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Abstract

Important data mining problems such as nearest-neighbor search and
clustering admit theoretical guarantees when restricted to objects
embedded in a metric space. Graphs are ubiquitous, and clustering and
classification over graphs arise in diverse areas, including, e.g., image
processing and social networks. Unfortunately, popular distance scores
used in these applications, that scale over large graphs, are not metrics and
thus come with no guarantees. Classic graph distances such as, e.g., the
chemical distance and the Chartrand-Kubiki-Shultz distance are arguably
natural and intuitive, and are indeed also metrics, but they are intractable:
as such, their computation does not scale to large graphs. We define a broad
family of graph distances, that includes both the chemical and the
Chartrand-Kubiki-Shultz distances, and prove that these are all metrics.
Crucially, we show that our family includes metrics that are tractable.
Moreover, we extend these distances by incorporating auxiliary node
attributes, which is important in practice, while maintaining both the metric
property and tractability.

Keywords: metric spaces; graph distances; graph matching; graph
isomorphism; convex optimization; spectral algorithms

1 Introduction

Graph similarity and the related problem of graph isomorphism have a long his-
tory in data mining, machine learning, and pattern recognition [1–3]. Graph dis-
tances naturally arise in this literature: intuitively, given two (unlabeled) graphs,
their distance is a score quantifying their structural differences. A highly desirable
property for such a score is that it is a metric, i.e., it is non-negative, symmetric,
positive-definite, and, crucially, satisfies the triangle inequality. Metrics exhibit
significant computational advantages over non-metrics. For example, operations
such as nearest-neighbor search [4–6], clustering [7], outlier detection [8], and di-
ameter computation [9] admit fast algorithms precisely when performed over ob-
jects embedded in a metric space. To this end, proposing tractable graph metrics is
of paramount importance in applying such algorithms to graphs.

Unfortunately, graph metrics of interest are often computationally expensive. A
well-known example is the chemical distance [10]. Formally, given graphs GA and
GB, represented by their adjacency matrices A,B ∈ {0,1}n×n, the chemical distance
dPn(A,B) is defined in terms of a mapping between the two graphs that minimizes
their edge discrepancies, i.e.:

dPn(A,B) = minP ∈Pn ‖AP − P B‖F , (1)
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where Pn is the set of permutation matrices of size n and ‖ · ‖F is the Frobenius
norm (see Sec. 2 for definitions). The Chartrand-Kubiki-Shultz (CKS) [11] distance
is an alternative: CKS is again given by (1) but, instead of edges, matrices A and B
contain the pairwise shortest path distances between any two nodes.
The chemical and CKS distances have important properties. First, they are zero

if and only if the graphs are isomorphic, which appeals to both intuition and
practice; second, as desired, they are metrics over the quotient space defined by
graph isomorphism (see Sec. 2); third, they have a natural interpretation, cap-
turing global structural similarities between graphs. However, finding an optimal
permutation P is notoriously hard; graph isomorphism, which is equivalent to de-
ciding if there exists a permutation P such that AP = P B (for both adjacency and
path matrices), is famously a problem that is neither known to be in P nor shown
to be NP-hard [12]. There is a large and expanding literature on scalable heuris-
tics to estimate the optimal permutation P [13–16]. Despite their computational
advantages, unfortunately, using them to approximate dPn(A,B) breaks the metric
property.
This significantly degrades the performance of many important tasks that rely on

computing distances between graphs. For example, there is a clear separation on
the approximability of clustering over metric and non-metric spaces [7]. We also
demonstrate this empirically in Section 6 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric distances significantly
increases the misclassification rate, compared to clustering using metrics.
An additional issue that arises in practice is that nodes often have attributes

not associated with adjacency. For example, in social networks, nodes may contain
profiles with a user’s age or gender; similarly, nodes in molecules may be labeled
by atomic numbers. Such attributes are not captured by the chemical or CKS dis-
tances. However, in such cases, only label-preserving permutations P may make
sense (e.g., mapping females to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus important from a practical
perspective.

1.1 Contributions
We seek generalizations of the chemical and CKS distances that (a) satisfy the metric
property and (b) are tractable: by this, we mean that they can be computed either
by solving a convex optimization problem, or by a polynomial time algorithm.
Specifically, we study generalizations of (1) of the form:

dS (A,B) = minP ∈S ‖AP − P B‖ (2)

where S ⊂ Rn×n is closed and bounded, ‖ · ‖ is a matrix norm, and A,B ∈ Rn×n are
arbitrary real matrices (representing adjacency, path distances, weights, etc.). We
make the following contributions:

• We prove sufficient conditions on S and norm ‖ · ‖ under which (2) is a pseu-
dometric, i.e., a metric over a quotient space defined by equivalence relation
dS (A,B) = 0. In particular, we show that dS is a pseudometric when:
(i) S = Pn and ‖ · ‖ is any entry-wise or operator norm;
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(ii) S = Wn, the set of doubly stochastic matrices, ‖ · ‖ is an arbitrary entry-
wise norm, and A,B are symmetric; a modification on dS extends this
result to both operator norms as well as arbitrary matrices (capturing,
e.g., directed graphs); and

(iii) S =On, the set of orthogonal matrices, and ‖ · ‖ is the operator or entry-
wise 2-norm.

We also characterize the corresponding equivalence classes (see Sec. 3). Re-
laxations (ii) and (iii) are very important from a practical standpoint. For all
matrix norms, computing (2) with S =Wn is tractable, as it is a convex opti-
mization. For S = On, (2) is non-convex but is still tractable, as it reduces to
a spectral decomposition. This was known for the Frobenius norm [17]; we
prove this is also the case for the operator 2-norm.

• We include node attributes in a natural way in the definition of dS as both
soft (i.e., penalties in the objective) or hard constraints in Eq. (2). Crucially, we
do this without affecting the pseudometric property and tractability. This allows
us to explore label or feature preserving permutations, that incorporate both
(a) exogenous node attributes, such as, e.g., user age or gender in a social
network, as well as (b) endogenous, structural features of each node, such as
its degree or the number of triangles that pass through it. We numerically
show that adding these constraints can speed up the computation of dS .

From an experimental standpoint, we extensively compare our tractable metrics
to several existing heuristic approximations. We also demonstrate the tractabil-
ity of our metrics by parallelizing their execution using the Alternating Direction
Method of Multipliers (ADMM) [18], which we implement over a compute cluster
using Apache Spark [19].

