comparison
labels. Our architecture is inspired by siamese networks [20], using Bradley-Terry [21] and Thurstone [22] models
as loss functions.

• We extensively evaluate our model w.r.t. several metrics on real-life datasets. We confirm that combining compar-
isons with class labels via this model consistently improves the classification performance w.r.t. Area Under the
ROC Curve (AUC) by 8%− 35%, w.r.t. accuracy by 14%− 25%, w.r.t. F1 score by 12%− 40%, and w.r.t. Area
Under the Precision-Recall Curve (PRAUC) by 14%− 55%.

• We validate the benefit of training with comparisons in learning from small datasets. We establish that, by
incorporating comparisons, we can train and optimize a neural network with 5,974,577 parameters on a dataset of
only 80 samples. In this setting, our combined model attains a classification performance of 0.914 AUC, 0.883
accuracy, 0.64 F1 score, and 0.731 PRAUC, whereas training only on class labels can only achieve 0.835 AUC,
0.705 accuracy, 0.517 F1 score, and 0.177 PRAUC.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3 describes our
methodology and introduces our model combining class and comparison labels. Section 4 reports our experimental
results, evaluated on several real-life datasets. Finally, Section 5 summarizes our contributions.

2 Related Work

Siamese networks were originally proposed to regress similarity between two samples [20]. Many subsequent works
using siamese networks thus focus on learning low-dimensional representations to predict similarity, for applications
such as multi-task learning [23; 24; 25; 26; 27], drug discovery [28], protein structure prediction [29; 30], person
identification [31; 32], and image retrieval [33; 34; 35; 25]. Both the problem we solve and the methodology we employ
significantly depart from these works; crucially, the learning objectives used in regressing similarity are not suitable for
regressing comparisons. For instance, similarities and respective penalties, such as contrastive loss [33] and triplet loss
[34], are sensitive to scaling: inputs further apart are heavily penalized. In contrast, comparisons reflecting relative order
and, consequently, penalties for regressing them ought to be scaling-invariant. Such differences lead us to consider
altogether different penalties.

A significant body of research in the last decade has focused on comparison and ranking tasks. RankSVM [36]
learns a target ranking via a linear Support Vector Machine (SVM), with constraints imposed by all possible pairwise
comparisons. Burges et al. [37] estimate pairwise comparisons via a fully connected neural network called RankNet,
using the Bradley-Terry generative model [21] to construct a cross-entropy objective function. Following Burges et al.
[37], we also model comparison labels as the difference between functions applied to feature pairs. However, we regress
both comparison and class labels, while Burges et al. [37] regress rating scores of compared objects (not comparisons
per se). We also depart from cross-entropy and SVM losses used by Burges et al. [37] and Joachims [36], respectively,
by learning comparisons via maximum likelihood based on the Bradley-Terry [21] and Thurstone models [38]. As
we demonstrate experimentally in Section 4.1, losses induced by these models are more suitable, since these models
consider the order between compared input pairs, unlike cross-entropy and SVM losses.

Closer to our work, Chang et al. [39], Dubey et al. [40], and Doughty et al. [41] adopt siamese networks for comparison
and ranking tasks. Chang et al. [39] examine the ranking among the burst mode shootings of a scene, using an objective
(maximum likelihood based on the Bradley-Terry model) similar to one of the two we consider. Dubey et al. [40]
predict the pairwise comparisons of urban appearance images, via a loss function combining cross-entropy loss for
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pairwise comparison and hinge loss for ranking. Doughty et al. [41] assess videos with respect to the skill level in their
content, by learning similarities and comparisons of video pairs via hinge loss. We differ from these works in jointly
learning class labels along with comparison labels within the same pipeline.

Similar to our setting, several works study joint regression and ranking, albeit in shallow learning models. Sculley
[42]; Chen et al. [43]; Takamura and Tsujii [44], and Wang et al. [45] learn the rank of two inputs as the difference
between their regression outputs, rather than via labeler rankings, and apply this to click prediction and document or
image retrieval. Sculley [42] trains a logistic regression model, where the loss function is a weighted combination
of the same loss applied to class and ranking predictions. Takamura and Tsujii [44] and Wang et al. [45] employ a
similar approach as Sculley [42] and train linear regression models with different loss functions for regression and
ranking (mean-square and hinge, respectively). Chen et al. [43] consider joint classification and ranking via a similar
approach as RankSVM Joachims [36]. We also minimize a weighted combination of different losses applied to class
and comparison labels. However, we model pairwise comparison probabilities via two linear comparison models:
Bradley-Terry and Thurstone. Crucially, we also differ by learning both class and comparison labels via a neural
network, instead of shallow models such as logistic regression and SVMs.

To the best of our knowledge, Sun et al. [46] is the only previous work incorporating class and comparison labels via a
neural network architecture. Nevertheless, they do not incorporate ordered class labels and utilize joint learning only
for improving comparison label predictions. Our neural network architecture is more generic and learns class and
comparison labels individually or jointly. Finally, we show experimentally in Section 4.2 that our approach outperforms
Sun et al. [46] w.r.t. predicting both class and comparison labels on several real-life datasets.

Finally, several works propose methods to reduce overfitting, while training a deep learning model on a small dataset.
Mao et al. [47] augment the dataset by generating artificial data samples from a trained SVM classifier. Antoniou et al.
[48] and Zhang et al. [49] use generative adversarial networks to produce new images for data augmentation. Hauberg
et al. [50] generate synthetic data by using diffeomorphism, which is learned from pairs of data samples within each
class. Other works aim to cope with overfitting by means of dimension reduction. Liu et al. [51] propose a method to
jointly select features and train a deep learning model. Keshari et al. [52] propose a dictionary based algorithm to learn
a single weight for each filter of a Convolutional Neural Network (CNN). Singh and Kingsbury [53] use a dual tree
complex wavelet transform (DTCWT) based CNN to learn edge-based invariant representations in the first few layers
of the CNN. We differ from these works by not generating artificial data samples but by augmenting the dataset by
comparison labels. Moreover, our objective significantly departs from the ones used in these works.

3 Problem Formulation

We consider a dataset containing N items, indexed by i ∈ {1, . . . , N}. Every item i has a corresponding d-dimensional
feature vector xi ∈ Rd. A labeler generates two types of labels for this dataset: absolute labels and comparison labels.
Absolute labels characterize the class of an item, while comparison labels show the outcome of a comparison between
two items. We denote the absolute label set by Da, containing tuples of the form (i, yi), where yi ∈ {−1,+1} shows
which class the item i belongs to. Similarly, we denote the comparison label set by Dc, containing tuples of the form
(i, j, y(i,j)), where y(i,j) = +1 represents that item i is ranked higher than item j and y(i,j) = −1, o.w. Neither our
model nor our datasets contain any ties: a labeler always selects a comparison label in {−1,+1} when presented with
two items.

In practice, when class labels are ordered, absolute and comparison labels can be coupled in the following natural
fashion: given items (i, j), y(i,j) = +1 indicates that i has a higher propensity to receive the absolute label yi = +1,
compared to j. As discussed in Section 1, ordered absolute labels naturally occur in applications of interest, such as
medicine and recommender systems. For example, in the medical scenario, items i ∈ {1, . . . , N} are images and
the absolute label yi = +1 represents the existence of a disease. Given images (i, j), y(i,j) = +1 indicates that the
labeler deems the presence of the disease to be more severe in i. We describe several additional real-life examples, both
medical and non-medical, in Section 4.

Acknowledging the coupling between absolute and comparison labels, our goal is to provide a single probabilistic
model that can learn both labels jointly. In particular, learning from both absolute and comparison labels via our model
enhances prediction performance on both types. To do so, we propose a combined neural network architecture in the
next section.

3.1 Proposed Solution: A Combined Neural Network Architecture

Our neural network architecture is inspired by siamese networks [20], which are extensively used for regressing
similarity between two inputs. A siamese network contains two identical base networks, followed by a module
predicting the similarity between the inputs of the base networks. In this work, we extend the generic application of
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Figure 1: Our Combined Neural Network Architecture. Base network fb has the same structure and parameters for both types of
labels. The absolute network receives xi as input, predicts the corresponding absolute label as ŷi, and consists of fb and ha. The
comparison network is a siamese network. It receives xi and xj as inputs, predicts the corresponding comparison label as ŷ(i,j), and
consists of fb and hc.

siamese networks to regress both absolute and comparison labels simultaneously. To do so, we adopt the combined
neural network architecture given in Fig. 1.