1.2 Related Work
Graph distance (or similarity) scores find applications in varied fields such as in
image processing [1], chemistry [10, 20], and social network analysis [2, 3]. Graph
distances are easy to define when, contrary to our setting, the correspondence be-
tween graph nodes is known, i.e., graphs are labeled [3, 21, 22]. Beyond the chem-
ical distance, classic examples of distances between unlabeled graphs are the edit
distance [23, 24] and themaximum common subgraph distance [25, 26], both of which
also have versions for labeled graphs. Both are pseudometrics and are hard to com-
pute, while existing heuristics [27, 28] do not satisfy the triangle inequality. The
reaction distance [29] is also a pseudometric, and is directly related to the chem-
ical distance [10] when edits are restricted to edge additions and deletions. Jain
[30] also considers an extension of the chemical distance, limited to the Frobenius
norm, that incorporates edge attributes. However, it is not immediately clear how
to relax the above pseudometrics [29, 30] to attain tractability, while keeping the
pseudometric property.
A pseudometric can also be induced by embedding graphs in a metric space and

measuring the distance between embeddings [31–33]. Several works follow such
an approach, mapping graphs, e.g., to spaces determined by their spectral decom-
position [34–36]. In general, in contrast to our pseudometrics, such approaches
are not as discriminative, as embeddings summarize graph structure. Continuous
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relaxations of graph isomorphism, both convex and non-convex [15, 17, 37], have
found applications in a variety of contexts, including social networks [38], com-
puter vision [39], shape detection [40, 41], and neuroscience [42]. Lyzinski et al.
[15] in particular show (both theoretically and experimentally) that a non-convex
relaxation is advantageous over one of the relaxations we consider here (namely,
dS with S =Wn, ‖ · ‖ = ‖ · ‖F) in recovering the optimal permutation P . They also in-
corporate features via a trace penalty as we do in Sec. 3.2 (c.f. Eq. (17)). None of the
above works however focus on the metric properties of the resulting relaxations,
which several fail to satisfy [15, 38, 40–42].

Metrics naturally arise in data mining tasks, including clustering [43, 44], Near-
est Neighbour (NN) search [4–6], and outlier detection [8]. Some of these tasks
become tractable, or admit formal guarantees, precisely when performed over a
metric space. For example, finding the nearest neighbor [4–6] or the diameter of a
data-set [9] become polylogarithimic under metric assumptions; similarly, approx-
imation algorithms for clustering (which is NP-hard) rely on metric assumptions,
whose absence leads to a deterioration of known bounds [7]. Our search for met-
rics is motivated by these considerations.

The present paper is an extended version of a paper by the same authors that
appeared in the 2018 SIAM International Conference on Data Mining [45], which
did not contain any proofs. In addition to the material included in the conference
version, the present paper contains (a) proofs of all main theorems, establishing
sufficient conditions under which a solution to (2) yields a pseudo-metric, (b) a
polynomial-time spectral algorithm for computing (2) over the Stiefel manifold,
(c) extensions of our metrics to graphs of unequal sizes, and (d) an extended ex-
periment section.

2 Notation and Preliminaries

We begin by introducing some terminology that we use throughout the paper. A
summary of our notation can be found in Table 1.

Graphs. We represent an undirected unweighted graph G(V ,E) with node set
V = [n] ≡ {1, . . . ,n} and edge set E ⊆ [n] × [n] by its adjacency matrix, i.e. A =
[ai,j ]i,j∈[n] ∈ {0,1}n×n such that aij = aji = 1 if and only if (i, j) ∈ E. In particular,
A is symmetric, i.e. A = A>. We denote the set of all real, symmetric matrices by
Sn. Directed unweighted graphs are represented by (possibly non-symmetric) bi-
nary matrices A ∈ {0,1}n×n, and weighted graphs by real matrices A ∈ Rn×n.

Matrix Norms. Given a matrix A = [aij ]i,j∈[n] ∈ Rn×n and a p ∈ N+ ∪ {∞}, its
induced or operator p-norm is defined in terms of the vector p-norm through
‖A‖p = supx∈Rn:‖x‖p=1 ‖Ax‖p, while its entry-wise p-norm is given by ‖A‖p =

(
∑n
i=1

∑n
j=1 |aij |p)1/p, for p ∈ N+, and ‖A‖∞ = maxi,j |ai,j |. We denote the entry-wise

2-norm (i.e., the Frobenius norm) as ‖ · ‖F . Recall that all matrix norms on Rn×n are
equivalent: given two norms ‖ · ‖,‖ · ‖′ , there exist constants c1, c2 > 0 such that

c1‖A‖′ ≤ ‖A‖ ≤ c2‖A‖′ for all A ∈ Rn×n. (3)
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Permutation, Doubly Stochastic, and Orthogonal Matrices. We denote the set of per-
mutation matrices as

Pn ≡ {P ∈ {0,1}n×n : P 1 = 1, P >1 = 1}, (4)

the set of doubly-stochastic matrices (i.e., the Birkhoff polytope) as

Wn ≡ {W ∈ [0,1]n×n :W1 = 1,W>1 = 1}, (5)

and the set of orthogonal matrices (i.e., the Stiefel manifold) as

On ≡ {U ∈ Rn×n :UU> =U>U = I}. (6)

Note that

Pn =Wn ∩On, (7)

i.e., permutation matrices are precisely the matrices that are both doubly stochas-
tic and orthogonal. Moreover, the Birkoff-von Neumann Theorem [46] states that

Wn = conv(Pn)

=
{
W ∈ [0,1]n×n :W =

∑
P ∈Pn θP P , for some θ ∈ R|P

n |
+ s.t. θ>1 = 1

}
,

(8)

i.e., the Birkoff polytope is the convex hull of Pn. Hence, every doubly stochastic
matrix can be written as a convex combination of permutation matrices.

Metrics. Given a set Ω, a function d : Ω ×Ω→ R is called a metric, and the pair
(Ω,d) is called a metric space, if for all x,y,z ∈Ω:

d(x,y) ≥ 0 (non-negativity) (9a)

d(x,y)=0 iff x=y (pos. definiteness) (9b)

d(x,y) = d(y,x) (symmetry) (9c)

d(x,y)≤d(x,z)+d(z,y) (triangle inequality) (9d)

A function d is called a pseudometric if it satisfies (9a), (9c), and (9d), but the pos-
itive definiteness property (9b), also known as the identity of indiscernibles, is re-
placed by the (weaker) property:

d(x,x) = 0 for all x ∈Ω. (9e)

If d is a pseudometric, then d(x,y) = 0 defines an equivalence relation x ∼d y over
Ω. A pseudometric is then a metric over Ω/∼d , the quotient space of ∼d .
A function d that satisfies (9a), (9b), and (9d) but not the symmetry property (9c)

is called a quasimetric. If d is a quasimetric, then its symmetric extension d̄ :Ω×Ω→
R, defined as

d̄(x,y) = d(x,y) + d(y,x), (10)
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is a metric over Ω.

Graph Isomorphism, Chemical Distance, and CKS Distance. Let A,B ∈ Rn×n be the
adjacency matrices of two graphs GA and GB. Then, GA and GB are isomorphic if
and only if there exists P ∈ Pn s.t.

P >AP = B or, equivalently, AP = P B. (11)

The chemical distance, given by (1), extends the second relationship in (11) to
capture distances between graphs. More generally, let ‖ · ‖ be a matrix norm in
Rn×n. For some Ω ⊆ Rn×n, define dS :Ω×Ω→ R+ as:

dS (A,B) = minP ∈S ‖AP − P B‖, (12)

where S ⊂ Rn×n is a closed and bounded set, so that the infimum is indeed attained.
Note that dS is the chemical distance (1) when Ω = Rn×n, S = Pn and ‖ · ‖ = ‖ · ‖F .

The Chartrant-Kibiki-Shultz (CKS) distance [11] can also be defined in terms of
(12), withmatricesA,B containing pairwise path distances between any two nodes;
equivalently, CKS is the chemical distance of two weighted complete graphs with
path distances as edge weights.

The Weisfeiler-Lehman (WL) Algorithm. The WL algorithm [47] is a heuristic for
solving the graph isomorphism problem. We use this algorithm to (a) describe the
quotient space over which (12) is a metric when S = Wn (see Sec. 3), and (b) to
generate node embeddings in our experiments (see Sec. 6).
To gain some intuition on the algorithm, note that two isomorphic graphs must

have the same degree distribution. More broadly, the distributions of k-hop neigh-
borhoods in the two graphs must also be identical. Building on this observation, to
test if two undirected, unweighted graphs are isomorphic, WL colors the nodes of
a graph G(V ,E) iteratively. At iteration 0, each node v ∈ V receives the same color
c0(v) := 1. Colors at iteration k +1 ∈ N are defined recursively via

ck+1(v) := hash
(
sort

(
clistkv

))
(13)

where hash is a perfect hash function, and

clistkv = [ck(u) : (u,v) ∈ E)] (14)

is a list containing the colors of all of v’s neighbors at iteration k.
Intuitively, two nodes in V share the same color after k iterations if their k-hop

neighborhoods are isomorphic. WL terminates when the partition of V induced by
colors is stable from one iteration to the next. This coloring extends to weighted
directed graphs by appending weights and directions to colors in clistkv .
After coloring two graphs GA,GB, WL declares a non-isomorphism if their color

distributions differ. If not, then they may be isomorphic and WL gives a set of
constraints on candidate isomorphisms: a permutation P under which AP = P B

must map nodes in GA to nodes in GB of the same color.
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3 Main Results

Motivated by the chemical and CKS distances, we establish general conditions on
S and ‖ · ‖ under which dS is a metric over Ω, for arbitrary weighted graphs. For
concreteness, we focus here on distances between graphs of equal size. Extensions
to graphs of unequal size are described in Sec. 5.

3.1 A Family of Graph Metrics
Optimization over Permutation Matrices. Our first result establishes that dPn is a
pseudometric over all weighted graphs when ‖ · ‖ is an arbitrary entry-wise or op-
erator norm.

Theorem 1 If S = Pn and ‖ · ‖ is an arbitrary entry-wise or operator norm, then dS
given by (12) is a pseudometric over Ω = Rn×n.

Hence, dPn is a pseudometric under any entry-wise or operator norm over arbi-
trary directed, weighted graphs.

Optimization over the Birkhoff Polytope. Our second result states that the pseudo-
metric property extends to the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 2 If S =Wn and ‖ · ‖ is an arbitrary entry-wise norm, then dS given by (12)
is a pseudometric overΩ = Sn×n. If ‖·‖ is an arbitrary entry-wise or operator norm, then
its symmetric extension d̄S (A,B) = dS (A,B)+dS (B,A) is a pseudometric overΩ = Rn×n.

Hence, if S = Wn and ‖ · ‖ is an arbitrary entry-wise norm, then (12) defines a
pseudometric over undirected graphs. The symmetry property (9c) breaks if ‖ · ‖ is
an operator norm or graphs are directed. In both of these two cases dS is a quasi-
metric over the quotient spaceΩ/∼d , and symmetry is attained via the symmetric
extension d̄S .
Theorem 2 has significant practical implications. In contrast to dPn and its ex-

tensions implied by Theorem 1, computing dWn under any operator or entry-wise
norm is tractable, in the sense that involves minimizing a convex function subject
to linear constraints [48–50].

Optimization over the Stiefel Manifold. A more limited result applies to the case
when S is the Stiefel manifold On:

Theorem 3 If S = On and ‖ · ‖ is either the operator (i.e., spectral) or the entry-wise
(i.e., Frobenius) 2-norm, then dS given by (12) is a pseudometric over Ω = Rn×n.

Though (12) is not a convex problem when S =On, it is also tractable. Umeyama
[17] shows that the optimization can be solved exactly when ‖ · ‖ = ‖ · ‖F andΩ = Sn

(i.e., for undirected graphs) by performing a spectral decomposition on A and B.
We extend this result, showing that the same procedure also applies when ‖ · ‖ is
the operator 2-norm (see Thm. 7 in Sec. 4.3). In the general case of directed graphs,
(12) is a classic example of a problem that can be solved through optimization on
manifolds [51].
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Equivalence Classes. Observe that the equivalence of matrix norms, as stated by
Eq. (3), implies that if dS (A,B) = 0 for one matrix norm ‖ · ‖ in (12), it will be so
for all. As a result, pseudometrics dS defined through (12) for a given S have the
same quotient space Ω/ ∼dS , irrespectively of norm ‖ · ‖. We therefore turn our
attention to characterizing this quotient space in the three cases when S is the set
of permutation, doubly stochastic, and orthononal matrices.
When S = Pn, Ω/ ∼dPn is the quotient space defined by graph isomorphism: any

two adjacencymatricesA,B ∈ Rn×n satisfy dPn(A,B) = 0 if and only if their (possibly
weighted) graphs are isomorphic.
When S = Wn, the quotient space Ω/ ∼dWn has a connection to the Weisfeiler-

Lehman (WL) algorithm [47] described in Section 2: Ramana et al. [52] show that
dWn(A,B) = 0 if and only if GA and GB receive identical colors by theWL algorithm
(see also [53] for another characterization of this quotient space). This equivalence
relation is sometimes called called fractional linear isomorphism [52].
Finally, if S = On and Ω = Sn, i.e., graphs are undirected, then Ω/ ∼dOn is deter-

mined by co-spectrality: dOn(A,B) = 0 if and only if A,B have the same spectrum.
When Ω = Rn×n, dOn(A,B) = 0 implies that A,B are co-spectral, but co-spectral
matrices A,B do not necessarily satisfy dOn(A,B) = 0. Put differently, the quotient
space Ω/∼dOn in this case is a refinement of the quotient space of co-spectrality.

3.2 Incorporating Metric Embeddings
We have seen that the chemical distance dPn can be relaxed to dWn or dOn , gain-
ing tractability while still maintaining the metric property. In practice, nodes in
a graph often contain additional attributes that one might wish to leverage when
computing distances. In this section, we show that such attributes can be seam-
lessly incorporated in dS either as soft or hard constraints, without violating the
metric property.