Our architecture is based on the assumption that absolute and comparison labels depend on the same latent variables.
Formally, there exists a function fb : Rd → Rp representing the coupling between absolute and comparison labels. We
interpret fb(xi) as a latent vector informative for both absolute and comparison label predictions involving i. Therefore,
given items (i, j), the absolute label yi is regressed from fb(xi) and the associated comparison label y(i,j) is regressed
from fb(xi) and fb(xj). We refer to fb as the base network, which has the same structure and parameters for all items
i ∈ {1, . . . , N}.
Given fb, our combined neural network comprises two sub-networks: the absolute network fa and the comparison
network fc. The absolute network fa : Rd → R receives xi as input and outputs ŷi, the absolute label prediction.
Formally, for all (i, yi) ∈ Da:

ŷi = fa(xi) = (ha ◦ fb)(xi), (1)

where ◦ denotes function composition, fb : Rd → Rp is the base network, and ha : Rp → R is an additional network
linking latent features to absolute labels. The comparison network fc : Rd → R is trained via a so-called siamese
architecture. Given two inputs xi and xj , the corresponding comparison label prediction ŷ(i,j) is given by:

ŷ(i,j) = fc(xi)− fc(xj) = (hc ◦ fb)(xi)− (hc ◦ fb)(xj), (2)

where fb : Rd → Rp is again the base network and hc : Rp → R is an additional network linking latent features
to a one-dimensional score fc = hc ◦ fb. We denote the parametrization of neural network functions fb, ha, and hc
w.r.t. their weights as fb(·;Wb), ha(·;Wa), and hc(·;Wc), respectively. Note that, as a result, fa(·) = fa(·;Wa,Wb)
and fc(·) = fc(·;Wc,Wb). Given both Da and Dc, we learn fb(·;Wb), ha(·;Wa), and hc(·;Wc) via a minimization
of the form:

min.
Wa,Wb,Wc

α
∑

(i,yi)∈Da

La
(
xi, yi, fa(xi;Wa,Wb)

)
+ (1− α)

∑
(i,j,y(i,j))∈Dc

Lc

(
xi,xj , y(i,j),

(
fc(xi;Wc,Wb)− fc(xj ;Wc,Wb)

))
.

(3)

We train our combined neural network via stochastic gradient descent over Eq. (3). Here, La is a loss function for the
absolute network and Lc is a loss function for the comparison network; we instantiate both below, in Section 3.2. The
balance parameter α ∈ [0, 1] establishes a trade-off between the absolute label set Da and the comparison label set Dc.
When α = 0, our model is restricted to the comparison/siamese network setting. When α = 1, our model is restricted
to the absolute/classical neural network setting.

This architecture is generic and flexible. In particular, the special case where ha = hc naturally captures the relationship
between binary absolute and comparison labels described in the beginning of Section 3. Indeed, under this design, the
event yi,j = +1 becomes more likely when i has a higher propensity to receive the absolute label yi = +1, compared
to j. Nevertheless, we opt for the more generic scenario in which ha and hc may differ; joint prediction of absolute and
comparison labels is thus more flexible. Finally, our design naturally extends to multi-class absolute labels, multiple

4



CLASSIFICATION AND COMPARISON VIA NEURAL NETWORKS

labelers, and rankings. We present and apply an extension to multi-class absolute labels collected from multiple labelers
in our experiments (c.f. ROP in Section 4). We discuss how to generalize to multi-class absolute labels in A, and how to
generalize to rankings via the so-called Plackett-Luce model [54] in B.
3.2 Loss Functions

We train fa using classical loss functions La, such as cross-entropy, hinge loss, and mean-square loss. To train fc via
Lc, we use two linear comparison models: Bradley-Terry and Thurstone. In contrast to cross-entropy and hinge losses,
linear comparison models consider the order between compared items. The main advantage of these models is the
capability of learning a score for each item, even though the labelers provide only binary comparative information, i.e.,
y(i,j) ∈ {−1,+1} [22]. This score is then used to predict not only the absolute label of the item, but also the rank of
the item among all items in the dataset.

Formally, linear models for pairwise comparisons assert that every item i in a labeled comparison dataset Dc is
parametrized by a (non-random) score si [21; 55]. Then, all labelling events in Dc are independent of each other, and
their marginal probabilities are:

P (y(i,j) = +1) = F (si − sj), ∀(i, j, y(i,j)), (4)

where F is a cumulative distribution function (c.d.f.). When F is the standard normal c.d.f., Eq. (4) becomes the
Thurstone model, yet when F is the logistic c.d.f., Eq. (4) becomes the Bradley-Terry model [22]. We extend the linear
comparison model in Eq. (4) by introducing a generic representation of the scores si. In particular, we assume that
si = fc(xi) , ,∀i ∈ {1, . . . , N}, where fc is the neural network described in Eq. (2). Then, given xi,xj , and y(i,j)
under the Bradley-Terry model, the (negative log-likelihood) comparison loss becomes:

Lc(y(i,j), ŷ(i,j)) = log(1+e−y(i,j)ŷ(i,j)), (5)

where ŷ(i,j) = fc(xi)−fc(xj). Similarly, under the Thurstone model, the (negative log-likelihood) comparison loss
becomes:

Lc(y(i,j), ŷ(i,j)) = − log

(∫ ŷ(i,j)y(i,j)

−∞

e−
x2

2

√
2π

dx

)
. (6)

4 Experiments

Datasets. We evaluate our model on four real-life datasets, GIFGIF Happiness, GIFGIF Pleasure, ROP, and FAC,
summarized in Table 1a.

Dataset Absolute Label Comparison Label
Ntr Nval Ntest Ntr Nval Ntest

GIFGIF Happiness 823 274 274 8830 390 390

GIFGIF Pleasure 675 225 225 5530 215 215

ROP 60 20 5561 10650 1140 1140

FAC 2112 704 704 4549 224 224

(a) Datasets

Optimized on Validation Set Values
La {C.E., H.}
Lc {B.T., T., C.E., H.}
λ [2× 10−4, 2× 10−2]

L.R. [10−4, 10−2]

(b) Loss Functions and Hyperparameters

Table 1: (a) We evaluate our combined network on four real-life datasets: GIFGIF Happiness, GIFGIF Pleasure, ROP, and FAC
(c.f. Section 4 for details). For each dataset, we allocate 60% of the total of N images for training, 20% for validation, and 20% for
test. Here, Ntr , Nval, and Ntest denote training, validation, and test set sizes, respectively. For ROP, we augment the test set by
adding the 5561 images in set H, which contains only absolute labels and no comparisons. (b) For each α, we tune the following on
the validation set: absolute loss function La, comparison loss function Lc, regularization parameter λ, and learning rate (L.R.). We
consider cross-entropy (C.E), hinge (H.), Bradley-Terry (B.T., given in Eq. (5)), and Thurstone (T., given in Eq. (6)) as loss functions.

GIFGIF is an MIT Media Lab project aiming to understand the emotional content of animated GIF images [56].
Labelers are provided with two images and are asked to identify which image better represents a given emotion. A
labeler can choose either image, or use a third option: neither. We discard the outcomes that resulted in neither. This
dataset does not contain absolute labels. We manually label N = 1371 GIF images within the category happiness,
labeling image i with the absolute label yi = +1 if regarded as happy and yi = −1 if sad. There are 9617 pairwise
comparisons among these 1371 images, where y(i,j) = +1 if image i is regarded as happier than j, and y(i,j) = −1,
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o.w. We repeat the same procedure for the emotion category pleasure and manually label N = 1125 GIF images
within this category with yi = +1 if the subject of the image i is pleased and yi = −1 o.w. There are 5667 pairwise
comparisons among these 1125 images.

Retinopathy of Prematurity (ROP) is a retinal disease occuring in premature infants; it is a leading cause of childhood
blindness [57]. The ROP dataset [58] contains two sets of images: a small set of N = 100 retinal images, which we
denote by S, and a larger set of N = 5561 images that we denote by H. Images in both sets receive Reference Standard
Diagnostic (RSD) labels [59]: To create an RSD label for a retinal image, a committee of three experts labels the image
as ‘Plus’, ‘Pre-plus’, or ‘Normal’ based on the existence of ROP, indicating severe, intermediate level, and no ROP,
respectively. These ordered categorical labels constitute our absolute labels. In addition, five experts independently
label all 4950 pairwise comparisons of the images in set S only. Note that some pairs are labeled more than once by
different experts. For each pair (i, j), the comparison label is y(i,j) = +1 if image i’s ROP severity is higher. Note that
only images in S contain both absolute and comparison labels. We use S for training and reserve H for testing purposes.

The Filter Aesthetic Comparison (FAC) dataset [46] contains 1280 unfiltered images pertaining to 8 different categories.
Twenty-two different image filters are applied to each image and resulting images are labelled by Amazon Mechanical
Turk users. Filtered image pairs are labelled such that the comparison label y(i,j) = +1 if filtered image i has better
quality than filtered image j, and y(i,j) = −1 o.w. Each filtered image appears in three comparison pairs. At the same
time, absolute labels are generated by the creators of FAC dataset as follows. For each pair (i, j) such that y(i,j) = +1,
i and j receive scores +1 and −1, respectively. Hence, each filtered image receives a score in [−3,+3]. Subsequently,
image i receiving a +3 (−3) score is assigned the label yi = +1 (yi = −1); images that do not receive +3 or −3 score
are discarded. Thus, the absolute label yi = +1 if the filtered image i has high quality and yi = −1, o.w. We choose
one of the categories with N = 3520 filtered images as our dataset, since comparison labels only exist for filtered image
pairs within the same category. All in all, there are 3520 binary absolute labels and 4964 pairwise comparison labels in
this dataset.

Network Architectures. We use GoogLeNet [5] without the last two fully connected layers as our base network
fb. We resize all images, so that xi ∈ R3×224×224. The corresponding base network output fb(xi) has p = 1024
dimensions ∀i ∈ {1, 2, · · · , N}. To leverage the well-known transfer learning properties of neural networks trained
on images [60], we initialize the layers from GoogLeNet with weights pre-trained on the ImageNet dataset [61]. We
choose ha and hc as single fully connected layers with sigmoid activations. We add L2 regularizers with a regularization
parameter λ to all layers and train our combined neural network end-to-end with stochastic gradient descent.3 We
instantiate our loss functions and hyperparameters as shown in Table 1b. Specifically for ROP, we first pre-process
retinal images with a pre-trained U-Net [62] to convert the colorful images into black and white masks for retinal vessels
[58]. Recall that the special case where ha = hc, combining cross-entropy as La and Bradley-Terry loss as Lc, naturally
captures the relationship between absolute and comparison labels (c.f. Section 3), at least in binary classification. In our
experiments, we implement both ha 6= hc and ha = hc (c.f. Section 4.2).