Metric Embeddings. Given a graph GA of size n, a metric embedding of GA is a
mapping ψA : [n]→ Ω̃ from the nodes of the graph to a metric space (Ω̃, d̃). That
is, ψA maps nodes of the graph to Ω̃, where Ω̃ is endowed with a metric d̃. We refer
to a graph endowed with an embedding ψA as an embedded graph, and denote this
by (A,ψA), where A ∈ Rn×n is the adjacency matrix of GA. We list two examples:

Example 1: Node Attributes. Consider an embedding of a graph to (Rk ,‖ · ‖2) in
which every node v ∈ V is mapped to a k-dimensional vector describing “local”
attributes. These can be exogenous: e.g., features extracted from a user’s profile
(age, binarized gender, etc.) in a social network. Alternatively, attributes may be
endogenous or structural, extracted from the adjacency matrix A, e.g., the node’s
degree, the size of its k-hop neighborhood, its page-rank, etc.

Example 2: Node Colors. Let Ω̃ be an arbitrary finite set endowed with the Kro-
necker delta as a metric, that is, for s, s′ ∈ Ω̃,

d̃(s, s′) =

0, if s = s′

∞, o.w.
(15)
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Given a graph GA, a mapping ψA : [n]→ Ω̃ is then a metric embedding. The values
of Ω̃ are invariably called colors or labels, and a graph embedded in Ω̃ is a colored or
labeled graph. Colors can again be exogenous or structural: e.g., if the graph repre-
sents an organic molecule, colors can correspond to atoms, while structural colors
can be, e.g., the output of the WL algorithm (see Section 2) after k iterations.

As discussed below, node attributes translate to soft constraints in metric (12),
while node colors correspond to hard constraints. The unified view through em-
beddings allows us to establishmetric properties for both simultaneously (c.f. The-
orems 4 and 5) .

Embedding Distance. Consider two embedded graphs (A,ψA), (B,ψB) of size n that
are embedded in the same metric space (Ω̃, d̃). For u ∈ [n], a node in the first graph,
and v ∈ [n], a node in the second graph, the embedded distance between the two
nodes is given by d̃(ψA(u),ψB(v)). Let DψA,ψB = [d̃(ψA(u),ψB(v))]u∈V ,v∈V ∈ Rn×n+ be
the corresponding matrix of embedded distances. After mapping nodes to the
same metric space, it is natural to seek P ∈ Pn that preserve the embedding distance.
This amounts to finding a P ∈ Pn that minimizes:

tr
(
P >DψA,ψB

)
=
∑
u,v∈[n] Pu,v d̃(ψA(u),ψB(v)). (16)

Note that, in the case of colored graphs and the Kronecker delta distance, mini-
mizing (16) finds a P ∈ Pn that maps nodes in A to nodes in B of equal color. It
is not hard to verify that minP ∈Pn tr

(
P >DψA,ψB

)
induces a metric between graphs

embedded in (Ω̃, d̃). In fact, this follows from the more general theorem we prove
below (Theorem. 4) for A = B = 0, i.e., for distances between embedded graphs
with no edges.
Despite the combinatorial nature of Pn, the problem of minimizing (16) over Pn

is a maximum weighted matching problem, which can be solved through, e.g., the
Hungarian algorithm [54], inO(n3) time [55]. We note that this metric is not as ex-
pressive as (12): depending on the definition of the embeddings ψA, ψB, attributes
may only capture “local” similarities between nodes, as opposed to the “global”
view of a mapping attained by (12).

A Unified, Tractable Metric. Motivated by the above considerations, we focus on
unifying the “global” metric (12) with the “local” metrics induced by arbitrary
graph embeddings. Given a metric space (Ω̃, d̃), let Ψ n

Ω̃
= {ψ : [n]→ Ω̃} be the set

of all mappings from [n] to Ω̃. Then, given two embedded graphs (A,ψA), (B,ψB) ∈
Rn×n ×Ψ n

Ω̃
, we define:

dS ((A,ψA), (B,ψB)) = min
P ∈S

[
‖AP − P B‖+ tr(P >DψA,ψB )

]
(17)

for some compact set S ⊂ Rn×n and matrix norm ‖ · ‖. Our next result states that
incorporating this linear term does not affect the pseudometric property of dS .

Theorem 4 If S = Pn and ‖ · ‖ is an arbitrary entry-wise or operator norm, then dS
given by (17) is a pseudometric over the set of embedded graphs Ω = Rn×n ×Ψ n

Ω̃
.
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We stress here that this result is non-obvious: it is not true that adding any linear
term to dS leads to a quantity that satisfies the triangle inequality. It is precisely
becauseDψA,ψB contains pairwise distances that Theorem 4 holds. We can similarly
extend Theorem 2:

Theorem 5 If S = Wn and ‖ · ‖ is an arbitrary entry-wise norm, then dS given by
(17) is a pseudometric over Ω = Sn × Ψ n

Ω̃
, the set of symmetric graphs embedded in

(Ω̃, d̃). Moreover, if ‖ · ‖ is an arbitrary entry-wise or operator norm, then the symmetric
extension d̄S of (17) is a pseudometric over Ω = Rn×n ×Ψ n

Ω̃
.

Adding the linear term (16) in dS has significant practical advantages. Beyond
expressing exogenous attributes, a linear term involving colors, combined with a
Kronecker distance, translates into hard constraints: any permutation attaining a
finite objective valuemustmap nodes in one graph to nodes of the same color. The-
orem 5 therefore implies that such constraints can thus be added to the optimiza-
tion problem, while maintaining the metric property. In practice, as the number of
variables in optimization problem (12) is n2, incorporating such hard constraints
can significantly reduce the problem’s computation time; we illustrate this in Sec-
tion 6. Note that adding (16) to dOn does not preserve the metric property.

4 Proofs of Main Results

4.1 Proof of Theorems 1–3.

We define several properties that play a crucial role in our proofs.

Definition 1 We say that a set S ⊆ Rn×n is closed under multiplication if P ,P ′ ∈ S
implies that P · P ′ ∈ S.

Definition 2 We say that S ⊆ Rn×n is closed under transposition if P ∈ S implies
that P > ∈ S, and closed under inversion if P ∈ S implies that P −1 ∈ S.

Definition 3 Given a matrix norm ‖ · ‖, we say that set S ⊆ Rn×n is contractive
w.r.t. ‖ · ‖ if ‖AP ‖ ≤ ‖A‖ and ‖PA‖ ≤ ‖A‖, for all P ∈ S and A ∈ Rn×n. Put differently, S
is contractive if and only if every linear transform P ∈ S is a contraction w.r.t. ‖ · ‖.

The proofs of Theorems 1–3 rely on several common lemmas. The first three
establish conditions under which (12) satisfies the triangle inequality (9d), sym-
metry (9c), and weak property (9e), respectively:

Lemma 1 Given a matrix norm ‖ · ‖, suppose that set S ⊆ Rn×n is (a) contractive
w.r.t. ‖ · ‖, and (b) closed under multiplication. Then, for any A,B,C ∈ Rn×n, dS given
by (12) satisfies dS (A,C) ≤ dS (A,B) + dS (B,C).
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Proof Consider P ′ ∈ arg minP ∈S ‖AP − P B‖, and P ′′ ∈ arg minP ∈S ‖BP − P C‖. Then,
from closure under multiplication, P ′P ′′ ∈ S. Hence,

dS (A,C) ≤ ‖AP ′P ′′ − P ′P ′′C‖ = ‖AP ′P ′′ − P ′BP ′′ + P ′BP ′′ − P ′P ′′C‖

≤ ‖AP ′P ′′ − P ′BP ′′‖+ ‖P ′BP ′′ − P ′P ′′C‖

= ‖(AP ′ − P ′B)P ′′‖+ ‖P ′(BP ′′ − P ′′C)‖

≤ ‖AP ′ − P ′B‖+ ‖BP ′′ − P ′′C‖ = dS (A,B) + dS (B,C),

where the last inequality follows from the fact that P ′ , P ′′ are contractions.

Lemma 2 Given a matrix norm ‖·‖, suppose that S ⊂ Rn×n is (a) contractive w.r.t. ‖·‖,
and (b) closed under inversion. Then, for all A,B ∈ Rn×n, dS (A,B) = dS (B,A).

Proof Observe that property (b) implies that, for all P ∈ S, P is invertible and P −1 ∈
S. Hence,

‖AP −P B‖ = ‖P P −1AP − P BP −1P ‖=‖P (P −1A−BP −1)P ‖≤‖BP −1−P −1A‖,

as P is a contraction w.r.t ‖·‖. We can similarly show that ‖BP −1−P −1A‖ ≤ ‖AP −P B‖,
hence ‖AP − P B‖ = ‖BP −1 − P −1A‖. As S is closed under inversion,

min
P ∈S

f (P ) = min
P :P −1∈S

f (P ),

for every f : S→ R. Hence

dS (A,B) = min
P ∈S
‖BP −1 − P −1A‖ = min

P :P −1∈S
‖BP −1 − P −1A‖

=min
P ∈S
‖BP − PA‖ = dS (B,A).

Lemma 3 If I ∈ S, then dS (A,A) = 0 for all A ∈ Rn×n.

Proof Indeed, if I ∈ S, then 0 ≤ dS (A,A) ≤ ‖AI − IA‖ = 0.

Both the set of permutation matrices Pn and the Stiefel manifold On are groups
w.r.t. matrix multiplication: they are closed undermultiplication, contain the iden-
tity I , and are closed under inversion. Hence, if they are also contractive w.r.t. a
matrix norm ‖ ·‖, dPn and dOn defined in terms of this norm satisfy all assumptions
of Lemmas 1–3. We therefore turn our attention to this property.

Lemma 4 Let ‖ · ‖ be any operator or entry-wise norm. Then, S = Pn is contractive
w.r.t. ‖ · ‖.

Proof Observe first that all vector p-norms are invariant to permutations of a vec-
tor’s entries; hence, for any vector x ∈ Rd , if P ∈ Pn, ‖P x‖p = ‖x‖p. Hence, if ‖ ·‖ is an
operator p-norm, ‖P ‖ = 1, for all P ∈ S. Every operator norm is submultiplicative;
as a result ‖PA‖ ≤ ‖P ‖‖A‖ = ‖A‖ and, similarly, ‖AP ‖ ≤ ‖A‖, so the lemma follows
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for operator norms. On the other hand, if ‖ · ‖ is an entry-wise norm, then ‖A‖ is
invariant to permutations of either A’s rows or columns. Matrices PA and AP pre-
cisely amount to such permutations, so ‖PA‖ = ‖AP ‖ = ‖A‖ and the lemma follows
also for entrywise norms.

Hence, Theorem 1 follows as a direct corollary of Lemmas 1–4. Indeed, dPn is
non-negative, symmetric by Lemmas 2 and 4, satifies the triangle inequality by
Lemmas 1 and 4, as well as property (9e) by Lemma 3; hence dPn is a pseudometric
over Rn×n. Our next lemma shows that the Stiefel manifold On is contractive for
2-norms:

Lemma 5 Let ‖ · ‖ be the operator (i.e., spectral) or the entry-wise (i.e., Frobenius)
2-norm. Then, S =On is contractive w.r.t. ‖ · ‖.

Proof Any U ∈ On is an orthogonal matrix; hence, ‖U‖2 = ‖U‖F = 1. Both norms
are submultiplicative: the first as an operator norm, the second from the Cauchy-
Schwartz inequality. Hence, for U ∈On, we have ‖UA‖ ≤ ‖U‖‖A‖ = ‖A‖.
Note that an alternative proof can be obtained by the fact that both norms are

unitarily invariant (see Lemma 12).

Theorem 3 therefore follows from Lemmas 1–3 and Lemma 5, along with the
fact that On is a group. Note that On is not contractive w.r.t. other norms, e.g., ‖ · ‖1
or ‖ · ‖∞.
To prove Theorem 2, we first show that Lemma 4 along with the Birkoff-von

Neumann theorem imply that Wn is also contractive:

Lemma 6 Let ‖ · ‖ be any operator or entry-wise norm. Then, Wn is contractive
w.r.t. ‖ · ‖.

Proof By the Birkoff-con Neumann theorem [46],

Wn = conv(Pn).

Hence, for any W ∈ Wn there exist Pi ∈ Pn, θi > 0, i = 1, . . . , k, such that W =∑k
i=1θiPi and

∑k
i=1θi = 1. Both operator and entrywise p-norms are convex func-

tions; hence, for any A ∈ Rn×N :

‖WA‖ = ‖
∑k
i=1θiPiA‖ ≤

∑k
i=1θi‖PiA‖, by Jensen’s ineqality,

≤
∑k
i=1θi‖A‖, by Lemma 4,

= ‖A‖

The statement ‖AW ‖ ≤ ‖A‖ follows similarly.

Unfortunately, the Birkhoff polytope Wn is not a group, as it is not closed under
inversion. Nevertheless, it is closed under transposition; in establishing (partial)
symmetry of dWn , we leverage the following lemma:
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Lemma 7 Suppose that ‖ · ‖ is transpose-invariant, and S ⊆ Rn×n is closed under
transposition. Then, dS (A,B) = dS (B,A) for all A,B ∈ Sn.

Proof By transpose invariance and the symmetry of A and B, we have that:

‖AP − P B‖ = ‖BP > − P >A‖.

Moreover, as S is closed under transposition, for every f : S→ R,

min
P ∈S

f (P ) = min
P :P>∈S

f (P ).

Hence, dS (A,B) = minP ∈S ‖BP > − P >A‖ =minP :P>∈S ‖BP > − P >A‖ = dS (B,A).

The first part of Theorem 2 therefore follows from Lemmas 1, 3, 6, and 7: this
is because Wn contains the identity I and is closed under both transposition and
multiplication, while all entry-wise norms are transpose invariant.
To prove the second part, observe that operator norms are not transpose invari-

ant. However, if ‖·‖ is an operator norm, orΩ = Rn×n, then Lemma 6 and Lemma 1
imply that dWn satisfies non-negativity (9a) and the triangle inequality (9d), while
Lemma 3 implies that it satisfies (9e). These properties are inherited by extension
d̄S , given by (10), which also satisfies symmetry (9c), and the second part of Theo-
rem 2 follows.