Experiment Setup. We allocate 60% of the total of N images in the GIFGIF Happiness, GIFGIF Pleasure, ROP S, and
FAC datasets for training, 20% for validation, and 20% for test. Thus, images in the training set are not paired with
images in the validation or test sets for the generation of comparison labels. For ROP, we augment the test set by adding
the 5561 images in set H and predict the existence of ROP during test time, i.e. ŷi = −1 if image i is predicted to be
‘Normal’ and ŷi = +1, o.w. Recall that H contains only absolute labels and no comparisons (c.f. Table 1a).

Given α ∈ [0, 1], for each combination of the loss functions La, Lc, and hyperparameters λ, L.R. shown in Table 1b,
we train our architecture over the training set. Then, we evaluate the resulting models on the validation set to determine
the optimal loss functions and hyperparameters. We predict the absolute and comparison labels in the test set using the
corresponding optimal models. When α ∈ (0, 1), functions fb, ha, and hc are trained (and tested) on both datasets Da

and Dc. Note that when α = 0.0, by Eq. (3), we only learn fb and hc, as dataset Da is not used in training; in this case,
we set ha = hc to predict the absolute labels on the validation and test sets. Similarly, when α = 1.0, we only learn fb
and ha, and set hc = ha to predict comparisons.

Competing Methods. We implement four alternative methods which incorporate absolute and comparison labels: the
method by Sun et al. [46], logistic regression, a support vector machine (SVM), and an ensemble method combining the
predictions of logistic regression and SVM. We use the norm-comparison loss function Lc by Sun et al. [46], introduced
in detail in C, combined with the best performing La for each dataset (c.f. Table 1b). In both logistic and SVM methods,
we first use GoogLeNet pre-trained on the ImageNet dataset [61] to map input images to features. Then, we train
a model via logistic regression and an SVM, respectively, on these features. Training procedures for these methods
are reported in more detail in Appendix D. Finally, we implement a soft voting ensemble method combining logistic

3
Our code is publicly available at https://github.com/neu-spiral/ClassificationAndComparisonViaNeuralNetworks.
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regression and SVM [63]. More precisely, we train another logistic classifier on the pairs of logistic regression and
SVM predictions.

Metrics. To evaluate the performance of our model on validation and test sets, we use Area Under the ROC Curve (AUC),
accuracy (Acc.), F1-score (F1), and Area Under the Precision-Recall Curve (PRAUC) on both absolute labels Da

and comparison labels Dc. We report these metrics along with the 95% confidence interval, which we compute as
1.96× σA, where σ2

A is the variance. Variance for AUC and PRAUC are computed by:

σ2
A =

1

mn

(
A(1−A) + (m− 1)(Px −A2) + (n− 1)(Py −A2)

)
, (7)

where A is the AUC or PRAUC, Px = A/(2 − A), Py = 2A2/(1 + A), and m, n are the number of positive and
negative samples, respectively [64]. Variance for accuracy and F1-score are computed by:

σ2
A = A(1−A)/(m+ n), (8)

for A being the accuracy or F1-score. Finally, when comparing the prediction performances of different methods, we
assess the statistical significance of relative improvements. We do so via the p-value of one-sided Welch T-test for
unequal variances [65], which is computed by:

pAl,As
= Φ

(
(Al −As)/

√
σ2
Al

+ σ2
As

)
, (9)

where Φ is the standard normal cumulative distribution function (c.d.f.), and Al and As are the metric values with larger
and smaller magnitudes, respectively.

4.1 Prediction Performance

Tables 2a and 2b show the prediction performance of our model trained on GIFGIF Happiness, GIFGIF Pleasure, ROP,
and FAC datasets. For each α, we optimize the hyperparameters on the validation set following the procedure explained
in Experiment Setup. For AUC, Acc., F1, and PRAUC on both Da and Dc, we evaluate all eight metrics on the test
set, for α = 0.0 (comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1]. Optimal
hyperparameters are reported in Appendix E (c.f. Tables 4 to 11).

Tables 2a and 2b indicate that, on all datasets and metrics, comparisons significantly enhance the predictions of both
label types. Compared to training on absolute labels alone (α = 1.0), combining absolute and comparison labels
(α ∈ (0, 1)) or training only on comparison labels (α = 0) considerably improves absolute label prediction, by
8% − 35% AUC, 14% − 25% Acc., 12% − 40% F1, and 14% − 55% PRAUC across all datasets. For all of these
improvements over training with α = 1.0, we compute the p-value of Welch T-test. In all cases, p-values are above 0.99.
Interestingly, in several cases indicated on Table 2a by ∗, comparisons lead to better predictions of absolute labels even
when the latter are ignored during training. This indicates the relative advantage of incorporating comparison labels
into training. Adding absolute labels to comparisons also improves comparison prediction performance, albeit modestly
(by at most 6% AUC/0.923 p-value, 5% Acc./0.877 p-value, 3% F1/0.793 p-value, and 6% PRAUC/0.913 p-value).

Our performance over the ROP dataset is especially striking. Recall that its training set contains only 80 images and its
test set contains 5561 images, unseen during training. Despite this extreme imbalance, by incorporating comparisons
into training, we successfully train and optimize a neural network involving 5,974,577 parameters, on 80 images (60
for training, 20 for validation)! Specifically, our combined model attains an absolute label prediction performance of
0.914 AUC, 0.883 Acc., 0.64 F1, and 0.731 PRAUC. Training only on absolute labels, i.e. α = 1.0, can only achieve
0.835 AUC, 0.705 Acc., 0.517 F1, and 0.177 PRAUC (c.f. ROP rows in Table 2a). This further attests to the fact that
comparisons are more informative than absolute labels and that our methodology is able to exploit this information
even in the presence of a small dataset.

Our architecture is robust in the selection of a metric to optimize over the validation set. In E (c.f. Tables 4 to 11), we
show that optimizing hyperparameters w.r.t. a metric (e.g., AUC) leads to good performance w.r.t. other metrics (e.g.,
Acc., and F1). Furthermore, for all metrics and datasets, comparison loss functions (Lc) induced by Bradley-Terry and
Thurstone models (given in Eq. (5) and Eq. (6)) outperform cross-entropy and hinge losses. This further motivates
the use of these linear comparison models for learning relative orders, compared to standard loss functions such as
cross-entropy and hinge.

Learning with Fewer Samples. The striking performance of our model on ROP motivates us to study settings in which
we learn from small datasets. To that end, we repeat our experiments, training our model on a subset of the training set
containing both absolute and comparison labels, selected uniformly at random. The effect of the number of training
images on AUC, Acc., and F1 for different values of α can be seen in Fig. 2, for GIFGIF Happiness, GIFGIF Pleasure,
and FAC datasets. We illustrate that, despite the small number of images, learning from comparisons consistently
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Dataset α Performance Metrics on Test Set of Absolute Labels
AUC on Da Acc. on Da F1 on Da PRAUC on Da

H
ap

pi
ne

ss 0.0 0.915± 0.041 0.85± 0.042 0.779± 0.049 0.824± 0.057

1.0 0.561± 0.072 0.664± 0.055 0.39± 0.057 0.401± 0.07

Best(α) 0.915± 0.041(0.0)∗ 0.85± 0.042(0.0)∗ 0.791± 0.048(0.75) 0.824± 0.057(0.0)∗

Pl
ea

su
re

0.0 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 0.579± 0.075 0.56± 0.065 0.667± 0.062 0.591± 0.075

Best(α) 0.887± 0.045(0.0)∗ 0.814± 0.051(0.25) 0.823± 0.05(0.5) 0.88± 0.046(0.25)

R
O

P

0.0 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 0.835± 0.017 0.705± 0.012 0.517± 0.014 0.177± 0.012

Best(α) 0.914± 0.013(0.75) 0.883± 0.009(0.75) 0.64± 0.013(0.5) 0.731± 0.019(0.0)∗

FA
C

0.0 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

1.0 0.746± 0.037 0.677± 0.035 0.684± 0.035 0.678± 0.041

Best(α) 0.87± 0.028(0.0)∗ 0.82± 0.029(0.0)∗ 0.809± 0.03(0.0)∗ 0.82± 0.033(0.0)∗

(a) Absolute label predictions

Dataset α Performance Metrics on Test Set of Comparison Labels
AUC on Dc Acc. on Dc F1 on Dc PRAUC on Dc

H
ap

pi
ne

ss 0.0 0.898± 0.031 0.828± 0.036 0.819± 0.037 0.906± 0.031

1.0 0.419± 0.055 0.42± 0.047 0.397± 0.047 0.448± 0.056

Best(α) 0.902± 0.03(0.5) 0.83± 0.036(0.25) 0.819± 0.037(0.0) 0.906± 0.031(0.0)

Pl
ea

su
re

0.0 0.836± 0.052 0.729± 0.058 0.742± 0.057 0.849± 0.05

1.0 0.531± 0.076 0.492± 0.065 0.662± 0.062 0.618± 0.073

Best(α) 0.84± 0.052(0.25) 0.755± 0.056(0.25) 0.775± 0.055(0.25) 0.855± 0.049(0.25)

R
O

P

0.0 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 0.941± 0.015 0.859± 0.021 0.865± 0.02 0.942± 0.015

Best(α) 0.955± 0.013(0.0) 0.883± 0.019(0.25) 0.886± 0.019(0.25) 0.963± 0.012(0.0)

FA
C

0.0 0.751± 0.065 0.71± 0.06 0.706± 0.06 0.735± 0.066

1.0 0.809± 0.058 0.733± 0.058 0.72± 0.059 0.797± 0.06

Best(α) 0.814± 0.057(0.5) 0.759± 0.057(0.75) 0.736± 0.058(0.5) 0.797± 0.06(1.0)

(b) Comparison label predictions

Table 2: Predictions on the GIFGIF Happiness, GIFGIF Pleasure, ROP, and FAC datasets. For each α, we optimize the hyperparame-
ters on the validation set following the procedure explained in Experiment Setup. For AUC, Acc., F1, and PRAUC on both Da and
Dc, we evaluate all eight metrics on the test set, for α = 0.0 (comparison labels only), α = 1.0 (absolute labels only), and best
performing α ∈ [0, 1]. Optimal hyperparameters are reported E (c.f. Tables 4 to 11). We use ha 6= hc in these experiments.

improves absolute label predictions. In fact, e.g., in Fig. 2a, using comparisons (α ∈ {0.0, 0.5}), we can reduce
the training set size from 823 to 300 with a performance loss of only 4% on AUC, Acc., and F1. In contrast, using
only absolute labels in training (α = 1.0) leads to a significant performance drop, by 12%− 39% AUC, 13%− 30%
Acc., and 14%− 39% F1. These results confirm that, in the presence of a small dataset with few samples, soliciting
comparisons along with training via our combined architecture significantly boosts prediction performance.

Comparison Labels Exhibit Less Noise Than Absolute Labels. In the previous experiment, given the number of
samples, the number of comparisons is significantly larger than the number of absolute labels. This raises the question
of how training performs when the number of comparisons is equal to the number of absolute labels. To answer this
question, we repeat the previous experiment by subsampling labels rather than images and train our model on the
same number of absolute or comparison labels. In Fig. 3, we show AUC, Acc., and F1 as functions of the number
of training labels for GIFGIF Happiness, GIFGIF Pleasure, and FAC datasets. We demonstrate that, for the same
number of training labels, learning from comparisons (α = 0.0) instead of absolute labels (α = 1.0) boosts absolute
label predictions by 11%− 30% AUC, 6%− 24% Acc., and 14%− 17% F1. This further corroborates our claim that
comparisons are indeed less noisy and more informative than absolute labels. We note that this has been observed in
other settings [14; 15; 16].
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(a) AUC, accuracy, F1 on Da vs. Ntr for GIFGIF Happiness
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(b) AUC, accuracy, F1 on Da vs. Ntr for GIFGIF Pleasure
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(c) AUC, accuracy, F1 on Da vs. Ntr for FAC

Figure 2: Prediction performance on absolute labels (Da) vs. number of training images (Ntr) for the (a) GIFGIF Happiness, (b)
GIFGIF Pleasure, and (c) FAC datasets. We train our model on the absolute labels Da and comparison labels Dc pertaining to Ntr

images randomly sampled from the training set. For each Ntr ∈ {60, ...} and α ∈ {0.0, 0.5, 1.0}, we optimize the hyperparameters
on the validation set following the procedure explained in Experiment Setup. We evaluate AUC, Acc., and F1 on the test set w.r.t.Da.

Impact of α. Fig. 4 shows the prediction AUC of our model vs. α on GIFGIF Happiness, GIFGIF Pleasure, ROP, and
FAC datasets. For each α, we optimize the hyperparameters on the validation set following the procedure explained in
Section 4.1 and evaluate AUC on the test set w.r.t. both Da and Dc. On all datasets, comparisons significantly boost
the prediction performance on both Da and Dc. Our model achieves the peak prediction AUCs on both labels for
learning from comparisons (α ∈ [0.0, 1.0)) and the lowest prediction AUCs for learning from absolute labels alone
(α = 1.0), except for the FAC dataset. The FAC dataset differs from other datasets, since absolute labels are generated
from comparisons instead of being independently produced by labelers (c.f. Datasets in Section 4).

4.2 Comparison with Competing Methods

In Tables 3a and 3b, we compare our combined neural network (CNN) with the Sun et al. [46] method (Norm), logistic
regression (Log.), a support vector machine (SVM), and a soft voting ensemble method (Ensemble) linearly combining
the predictions of logistic regression and SVM. We evaluate our CNN model both for ha 6= hc, and the special case
where ha = hc

(
CNN (ha = hc)

)
, combining cross-entropy as La and Bradley-Terry loss as Lc. For each α, we

optimize the hyperparameters on the validation set following the procedure explained in Experiment Setup. For the
best performing α ∈ [0, 1], we evaluate AUC, Acc., and F1 on the test set w.r.t. both Da and Dc. We demonstrate
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(b) AUC, accuracy, F1 on Da vs. Nlb for GIFGIF Pleasure
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(c) AUC, accuracy, F1 on Da vs. Nlb for FAC

Figure 3: Prediction performance on absolute labels (Da) vs. number of labels (Nlb) in the training set for the (a) GIFGIF Happiness,
(b) GIFGIF Pleasure, and (c) FAC datasets. We train our model on Nlb absolute labels (Da) and Nlb comparison labels (Dc)
randomly sampled from the training set. For each Nlb ∈ {60, ...} and α ∈ {0.0, 1.0}, we optimize the hyperparameters on the
validation set following the procedure explained in Experiment Setup. We evaluate AUC, Acc., and F1 on the test set w.r.t. Da.

0 0.2 0.4 0.6 0.8 1

Weight  on Absolute Label Data

0.5

0.6

0.7

0.8

0.9

1

A
U

C

 D
a

 D
c

(a) AUC on Happiness

0 0.2 0.4 0.6 0.8 1

Weight  on Absolute Label Data

0.5

0.6

0.7

0.8

0.9

1

A
U

C

 D
a

 D
c

(b) AUC on Pleasure
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(c) AUC on ROP
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(d) AUC on FAC

Figure 4: Prediction performance vs. α on GIFGIF Happiness, GIFGIF Pleasure, ROP, and FAC datasets. For each α ∈
{0.0, 0.25, 0.5, 0.75, 1.0}, we optimize the hyperparameters on the validation set following the procedure explained in Section 4.1.
Finally, we evaluate the optimal models on the test set of both Da and Dc w.r.t. AUC.

that learning through the norm comparison loss (Norm) instead of maximum likelihood based on Bradley-Terry or
Thurstone models (given in Eq. (5) and (6)) is not suitable for our architecture. Moreover, our method outperforms
logistic, SVM, and ensemble methods, particularly in absolute label prediction, by 2%− 13% AUC, 5%− 13% Acc.,
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Dataset Method Performance Metrics on Test Set of Absolute Labels
AUC on Da (α) Acc. on Da (α) F1 on Da (α)

Pl
ea

su
re

CNN 0.887± 0.045(0.0) 0.814± 0.051(0.25) 0.823± 0.05(0.5)

CNN(ha = hc) 0.882± 0.046 0.823± 0.05 0.827± 0.05

Log. 0.846± 0.051(0.25) 0.773± 0.054(0.75) 0.775± 0.054(0.75)

SVM 0.862± 0.048(0.75) 0.768± 0.055(0.0) 0.796± 0.052(0.0)

Ensemble 0.852± 0.051(0.25) 0.787± 0.054(0.5) 0.794± 0.053(0.5)

Norm 0.5± 0.07(0.5) 0.5± 0.065(0.5) 0.67± 0.061(0.5)

R
O

P

CNN 0.914± 0.013(0.75) 0.883± 0.009(0.75) 0.64± 0.013(0.5)

CNN(ha = hc) 0.929± 0.012 0.876± 0.009 0.64± 0.013

Log. 0.788± 0.017(0.0) 0.823± 0.01(0.0) 0.484± 0.013(1.0)

SVM 0.793± 0.017(0.5) 0.822± 0.01(0.0) 0.497± 0.013(0.5)

Ensemble 0.79± 0.018(0.0) 0.823± 0.011(0.0) 0.478± 0.014(1.0)

Norm 0.63± 0.04(0.0) 0.82± 0.01(0.5) 0.3± 0.012(0.0)

FA
C

CNN 0.87± 0.028(0.0) 0.82± 0.029(0.0) 0.809± 0.03(0.0)

CNN(ha = hc) 0.839± 0.031 0.817± 0.029 0.818± 0.029

Log. 0.746± 0.036(0.5) 0.681± 0.034(0.5) 0.655± 0.035(0.0)

SVM 0.741± 0.037(0.5) 0.684± 0.034(0.25) 0.648± 0.035(0.5)

Ensemble 0.746± 0.037(0.5) 0.692± 0.035(0.5) 0.658± 0.036(0.5)

Norm 0.52± 0.04(0.5) 0.55± 0.036(1.0) 0.61± 0.036(0.5)

(a) Absolute label predictions of competing methods.