4.2 Proof of Theorems 4 and 5
We begin by establishing conditions under which dS satisfies the triangle inequal-
ity (9d). We note that, in contrast to Lemma 1, we require the additional condition
that S ⊆Wn, which is not satisfied by On.

Lemma 8 Given a norm ‖ · ‖, suppose that S ⊆ Rn×n is (a) contractive w.r.t. ‖ · ‖,
(b) closed under multiplication, and (c) is a subset of Wn, i.e., contains only doubly
stochastic matrices. Then, for any (A,ψA), (B,ψB), (C,ψC) in Rn×n ×ΨΩ̃,

dS ((A,ψA), (C,ψB)) ≤ dS ((A,ψA), (B,ψB)) + dS ((B,ψB), (C,ψC)).

Proof Consider

P ′ ∈ arg min
P ∈S

(
‖AP − P B‖+ tr

(
P >DψA,ψB

))
,

and

P ′′ ∈ arg min
P ∈S

(
‖BP − P C‖+ tr

(
P >DψB,ψC

))
.

Then, from closure under multiplication, P ′P ′′ ∈ S. We have that

dS ((A,ψA), (C,ψC)) ≤ ‖AP ′P ′′ − P ′P ′′C‖+ tr
[
(P ′P ′′)>DψAψC

]
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As in the proof of Lemma 1, we can show that

‖AP ′P ′′ − P ′P ′′C‖ = ‖AP ′P ′′ − P ′BP ′′ + P ′BP ′′ − P ′P ′′C‖

≤ ‖AP ′P ′′ − P ′BP ′′‖+ ‖P ′BP ′′ − P ′P ′′C‖

= ‖(AP ′ − P ′B)P ′′‖+ ‖P ′(BP ′′ − P ′′C)‖

≤ ‖(AP ′ − P ′B)‖‖P ′′‖+ ‖P ′‖‖(BP ′′ − P ′′C)‖

≤ ‖AP ′ − P ′B‖+ ‖BP ′′ − P ′′C‖

using the fact that both P ′ and P ′′ are contractions. On the other hand,

tr
[
(P ′P ′′)>DψAψC

]
=

∑
u,v∈[n]

∑
k∈[n]

(
P ′ukP

′′
kv d̃(ψA(u),ψC(v)))

)
≤

∑
u,v∈[n]

∑
k∈[n]

[
P ′ukP

′′
kv

(
d̃(ψA(u),ψB(k)) + d̃(ψB(k),ψC(v))

)]
(as d̃ is a metric, and P ′ , P ′′ are non-negative)

=
∑
u,k∈[n]

P ′uk d̃(ψA(u),ψB(k))
∑
v∈[n]

P ′′kv+∑
k,v∈[n]

P ′′kv d̃(ψB(k),ψC(v))
∑
u∈[n]

P ′uk

≤ tr
(
(P ′)>DψA,ψB

)
+ tr

(
(P ′′)>DψB,ψC

)
,

where the last inequality follows as both P ,P > are ‖ · ‖1-norm bounded by 1 for
every P ∈ S.

The weak property (9e) is again satisfied provided the identity is included in S.

Lemma 9 If I ∈ S, then dS ((A,ψA), (A,ψA)) = 0 for all A ∈ Rn×n.

Proof Indeed, 0 ≤ dS ((A,ψA, (A,ψA)) ≤ ‖AI − IA‖+
∑
u∈[n] d̃(ψA(u),ψA(u)) = 0.

To attain symmetry overΩ = Rn×n×Ψ n
Ω̃
, we again rely on closure under inversion,

as in Lemma 2; nonetheless, in contrast to Lemma 2, due to the linear term, we also
need to assume the orthogonality of elements of S.

Lemma 10 Given a norm ‖ · ‖, suppose that S (a) is contractive w.r.t. ‖ · ‖, (b) is closed
under inversion, and (c) is a subset of On, i.e., contains only orthogonal matrices. Then,
dS ((A,ψA), (B,ψB)) = dS ((B,ψB), (A,ψA)) for all (A,ψA), (B,ψB) ∈ Rn×n ×ΨΩ̃.

Proof As in the proof of Lemma 2, we can show that contractiveness w.r.t. ‖ · ‖
along with closure under inversion imply that: ‖AP − P B‖ = ‖BP −1 − P −1A‖. As S
is closed under inversion, minP ∈S f (P ) = minP :P −1∈S f (P ) for all f : S → R, while
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orthogonality implies P −1 = P > for all P ∈ S. Hence, dS ((A,ψA), (B,ψB)) equals

min
P ∈S

[
‖AP − P B‖+ tr

(
P >DψA,ψB

)]
=min

P ∈S

[
‖BP −1 − P −1A‖+ tr

(
P −1DψA,ψB

)]
=min

P ∈S

[
‖BP −1 − P −1A‖+ tr

((
P −1

)>
D>ψA,ψB

)]
=min

P ∈S

[
‖BP −1 − P −1A‖+ tr

((
P −1

)>
DψB,ψA

)]
= min
P :P −1∈S

[
‖BP −1 − P −1A‖+ tr

((
P −1

)>
DψB,ψA

)]
= dS ((B,ψB), (A,ψA)).

Theorem 4 therefore follows from the above lemmas, as S = Pn contains I , it
is closed under multiplication and inversion, is a subset of Wn ∩On by (7), and
is contractive w.r.t. all operator and entrywise norms. Theorem 5 also follows by
using the following lemma, along with Lemmas 8 and 9.

Lemma 11 Suppose that ‖ · ‖ is transpose invariant, and S is closed under transposi-
tion. Then, dS ((A,ψA), (B,ψB)) = dS ((B,ψB), (A,ψA)) for all (A,ψA), (B,ψB) ∈ Sn ×ΨΩ̃.

Proof By the transpose invariance of ‖ · ‖ and the symmetry of A and B, we have
that: ‖AP − P B‖ = ‖BP > − P >A‖. Moreover, as S is closed under transposition,
minP ∈S f (P ) = minP :P>∈S f (P ) for any f : S→ R. Hence, dS ((A,ψA), (B,ψB)) equals

min
P ∈S

[
‖AP − P B‖+ tr

(
P >DψA,ψB

)]
=min

P ∈S

[
‖BP > − P >A‖+ tr

(
PD>ψA,ψB

)]
= min
P :P>∈S

‖BP > − P >A‖+ tr
(
(P >)>DψB,ψA

)
= dS ((B,ψB), (A,ψA))

4.3 Metric Computation Over the Stiefel Manifold.
In this section, we describe how to compute themetric dS in polynomial time when
S = On and ‖ · ‖ is the Frobenious norm or the operator 2-norm. The algorithm for
the Frobenius norm, and the proof of its correctness, is due to Umeyama [17]; we
reprove it for completeness, along with its extension to the operator norm.
Both cases make use of the following lemma:

Lemma 12 For any matrix M ∈ Rn×n and any matrix P ∈ On we have that ‖PM‖ =
‖MP ‖ = ‖M‖, where ‖ · ‖ is either the Frobenius or operator 2-norm.