Dataset Method Performance Metrics on Test Set of Comparison Labels
AUC on Dc (α) Acc. on Dc (α) F1 on Dc (α)

Pl
ea

su
re

CNN 0.84± 0.052(0.25) 0.755± 0.056(0.25) 0.775± 0.055(0.25)
CNN(ha = hc) 0.866± 0.048 0.764± 0.056 0.796± 0.053

Log. 0.805± 0.056(0.0) 0.741± 0.056(0.0) 0.763± 0.055(0.0)
SVM 0.803± 0.056(0.75) 0.736± 0.057(0.0) 0.754± 0.055(0.0)

Ensemble 0.813± 0.056(0.25) 0.75± 0.057(0.25) 0.772± 0.055(0.25)
Norm 0.5± 0.07(0.5) 0.46± 0.064(0.5) 0± 0(0.5)

R
O

P

CNN 0.955± 0.013(0.0) 0.883± 0.019(0.25) 0.886± 0.019(0.25)
CNN(ha = hc) 0.953± 0.013 0.874± 0.02 0.88± 0.019

Log. 0.842± 0.023(0.5) 0.762± 0.024(0.25) 0.757± 0.024(0.75)
SVM 0.829± 0.024(0.0) 0.732± 0.025(0.75) 0.743± 0.025(0.5)

Ensemble 0.837± 0.024(0.5) 0.758± 0.025(0.5) 0.758± 0.025(0.5)
Norm 0.65± 0.03(1.0) 0.47± 0.028(0.5) 0.5± 0.028(1.0)

FA
C

CNN 0.814± 0.057(0.5) 0.759± 0.057(0.75) 0.736± 0.058(0.5)
CNN(ha = hc) 0.816± 0.057 0.755± 0.057 0.749± 0.057

Log. 0.82± 0.055(0.0) 0.75± 0.056(0.25) 0.75± 0.056(0.25)
SVM 0.821± 0.055(0.25) 0.75± 0.056(0.25) 0.75± 0.056(0.25)

Ensemble 0.822± 0.056(0.25) 0.755± 0.057(0.25) 0.756± 0.057(0.25)
Norm 0.52± 0.07(0.5) 0.54± 0.065(0.5) 0.37± 0.063(0.5)

(b) Comparison label predictions of competing methods.

Table 3: As alternatives to our Combined Neural Network (CNN) method, we implement [46]’s method (Norm), logistic regression
(Log.), SVM, and a soft voting ensemble method (Ensemble) linearly combining the predictions of logistic regression and SVM using
the objectives explained in C and D. We further evaluate our CNN method for the special case where ha = hc

(
CNN (ha = hc)

)
,

combining cross-entropy as La and Bradley-Terry loss as Lc. For each method and each α, we optimize the hyperparameters on the
validation set following the procedure explained in Experiment Setup. Finally, for the best performing α ∈ [0, 1] on the test set, we
evaluate AUC, Acc., and F1 on GIFGIF Pleasure, ROP, and FAC datasets w.r.t. both Da and Dc.

and 3%− 15% F1 across all datasets. These improvements correspond to 0.772− 1.0 p-value for AUC, 0.91− 1.0
p-value for Acc., and 0.8 − 1.0 p-value for F1 under Welch T-test. Our method also outperforms other methods on
comparison label prediction, specifically on ROP, by 11% AUC, 12% Acc., and 13% F1. For all of these improvements,
p-values are 1.0.
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Note that the performance of our architecture is robust to the design choice between single task learning with ha = hc
vs. generic joint learning with ha 6= hc. More precisely, our model balances the variance introduced by allowing ha
and hc to differ by improving the bias.

5 Conclusion

In this paper, we tackle the problem of limited and noisy data that emerge in real-life applications. To do so, we propose
a neural network architecture that can collectively learn from both absolute and comparison labels. We extensively
evaluate our model on several real-life datasets and metrics, demonstrating that learning from both labels immensely
improves predictive power on both label types. By incorporating comparisons into training, we successfully train an
architecture containing 5.9 million parameters with only 80 images. All in all, we observe the benefit of learning from
comparison labels.

Given the quadratic nature of pairwise comparisons, designing active learning algorithms that identify which compar-
isons to solicit from labelers is an interesting open problem. For example, generalizing active learning algorithms, as
the ones proposed by Guo et al. [66] for shallow models of comparisons to the neural network model we consider here,
is a promising direction.
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A Multi-Class Absolute Labels

Our design naturally extends to multi-class absolute labels. In this setting, we consider one-hot encoded vectors
yi ∈ [0, 1]K ∀i as absolute labels, where K is the number of classes. When item i belongs to class k ∈ {1, ...,K}, only
the ith element of yi is 1, and the rest of its elements are 0. Recall that when class labels are ordered, absolute and
comparison labels are coupled (c.f. Section 3). This implies for multi-class absolute labels, that given items (i, j) with
absolute labels (ki, kj), y(i,j) = +1 indicates that ki > kj is more likely than kj > ki.

When trained on multi-class absolute labels, the absolute network takes the form fa : Rd → [0, 1]K . Thus, the
additional network linking the base network output to absolute labels becomes ha : Rp → [0, 1]K (c.f.Fig. 1). In our
experiments with multi-class absolute labels (c.f. ROP in Section 4), we choose ha as a single fully connected layer
with softmax activation. We train fa using classical loss functions La, such as multi-class cross-entropy and multi-class
hinge loss. Further details on multi-class classification can be found in [67].

B Plackett-Luce Model

Rankings frequently occur in real-life applications, including, i.e. medicine and recommender systems. In top-1 ranking
settings, given a subset of N alternative items, a labeler chooses the item they prefer the most. Formally, a labeler
produces a top-1 ranking label of the form (w,A), where A ⊆ {1, ..., N} is a set of alternative items and w ∈ A is the
chosen item. Given a top-1 ranking dataset, the total order of N items can be learned through the Plackett-Luce (PL)
model [54]. PL model, being the generalization of the Bradley-Terry (BT) model to rankings, asserts that every item i
in the ranking dataset is parametrized by a score si. Then, all labelling events are independent of each other, where the
probability of choosing item w over the alternatives in set A is:

P (w |A) =
sw∑
i∈A si

. (10)

Another common setting is when labelers provide a total ranking over the alternatives, instead of a single choice. More
precisely, a labeler produces a total ranking label of the form

(
σA, A

)
, where σA is a permutation of the alternative

items in A. In fact, a total ranking is equivalent to a sequence of |A|−1 independent choices, where |A| is the size of set
A: a labeler starts by choosing the first item σA(1) out of A, then chooses the second item σA(2) out of A \ {σA(1)},
then chooses the third item σA(3) out of A \ {σA(1), σA(2)}, and so on. Hence, under the PL model, probability of a
total ranking over the alternatives in set A becomes:

P (σA |A) =

|A|−1∏
r=1

sσA(r)∑|A|
p=r sσA(p)

. (11)

Given {s1, · · · , sN}, all ranking events are fully determined by Eq. (11).

Recall that our architecture introduces a generic representation of the score si through linear comparison models: we
assume that si = fc(xi) ∀i ∈ {1, . . . , N}, where fc is the comparison network. Hence, our formulation naturally
generalizes to learning from rankings under PL model. To implement this generalization, given a total ranking

(
σA, A

)
with the corresponding feature vectors {xi}i∈A, we can train our architecture by adopting the (negative log-likelihood)
loss function:

min.
Wb,Wc

|A|−1∑
r=1

log
( |A|∑
p=r

fc(xσA(p);Wc,Wb)
)
− log

(
fc(xσA(r);Wc,Wb)

) , (12)

instead of Lc in our combined loss in Eq. (3).

C Sun et.al. ’s Method

[46] leverage a siamese network to learn comparisons, where the base network architecture is either AlexNet [3] or
RAPID net [68] with a fully-connected output layer. The base network f : Rd → R128 receives an input image and
generates the corresponding 128-dimensional feature vector. To regress the comparison labels from these features, [46]
employ a norm comparison loss function:

Lc(xi,xj , y(i,j)) = −
∑

(i,j,y(i,j))∈Dc

y(i,j)
(
‖f(xi)‖22 − ‖f(xj)‖22

)
. (13)
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To evaluate the performance of their architecture, for each image i, they use ‖f(xi)‖22 as the quality score.

To compare the performance of our method with [46]’s, we adapt our experimental setup as follows: we transfer the
features extracted by our base network, i.e. GoogLeNet [5], to a fully-connected layer with 128-d output. We train the
resulting architecture with our combined loss function (c.f. Eq. (3)), where La is the optimal absolute loss function
for each dataset (c.f. Tables 4 to 11), and Lc is the norm comparison loss. For each α ∈ {0.0, 0.5, 1.0}, we optimize
the learning rate ranging from 10−6 to 10−2 and λ ranging from 2× 10−4 to 2× 10−2 on the validation set. For this
method, we also normalize the input images to aid convergence. Finally, we evaluate the test set predictions of the
optimal models obtained through this setup, using si = ‖f(xi)‖22 as the quality score for each image i.

D Logistic Regression and SVMs

For both logistic and SVM methods, we employ linear comparison models (c.f. Sec. 3.2) by assuming that the score
of each item i, i.e. si, is parametrized by a common parameter vector β ∈ <p and a common bias b ∈ <, such that
si = βT fb(xi) + b. In other words, we assign hc(·) = ha(·) = βT · +b in Eq.(1) and Eq.(2). Then, absolute and
comparison label predictions become ŷi = βT fb(xi) + b and ŷ(i,j) = βT

(
fb(xi) − fb(xj)

)
, respectively. In the

exposition below, as well as in our experiments in Sec. 4.2, fb is fixed, i.e. not trained, and given by GoogLeNet with
weights pre-trained on the ImageNet dataset [61].