Proof Recall that the operator 2-norm ‖ · ‖2 is ‖M‖2 = supx,0 ‖Mx‖2/‖x‖2 =√
σmax(M>M) =

√
σmax(MM>) = ‖M>‖2. where σmax denotes the largest singular

value. Hence, ‖PM‖2 = supx,0 ‖PMx‖2/‖x‖2 =
√
σmax(M>P >PM) =

√
σmax(M>M) =

‖M‖2. as P >P = I . Using the fact that ‖M‖2 = ‖M>‖2 for all M ∈ Rn×n, as well as
that P P > = I , we can show that ‖MP ‖2 = ‖P >M>‖2 = ‖M>‖2 = ‖M‖2.
The Frobenius norm is ‖M‖F =

√
tr(M>M) =

√
tr(MM>) = ‖M>‖F , hence

‖PM‖F =
√
tr(M>P >PM) =

√
tr(M>M) = ‖M‖F and, as in the case of the opera-

tor norm, we can similarly show ‖MP ‖F = ‖P >M>‖F = ‖M>‖F = ‖M‖F .
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In both norm cases, for A,B ∈ Sn, we can compute dS using a simple spectral
decomposition, which dominates computations and can be performed in O(n3)
time. Let A = UΣAU

T and B = VΣBV
T be the spectral decomposition of A and B.

AsA and B are real and symmetric, we can assumeU,V ∈On. Recall thatU−1 =U>

and V −1 = V >, while ΣA and ΣB are diagonal and contain the eigenvalues of A and
B sorted in increasing order; this ordering matters for computations below.
The following theorem establishes that this decomposition readily yields the dis-

tance dS , as well as the optimal orthogonal matrix P ∗, when ‖ · ‖ = ‖ · ‖F :

Theorem 6 ([17]) dS (A,B),minP ∈S ‖AP − P B‖F = ‖ΣA −ΣB‖F and the minimum is
attained by P ∗ =UV >.

Proof The proof makes use of the following lemma by Hoffman andWielandt [56]:

Lemma 13 ([56]) If A and B are Hermitian matrices with eigenvalues a1 ≤ a2 ≤ ... ≤
an and b1 ≤ b2 ≤ ... ≤ bn then ‖A−B‖2F ≥

∑n
i=1(ai − bi)2

Note that if ΣA and ΣB are diagonal matrices with the ordered eigenvalues of A
and B in the diagonal, then the conclusion of Lemma 13 can be written as ‖A−B‖F ≥
‖ΣA −ΣB‖F . For any P ∈On and ‖ · ‖ = ‖ · ‖F we have

‖AP − P B‖ = ‖(A− P BP −1)P ‖ Lem. 12= ‖A− P BP >‖ = ‖UΣAU
> − P VΣBV

>P >‖

= ‖U (ΣA −U>P VΣBV
>P >U )U>‖ Lem. 12= ‖ΣA −U>P VΣBV

>P >U‖

= ‖ΣA −∆ΣB∆>‖

where we define ∆ ≡ U>P V . As a product of orthogonal matrices, ∆ ∈ On. Notice
that

‖ΣA −∆ΣB∆>‖ = ‖ΣA −∆ΣA∆> +∆(ΣB −ΣA)∆>‖ ≤ ‖ΣA −∆ΣA∆>‖+ ‖∆(ΣB −ΣA)∆>‖
Lem. 12= ‖ΣA −∆ΣA∆>‖+ ‖ΣB −ΣA‖.

Therefore, for any P ∈On, ‖ΣA −ΣB‖ ≤ dS (A,B) ≤ ‖ΣA −∆ΣA∆>‖+ ‖ΣB −ΣA‖, where
the first inequality follows by Lemma 13 if we notice that ‖AP −P B‖ = ‖A−P BP −1‖
and that P BP −1 and B have the same spectrum for any P . If we choose P = UV >

then ∆ = I and the result follows.

We can compute dS when S =On and ‖ · ‖ is the operator norm in the exact same
way.

Theorem 7 Let ‖ · ‖ = ‖ · ‖2 be the operator 2-norm. Then, dS (A,B) , minP ∈S ‖AP −
P B‖2 = ‖ΣA −ΣB‖2 and the minimum is attained by P ∗ =UV >.

Proof The proof follows the same steps as the proof of Theorem 6, using Lemma
14 below instead of Lemma 13.
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Lemma 14 If A and B are Hermitian matrices with eigenvalues a1 ≤ a2 ≤ ... ≤ an and
b1 ≤ b2 ≤ ... ≤ bn then ‖A−B‖2 ≥maxi |ai − bi |.

Proof This is the second exercise following Corollary 6.3.4 in Horn and Johnson
[57]. We reprove this here for completeness.
Let B̃ = −B have eigenvalues b̃1 ≤ b̃2 ≤ ... ≤ b̃n and let C = A+ B̃ have eigenvalues

c1 ≤ c2 ≤ ... ≤ cn. We make use of the following lemma by Weyl (see Theorem 4.3.1
(Weyl), page 239, in [57]) to lower-bound cn.

Lemma 15 (Weyl) If X and Y are Hermitian with eigenvalues x1 ≤ ... ≤ xn and y1 ≤
... ≤ yn and if X+Y has eigenvalues w1 ≤ ... ≤ wn then xi−j+1+yj ≤ wi for all i = 1, . . . ,n
and j = 1, . . . , i.

If we choose X = B̃, Y = A and i = nwe get aj + b̃n+1−j ≤ cn for all j = 1, . . . ,n. Since
b̃n+1−j = −bj we get that aj − bj ≤ cn, for any j. Similarly, by exchanging the role
of A and B, we can lower bound the largest eigenvalue of B −A, say dn, by bj − aj
for any j. Notice that, by definition of the operator norm and the fact that A − B
is Hermitian, ‖A−B‖2 ≥ |cn| and ‖B−A‖2 ≥ |dn|. Since ‖B−A‖2 = ‖A−B‖2 we have
that ‖A−B‖2 ≥max{|cn|, |dn|} ≥max{cn,dn} ≥max{aj − bj ,bj − aj } = |aj − bj | for all j.
Taking the maximum over j we get that ‖A − B‖2 ≥ maxj |aj − bj |, and the lemma
follows.

Note again that if ΣA and ΣB are diagonal matrices with the ordered eigenvalues
of A and B in the diagonal, then the conclusion of Lemma 14 can be written as
‖A − B‖2 ≥ ‖ΣA −ΣB‖2. The proof of Thm. 7 proceeds along the same steps as the
above proof, using again the fact that, by Lemma 12, ‖M‖2 = ‖MP ‖2 = ‖PM‖2 for
any P ∈On and any matrixM, along with Lemma 15.