Under logistic method, maximum aposteriori (MAP) estimates of β and b from absolute and comparison labels
correspond to minimizing the negative log-likelihood functions La(yi, ŷi) = log(1+e−yiŷi) and Lc(y(i,j), ŷ(i,j)) =

log(1+e−y(i,j)ŷ(i,j)), respectively. Motivated by the combined loss function Eq.(3), we estimate β and b by solving:

min.
β,b

α
∑

(i,yi)∈Da

La
(
xi, yi,β

T fb(xi) + b
)

+ (1− α)
∑

(i,j,y(i,j))∈Dc

Lc

(
xi,xj , y(i,j),β

T
(
fb(xi)− fb(xj)

))
+ λ‖β‖2,

(14)

where λ is the regularization parameter. Similarly, under SVM method, we estimate β and b by solving the convex
program:

min.
β,b

α
∑

(i,yi)∈Da

εi + (1− α)
∑

(i,j,y(i,j))∈Dc

ε(i,j) + λ‖β‖2

subject to: yi
(
βT fb(xi) + b

)
≥ 1− εi,

εi ≥ 0 ∀(i, yi) ∈ Da,

y(i,j)

(
βT
(
fb(xi)− fb(xj)

))
≥ 1− ε(i,j),

ε(i,j) ≥ 0 ∀(i, j, y(i,j)) ∈ Dc.

(15)

We optimize the regularization parameter λ (ranging from 10−6 to 104) on the validation set of each dataset.

E Robustness to Metric Selection

In this section, we illustrate that our model is robust in the selection of a metric to optimize over the validation set. We
employ the experimental setup explained in Section 4.1 to train and evaluate our model on these datasets. Tables 4 to 11
report the test set performance of the models optimized on the validation set for each metric, over all eight metrics.
These four tables correspond to GIFGIF Happiness, GIFGIF Pleasure, ROP, and FAC datasets, respectively. Note that
the diagonals of each table correspond to the rows of Tables 2a and 2b. We conclude that optimizing hyperparameters
w.r.t. a metric, e.g., AUC, still results in high performance w.r.t. other metrics, e.g., Acc., and F1.
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Da Acc. on Da F1 on Da PRAUC on Da

A
U

C
on
D

a 0.0 C.E. T. 0.002 0.001 0.915± 0.041 0.832± 0.044 0.783± 0.048 0.824± 0.057

1.0 C.E. B.T. 0.002 0.001 0.561± 0.072 0.638± 0.056 0.287± 0.053 0.401± 0.07

Best (0.0) C.E. T. 0.002 0.001 0.915± 0.041 0.832± 0.044 0.783± 0.048 0.824± 0.057

A
cc

.o
n
D

a 0.0 C.E. B.T. 0.002 0.001 0.883± 0.047 0.85± 0.042 0.789± 0.048 0.762± 0.064

1.0 C.E. B.T. 0.02 0.001 0.504± 0.072 0.664± 0.055 0.0± 0.0 0.336± 0.066

Best (0.0) C.E. B.T. 0.002 0.001 0.883± 0.047 0.85± 0.042 0.789± 0.048 0.762± 0.064

F1
on
D

a 0.0 C.E. T. 0.0002 0.01 0.925± 0.038 0.824± 0.045 0.779± 0.049 0.848± 0.054

1.0 C.E. B.T. 0.0002 0.001 0.519± 0.072 0.613± 0.057 0.39± 0.057 0.383± 0.069

Best (0.75) C.E. T. 0.0002 0.01 0.888± 0.046 0.85± 0.042 0.791± 0.048 0.764± 0.064

PR
A

U
C

on
D

a

0.0 C.E. T. 0.002 0.001 0.916± 0.042 0.833± 0.045 0.784± 0.049 0.824± 0.057

1.0 C.E. B.T. 0.002 0.001 0.562± 0.073 0.639± 0.057 0.288± 0.054 0.401± 0.07

Best (0.0) C.E. T. 0.002 0.001 0.916± 0.042 0.833± 0.045 0.784± 0.049 0.824± 0.057

A
U

C
on
D

c 0.0 C.E. T. 0.0002 0.001 0.917± 0.04 0.835± 0.043 0.782± 0.048 0.803± 0.06

1.0 C.E. B.T. 0.0002 0.001 0.487± 0.072 0.565± 0.058 0.32± 0.055 0.383± 0.069

Best (0.5) C.E. T. 0.002 0.001 0.9± 0.044 0.828± 0.044 0.77± 0.049 0.792± 0.061

A
cc

.o
n
D

c 0.0 C.E. T. 0.002 0.001 0.915± 0.041 0.832± 0.044 0.783± 0.048 0.824± 0.057

1.0 C.E. B.T. 0.0002 0.001 0.487± 0.072 0.565± 0.058 0.32± 0.055 0.401± 0.07

Best (0.25) C.E. T. 0.0002 0.01 0.915± 0.041 0.843± 0.043 0.786± 0.048 0.815± 0.058

F1
on
D

c 0.0 C.E. T. 0.002 0.001 0.915± 0.041 0.832± 0.044 0.783± 0.048 0.824± 0.057

1.0 C.E. B.T. 0.0002 0.001 0.487± 0.072 0.565± 0.058 0.32± 0.055 0.383± 0.069

Best (0.0) C.E. T. 0.002 0.001 0.915± 0.041 0.832± 0.044 0.783± 0.048 0.824± 0.057

PR
A

U
C

on
D

c

0.0 C.E. T. 0.0002 0.001 0.918± 0.041 0.836± 0.044 0.783± 0.049 0.803± 0.06

1.0 H. B.T. 0.0002 0.01 0.466± 0.072 0.665± 0.056 0.0± 0.0 0.308± 0.063

Best (0.0) C.E. T. 0.0002 0.001 0.918± 0.041 0.836± 0.044 0.783± 0.049 0.803± 0.06

Table 4: Absolute label prediction performance on the GIFGIF Happiness dataset. For each α, we find the optimal absolute loss
function (La), comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E),
hinge (H.), Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1
score, and PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet
corresponds to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training
with α = 0.0 (comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Dc Acc. on Dc F1 on Dc PRAUC on Dc

A
U

C
on
D

a 0.0 C.E. T. 0.002 0.001 0.909± 0.029 0.828± 0.036 0.819± 0.037 0.917± 0.029

1.0 C.E. B.T. 0.002 0.001 0.461± 0.055 0.476± 0.048 0.443± 0.048 0.491± 0.057

Best (0.0) C.E. T. 0.002 0.001 0.909± 0.029 0.828± 0.036 0.819± 0.037 0.917± 0.029

A
cc

.o
n
D

a 0.0 C.E. B.T. 0.002 0.001 0.896± 0.031 0.805± 0.038 0.797± 0.039 0.895± 0.032

1.0 C.E. B.T. 0.02 0.001 0.508± 0.056 0.496± 0.048 0.22± 0.04 0.499± 0.057

Best (0.0) C.E. B.T. 0.002 0.001 0.896± 0.031 0.805± 0.038 0.797± 0.039 0.895± 0.032

F1
on
D

a 0.0 C.E. T. 0.0002 0.01 0.913± 0.028 0.832± 0.036 0.83± 0.036 0.912± 0.03

1.0 C.E. B.T. 0.0002 0.001 0.51± 0.056 0.493± 0.048 0.477± 0.048 0.516± 0.057

Best (0.75) C.E. T. 0.0002 0.01 0.892± 0.032 0.81± 0.038 0.807± 0.038 0.898± 0.032

PR
A

U
C

on
D

a

0.0 C.E. T. 0.002 0.001 0.91± 0.03 0.829± 0.037 0.82± 0.038 0.917± 0.029

1.0 C.E. B.T. 0.002 0.001 0.462± 0.056 0.477± 0.049 0.444± 0.049 0.491± 0.057

Best (0.0) C.E. T. 0.002 0.001 0.91± 0.03 0.829± 0.037 0.82± 0.038 0.917± 0.029

A
U

C
on
D

c 0.0 C.E. T. 0.0002 0.001 0.898± 0.031 0.813± 0.037 0.808± 0.038 0.906± 0.031

1.0 C.E. B.T. 0.0002 0.001 0.419± 0.055 0.42± 0.047 0.397± 0.047 0.516± 0.057

Best (0.5) C.E. T. 0.002 0.001 0.902± 0.03 0.813± 0.037 0.81± 0.038 0.893± 0.033

A
cc

.o
n
D

c 0.0 C.E. T. 0.002 0.001 0.909± 0.029 0.828± 0.036 0.819± 0.037 0.917± 0.029

1.0 C.E. B.T. 0.0002 0.001 0.419± 0.055 0.42± 0.047 0.397± 0.047 0.491± 0.057

Best (0.25) C.E. T. 0.0002 0.01 0.911± 0.029 0.83± 0.036 0.828± 0.036 0.904± 0.031

F1
on
D

c 0.0 C.E. T. 0.002 0.001 0.909± 0.029 0.828± 0.036 0.819± 0.037 0.917± 0.029

1.0 C.E. B.T. 0.0002 0.001 0.419± 0.055 0.42± 0.047 0.397± 0.047 0.516± 0.057

Best (0.0) C.E. T. 0.002 0.001 0.909± 0.029 0.828± 0.036 0.819± 0.037 0.917± 0.029

PR
A

U
C

on
D

c

0.0 C.E. T. 0.0002 0.001 0.899± 0.032 0.814± 0.038 0.809± 0.039 0.906± 0.031

1.0 H. B.T. 0.0002 0.01 0.445± 0.056 0.465± 0.049 0.442± 0.049 0.448± 0.056

Best (0.0) C.E. T. 0.0002 0.001 0.899± 0.032 0.814± 0.038 0.809± 0.039 0.906± 0.031

Table 5: Comparison label prediction performance on the GIFGIF Happiness dataset. For each α, we find the optimal absolute loss
function (La), comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E),
hinge (H.), Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1
score, and PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet
corresponds to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training
with α = 0.0 (comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Da Acc. on Da F1 on Da PRAUC on Da

A
U

C
on
D

a 0.0 C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 C.E. B.T. 0.0002 0.001 0.579± 0.075 0.56± 0.065 0.557± 0.065 0.591± 0.075

Best (0.0) C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

A
cc

.o
n
D

a 0.0 C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 C.E. B.T. 0.0002 0.001 0.579± 0.075 0.56± 0.065 0.557± 0.065 0.591± 0.075

Best (0.25) H. T. 0.0002 0.01 0.865± 0.049 0.814± 0.051 0.813± 0.052 0.852± 0.051

F1
on
D

a 0.0 C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 C.E. B.T. 0.002 0.001 0.616± 0.074 0.516± 0.066 0.667± 0.062 0.633± 0.073

Best (0.5) H. T. 0.0002 0.001 0.853± 0.051 0.814± 0.051 0.823± 0.05 0.827± 0.055

PR
A

U
C

on
D

a

0.0 C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 C.E. B.T. 0.0002 0.001 0.579± 0.075 0.56± 0.065 0.557± 0.065 0.591± 0.075

Best (0.25) H. T. 0.0002 0.001 0.9± 0.042 0.832± 0.049 0.826± 0.05 0.88± 0.046

A
U

C
on
D

c 0.0 C.E. T. 0.0002 0.01 0.886± 0.045 0.809± 0.052 0.806± 0.052 0.874± 0.047

1.0 H. B.T. 0.0002 0.01 0.595± 0.074 0.507± 0.066 0.673± 0.062 0.599± 0.074

Best (0.25) H. T. 0.0002 0.01 0.865± 0.049 0.814± 0.051 0.813± 0.052 0.852± 0.051

A
cc

.o
n
D

c 0.0 C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 H. B.T. 0.0002 0.01 0.595± 0.074 0.507± 0.066 0.673± 0.062 0.599± 0.074

Best (0.25) C.E. T. 0.0002 0.01 0.865± 0.049 0.814± 0.051 0.813± 0.052 0.852± 0.051

F1
on
D

c 0.0 C.E. T. 0.002 0.001 0.887± 0.045 0.805± 0.052 0.819± 0.051 0.873± 0.047

1.0 H. B.T. 0.002 0.001 0.615± 0.074 0.56± 0.065 0.686± 0.061 0.599± 0.074

Best (0.25) C.E. T. 0.0002 0.01 0.865± 0.049 0.814± 0.051 0.813± 0.052 0.852± 0.051

PR
A

U
C

on
D

c

0.0 C.E. T. 0.0002 0.01 0.886± 0.045 0.809± 0.052 0.806± 0.052 0.874± 0.047

1.0 H. B.T. 0.002 0.001 0.615± 0.074 0.56± 0.065 0.686± 0.061 0.599± 0.074

Best (0.25) H. T. 0.0002 0.01 0.865± 0.049 0.814± 0.051 0.813± 0.052 0.852± 0.051

Table 6: Absolute label prediction performance on the GIFGIF Pleasure dataset. For each α, we find the optimal absolute loss
function (La), comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E),
hinge (H.), Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1
score, and PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet
corresponds to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training
with α = 0.0 (comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Dc Acc. on Dc F1 on Dc PRAUC on Dc

A
U

C
on
D

a 0.0 C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

1.0 C.E. B.T. 0.0002 0.001 0.53± 0.076 0.509± 0.065 0.538± 0.065 0.601± 0.074

Best (0.0) C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

A
cc

.o
n
D

a 0.0 C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

1.0 C.E. B.T. 0.0002 0.001 0.53± 0.076 0.509± 0.065 0.538± 0.065 0.601± 0.074

Best (0.25) H. T. 0.0002 0.01 0.84± 0.052 0.755± 0.056 0.775± 0.055 0.855± 0.049

F1
on
D

a 0.0 C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

1.0 C.E. B.T. 0.002 0.001 0.597± 0.074 0.593± 0.064 0.627± 0.063 0.613± 0.073

Best (0.5) H. T. 0.0002 0.001 0.832± 0.053 0.733± 0.058 0.754± 0.056 0.836± 0.052

PR
A

U
C

on
D

a

0.0 C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

1.0 C.E. B.T. 0.0002 0.001 0.53± 0.076 0.509± 0.065 0.538± 0.065 0.601± 0.074

Best (0.25) H. T. 0.0002 0.001 0.828± 0.053 0.702± 0.06 0.715± 0.059 0.843± 0.051

A
U

C
on
D

c 0.0 C.E. T. 0.0002 0.01 0.836± 0.052 0.742± 0.057 0.764± 0.056 0.849± 0.05

1.0 H. B.T. 0.0002 0.01 0.531± 0.076 0.492± 0.065 0.463± 0.065 0.618± 0.073

Best (0.25) H. T. 0.0002 0.01 0.84± 0.052 0.755± 0.056 0.775± 0.055 0.855± 0.049

A
cc

.o
n
D

c 0.0 C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

1.0 H. B.T. 0.0002 0.01 0.531± 0.076 0.492± 0.065 0.463± 0.065 0.618± 0.073

Best (0.25) C.E. T. 0.0002 0.01 0.84± 0.052 0.755± 0.056 0.775± 0.055 0.855± 0.049

F1
on
D

c 0.0 C.E. T. 0.002 0.001 0.835± 0.053 0.729± 0.058 0.742± 0.057 0.856± 0.049

1.0 H. B.T. 0.002 0.001 0.631± 0.072 0.615± 0.064 0.662± 0.062 0.618± 0.073

Best (0.25) C.E. T. 0.0002 0.01 0.84± 0.052 0.755± 0.056 0.775± 0.055 0.855± 0.049

PR
A

U
C

on
D

c

0.0 C.E. T. 0.0002 0.01 0.836± 0.052 0.742± 0.057 0.764± 0.056 0.849± 0.05

1.0 H. B.T. 0.002 0.001 0.631± 0.072 0.615± 0.064 0.662± 0.062 0.618± 0.073

Best (0.25) H. T. 0.0002 0.01 0.84± 0.052 0.755± 0.056 0.775± 0.055 0.855± 0.049

Table 7: Comparison label prediction performance on the GIFGIF Pleasure dataset. For each α, we find the optimal absolute loss
function (La), comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E),
hinge (H.), Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1
score, and PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet
corresponds to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training
with α = 0.0 (comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Da Acc. on Da F1 on Da PRAUC on Da

A
U

C
on
D

a 0.0 C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.002 0.01 0.835± 0.017 0.824± 0.011 0.0± 0.0 0.528± 0.021

Best (0.75) C.E. B.T. 0.02 0.001 0.914± 0.013 0.883± 0.009 0.622± 0.013 0.736± 0.019

A
cc

.o
n
D

a 0.0 C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.0002 0.01 0.87± 0.015 0.705± 0.012 0.517± 0.014 0.549± 0.021

Best (0.75) C.E. B.T. 0.02 0.001 0.914± 0.013 0.883± 0.009 0.622± 0.013 0.736± 0.019

F1
on
D

a 0.0 C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.0002 0.01 0.87± 0.015 0.705± 0.012 0.517± 0.014 0.549± 0.021

Best (0.5) C.E. B.T. 0.02 0.001 0.909± 0.013 0.87± 0.009 0.64± 0.013 0.731± 0.019

PR
A

U
C

on
D

a

0.0 C.E. B.T. 0.02 0.001 0.913± 0.013 0.822± 0.011 0.625± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.02 0.01 0.5± 0.02 0.177± 0.011 0.301± 0.013 0.177± 0.012

Best (0.0) C.E. B.T. 0.02 0.001 0.913± 0.013 0.822± 0.011 0.625± 0.013 0.731± 0.019

A
U

C
on
D

c 0.0 C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.002 0.01 0.835± 0.017 0.824± 0.011 0.0± 0.0 0.528± 0.021

Best (0.0) C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

A
cc

.o
n
D

c 0.0 C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.002 0.01 0.835± 0.017 0.824± 0.011 0.0± 0.0 0.528± 0.021

Best (0.25) C.E. B.T. 0.02 0.001 0.908± 0.013 0.882± 0.009 0.616± 0.013 0.731± 0.019

F1
on
D

c 0.0 C.E. B.T. 0.02 0.001 0.909± 0.013 0.824± 0.011 0.624± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.002 0.01 0.835± 0.017 0.824± 0.011 0.0± 0.0 0.528± 0.021

Best (0.25) C.E. B.T. 0.02 0.001 0.908± 0.013 0.882± 0.009 0.616± 0.013 0.731± 0.019

PR
A

U
C

on
D

c

0.0 C.E. B.T. 0.02 0.001 0.913± 0.013 0.822± 0.011 0.625± 0.013 0.731± 0.019

1.0 C.E. B.T. 0.002 0.01 0.835± 0.017 0.177± 0.011 0.301± 0.013 0.528± 0.021

Best (0.0) C.E. B.T. 0.02 0.001 0.913± 0.013 0.822± 0.011 0.625± 0.013 0.731± 0.019

Table 8: Absolute label prediction performance on the ROP dataset. For each α, we find the optimal absolute loss function (La),
comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E), hinge (H.),
Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1 score, and
PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet corresponds
to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training with α = 0.0
(comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Dc Acc. on Dc F1 on Dc PRAUC on Dc

A
U

C
on
D

a 0.0 C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.002 0.01 0.941± 0.015 0.859± 0.021 0.865± 0.02 0.942± 0.015

Best (0.75) C.E. B.T. 0.02 0.001 0.953± 0.013 0.869± 0.02 0.872± 0.02 0.957± 0.013

A
cc

.o
n
D

a 0.0 C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.0002 0.01 0.89± 0.02 0.785± 0.024 0.785± 0.024 0.761± 0.028

Best (0.75) C.E. B.T. 0.02 0.001 0.953± 0.013 0.869± 0.02 0.872± 0.02 0.957± 0.013

F1
on
D

a 0.0 C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.0002 0.01 0.89± 0.02 0.785± 0.024 0.785± 0.024 0.761± 0.028

Best (0.5) C.E. B.T. 0.02 0.001 0.955± 0.013 0.872± 0.02 0.875± 0.02 0.963± 0.012

PR
A

U
C

on
D

a

0.0 C.E. B.T. 0.02 0.001 0.959± 0.013 0.886± 0.019 0.89± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.02 0.01 0.5± 0.034 0.475± 0.029 0.0± 0.0 0.526± 0.034

Best (0.0) C.E. B.T. 0.02 0.001 0.959± 0.013 0.886± 0.019 0.89± 0.019 0.963± 0.012

A
U

C
on
D

c 0.0 C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.002 0.01 0.941± 0.015 0.859± 0.021 0.865± 0.02 0.942± 0.015

Best (0.0) C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

A
cc

.o
n
D

c 0.0 C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.002 0.01 0.941± 0.015 0.859± 0.021 0.865± 0.02 0.942± 0.015

Best (0.25) C.E. B.T. 0.02 0.001 0.954± 0.013 0.883± 0.019 0.886± 0.019 0.963± 0.012

F1
on
D

c 0.0 C.E. B.T. 0.02 0.001 0.955± 0.013 0.882± 0.019 0.885± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.002 0.01 0.941± 0.015 0.859± 0.021 0.865± 0.02 0.942± 0.015

Best (0.25) C.E. B.T. 0.02 0.001 0.954± 0.013 0.883± 0.019 0.886± 0.019 0.963± 0.012

PR
A

U
C

on
D

c

0.0 C.E. B.T. 0.02 0.001 0.959± 0.013 0.886± 0.019 0.89± 0.019 0.963± 0.012

1.0 C.E. B.T. 0.002 0.01 0.941± 0.015 0.859± 0.021 0.865± 0.02 0.942± 0.015

Best (0.0) C.E. B.T. 0.02 0.001 0.959± 0.013 0.886± 0.019 0.89± 0.019 0.963± 0.012

Table 9: Comparison label prediction performance on the ROP dataset. For each α, we find the optimal absolute loss function (La),
comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E), hinge (H.),
Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1 score, and
PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet corresponds
to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training with α = 0.0
(comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Da Acc. on Da F1 on Da PRAUC on Da

A
U

C
on
D

a 0.0 C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

1.0 H. B.T. 0.002 0.01 0.746± 0.037 0.677± 0.035 0.659± 0.036 0.678± 0.041

Best (0.0) C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

A
cc

.o
n
D

a 0.0 C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

1.0 H. B.T. 0.002 0.01 0.746± 0.037 0.677± 0.035 0.659± 0.036 0.678± 0.041

Best (0.0) C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

F1
on
D

a 0.0 C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

1.0 C.E. B.T. 0.02 0.001 0.741± 0.038 0.618± 0.036 0.684± 0.035 0.66± 0.041

Best (0.0) C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

PR
A

U
C

on
D

a

0.0 C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

1.0 H. B.T. 0.002 0.01 0.746± 0.037 0.677± 0.035 0.659± 0.036 0.678± 0.041

Best (0.0) C.E. T. 0.0002 0.01 0.87± 0.028 0.82± 0.029 0.809± 0.03 0.82± 0.033

A
U

C
on
D

c 0.0 C.E. B.T. 0.002 0.01 0.783± 0.035 0.733± 0.033 0.733± 0.033 0.698± 0.04

1.0 C.E. B.T. 0.02 0.001 0.721± 0.039 0.554± 0.037 0.025± 0.012 0.638± 0.042

Best (0.5) C.E. H. 0.02 0.001 0.764± 0.036 0.706± 0.034 0.679± 0.035 0.644± 0.042

A
cc

.o
n
D

c 0.0 C.E. B.T. 0.002 0.01 0.783± 0.035 0.733± 0.033 0.733± 0.033 0.698± 0.04

1.0 C.E. B.T. 0.02 0.001 0.721± 0.039 0.554± 0.037 0.025± 0.012 0.638± 0.042

Best (0.75) C.E. H. 0.02 0.001 0.758± 0.037 0.682± 0.035 0.633± 0.036 0.68± 0.04

F1
on
D

c 0.0 C.E. B.T. 0.002 0.01 0.783± 0.035 0.733± 0.033 0.733± 0.033 0.698± 0.04

1.0 C.E. B.T. 0.02 0.001 0.721± 0.039 0.554± 0.037 0.025± 0.012 0.638± 0.042

Best (0.5) H. B.T. 0.002 0.01 0.784± 0.035 0.718± 0.034 0.733± 0.033 0.674± 0.041

PR
A

U
C

on
D

c

0.0 C.E. B.T. 0.002 0.01 0.783± 0.035 0.733± 0.033 0.733± 0.033 0.698± 0.04

1.0 C.E. B.T. 0.02 0.001 0.741± 0.038 0.618± 0.036 0.684± 0.035 0.66± 0.041

Best (1.0) C.E. B.T. 0.02 0.001 0.741± 0.038 0.618± 0.036 0.684± 0.035 0.66± 0.041

Table 10: Absolute label prediction performance on the FAC dataset. For each α, we find the optimal absolute loss function (La),
comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E), hinge (H.),
Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1 score, and
PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet corresponds
to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training with α = 0.0
(comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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α
Hyperparameters
Optimized on
Validation Set

Performance Metrics on Test Set

La Lc λ L.R. AUC on Dc Acc. on Dc F1 on Dc PRAUC on Dc

A
U

C
on
D

a 0.0 C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

1.0 H. B.T. 0.002 0.01 0.792± 0.06 0.75± 0.057 0.746± 0.058 0.757± 0.064

Best (0.0) C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

A
cc

.o
n
D

a 0.0 C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

1.0 H. B.T. 0.002 0.01 0.792± 0.06 0.75± 0.057 0.746± 0.058 0.757± 0.064

Best (0.0) C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

F1
on
D

a 0.0 C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

1.0 C.E. B.T. 0.02 0.001 0.821± 0.057 0.75± 0.057 0.736± 0.058 0.797± 0.06

Best (0.0) C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

PR
A

U
C

on
D

a

0.0 C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

1.0 H. B.T. 0.002 0.01 0.792± 0.06 0.75± 0.057 0.746± 0.058 0.757± 0.064

Best (0.0) C.E. T. 0.0002 0.01 0.72± 0.068 0.706± 0.06 0.716± 0.06 0.66± 0.072

A
U

C
on
D

c 0.0 C.E. B.T. 0.002 0.01 0.751± 0.065 0.71± 0.06 0.706± 0.06 0.735± 0.066

1.0 C.E. B.T. 0.02 0.001 0.809± 0.058 0.733± 0.058 0.72± 0.059 0.734± 0.066

Best (0.5) C.E. H. 0.02 0.001 0.814± 0.057 0.755± 0.057 0.74± 0.058 0.749± 0.065

A
cc

.o
n
D

c 0.0 C.E. B.T. 0.002 0.01 0.751± 0.065 0.71± 0.06 0.706± 0.06 0.735± 0.066

1.0 C.E. B.T. 0.02 0.001 0.809± 0.058 0.733± 0.058 0.72± 0.059 0.734± 0.066

Best (0.75) C.E. H. 0.02 0.001 0.817± 0.057 0.759± 0.057 0.743± 0.058 0.774± 0.062

F1
on
D

c 0.0 C.E. B.T. 0.002 0.01 0.751± 0.065 0.71± 0.06 0.706± 0.06 0.735± 0.066

1.0 C.E. B.T. 0.02 0.001 0.809± 0.058 0.733± 0.058 0.72± 0.059 0.734± 0.066

Best (0.5) H. B.T. 0.002 0.01 0.785± 0.061 0.737± 0.058 0.736± 0.058 0.76± 0.064

PR
A

U
C

on
D

c

0.0 C.E. B.T. 0.002 0.01 0.751± 0.065 0.71± 0.06 0.706± 0.06 0.735± 0.066

1.0 C.E. B.T. 0.02 0.001 0.821± 0.057 0.75± 0.057 0.736± 0.058 0.797± 0.06

Best (1.0) C.E. B.T. 0.02 0.001 0.821± 0.057 0.75± 0.057 0.736± 0.058 0.797± 0.06

Table 11: Comparison label prediction performance on the FAC dataset. For each α, we find the optimal absolute loss function (La),
comparison loss function (Lc), regularization parameter λ, and learning rate (L.R.). We consider cross-entropy (C.E), hinge (H.),
Bradley-Terry (B.T.), and Thurstone (T.) as loss functions. We repeat this optimization for AUC, accuracy (Acc.), F1 score, and
PRAUC metrics on the absolute (Da) and the comparison labels (Dc) of the validation set. Accordingly, each row triplet corresponds
to the metric on which we optimize the hyperparameters. We then report all eight metrics on the test set, for training with α = 0.0
(comparison labels only), α = 1.0 (absolute labels only), and best performing α ∈ [0, 1].
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