5 Graphs of Different Sizes
For simplicity, we have described distances over graphs of equal sizes. There are
several applications [15, 58–60] where by design we want to compare (and align
the nodes of) equal-sized graphs. E.g., in computer vision, one might want to es-
tablish a correspondence among the nodes of two graphs, each representing a geo-
metrical relation amongm special points in two images of objects of the same type.
When poses of objects do not differ significantly, the same number, m, of special
points will be extracted from each image, and hence the graphs being compared
will have the same size.
We can nevertheless extend our approach to graphs of different sizes. We can

do so by extending two graphs, GA and GB, with dummy nodes such that the new
graphs G′A and G′B have the same number of nodes. Many papers follow this ap-
proach, e.g. [61–69]. If GA has nA nodes and GB has nB nodes we can, for example,
add nB dummy nodes to GA and nA dummy nodes to GA. Once we have G′A and G′B
of equal size, we can use the methods we already described to compute a distance
between G′A and G′B and return this distance as the distance between GA and GB.
Possible graph extensions differ in how the dummy nodes connect to existing

graph nodes, how dummy nodes connect to themselves, and what kind of penalty
we introduce for associating dummy nodes with existing graph nodes.
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Method 1. One way of extending the graphs is to add dummy nodes and leave
them isolated, i.e., with no edges to either existing nodes or other dummy nodes.
Although this might work when both graphs are dense, it might lead to non de-
sirable results when one of the graphs is sparse. For example, let GA be 3 isolated
nodes and GB be the complete graph on 4 nodes minus the edges forming trian-
gle {(1,2), (2,3), (3,1)}. Let us assume that S = Pn, such that, when we compute
the distance between GA and GB, we produce an alignment between the graphs.
One desirable outcome would be for GA to be aligned with the three nodes in GB
that have no edges among them. This is basically solving the problem of finding
a sparse subgraph inside a dense graph. However, computing dS (A′ ,B′), where A′

and B′ are the extended adjacency matrices, could equally well align GA with the
3 dummy node of G′B.

Method 2. Alternatively, one could add dummy nodes and connect each dummy
node to all existing nodes and all other dummy nodes. This avoids the issue de-
scribed for method 1. However, this creates a similar non-desirable situation: since
the dummy nodes in each extended graph form a clique, we might align GA, or
GB, with just dummy nodes, instead of producing an alignment between existing
nodes in GA and existing nodes in GB.

Method 3. If both GA and GB are unweighted graphs, a method that avoids both
issues above (aligning a sparse graph with isolated dummy nodes or aligning a
dense graphs with cliques of dummy nodes) is to connect each dummy node to all
existing nodes and all other dummy nodes with edges of weight 1/2. This method
works because, when S = Pn, it discourages alignments of edges between existing
nodes in GA to dummy-dummy edges or dummy-existing node edges in GB, and
vice versa.

Method 4. One can also discourage aligning existing node with dummy nodes by
introducing a soft linear term as in (17), penalizing mappings between dummy
and existing nodes.

Method 5. Finally, a method of ensuring that the graphs have equal size is repeat-
ing them, i.e., creating “super” graphs that consist of multiple replicas of the same
graph as connected components, resulting in two graphs of size equal to the least
common multiple (LCM) of the sizes of the two original graphs. This is of partic-
ular use when a spectral approach, like the ones used to optimize over On: this
is because repetition, in effect, only changes the multiplicity of each value in the
spectrum, which can be done (a) without affecting the spectrum structure, and (b)
efficiently, once the LCM is computed.

6 Experiments

We experimentally study the properties of different graph distance measures, in-
cluding metrics from our family, over several graph classes. Our main observation
is that computing a heuristic estimate P̂ of P ∗ = arg minP ∈Pn ‖AP − P B‖, and using
P̂ to estimate dPn(A,B) leads to violations of the metric property. In contrast, our



Bento and Ioannidis Page 19 of 29

proposed approach of computing dS (A,B) for some S for which d a metric, and for
which its computation is tractable, yields significantly improved performance in
tasks such as clustering graphs (see Fig. 1).

6.1 Experimental Setup
Graphs. We use synthetic graphs from six classes summarized in Table 3: Barabasi
Albert with degree d (Bd), Erdos Renyi with probablity p (Ep), Power Law Tree (P),
Regular with degree d (Rd), Small World (S), Watts Strogatz with degree d (Ws).
In addition, we use a dataset of small graphs, comprising all 853 connected graphs
of 7 nodes [70]. Finally, we use a collaboration graph with 5242 nodes and 14496
edges representing author collaborations [71].

Algorithms. We compare our metrics to several competitors outlined in Table 2.
All receive only two unlabeled undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating P ∗. If P̂ ∈ Pn, we compute
‖AP̂ − P̂ B‖1. If P̂ ∈ Wn, then we compute both ‖AP̂ − P̂ B‖1 and ‖AP̂ − P̂ B‖F ; all
norms are entry-wise. We also implement our two relaxations dW and dOn , for two
different matrix norm combinations.
We briefly review here additional impementation details about the algorithms

summarized in Table 2.
• NetAlignBP, IsoRank, SparseIsoRank and NetAlignMR, for which code is
publicly available [72], are described by [14]. Natalie is described in [16];
code is again available [73]. All five algorithms output P ∈ Pn.

• The algorithm in [15] outputs one P ∈ Pn and one P ′ ∈ Wn. We use P ∈ Pn

to compute ‖AP − P B‖1 and call this InnerPerm. We use P ′ ∈ Wn to com-
pute ‖AP ′−P ′B‖1 and ‖AP ′−P ′B‖2 and call these algorithms InnerDSL1 and
InnerDSL2 respectively. We use our own CVX-based projected gradient de-
scent solver for the non-convex optimization problem the authors propose.

• DSL1 and DSL2 denote dS (A,B) when S ∈Wn and ‖ · ‖ is ‖ · ‖1 (element-wise)
and ‖ · ‖F , respectively. We implement them in Matlab (using CVX) as well
as in C, aimed for medium size graphs and multi-core use. We also imple-
mented a distributed version in Apache Spark [19] that scales to very large
graphs over multiple machines based on the Alternating Directions Method
of Multipliers [18].

• ORTHOP andORTHFR denote dS (A,B) when S ∈On and ‖·‖ is ‖·‖2 (operator
norm) and ‖·‖F respectively. We compute them using an eigendecomposition
(See Sec. 4.3).

• For small graphs, we compute dPn(A,B) using our brute-force GPU-based
code, available at [74]. For a single pair of graphs with n ≥ 15 nodes, EXACT
already takes several days to finish. For ‖ ·‖ = ‖ ·‖1 in dS (element-wise or ma-
trix norm), we have implemented the chemical distance as an integer value
LP and solved it using branch-and-cut. It did not scale well for n ≥ 15.

• We implemented the WL algorithm over Spark to run, multithreaded, on a
machine with 40 CPUs.

We use all public algorithms as black boxes with their default parameters, as pro-
vided by the authors.
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6.2 Experimental Results
Clustering Graphs. The difference between our metrics and non-metrics is strik-
ing when clustering graphs. This is illustrated by the clustering experiment shown
in Fig. 1. Graphs of size n = 50 from the 6 classes in Table 3 are clustered together
through hierarchical agglomerative clustering. We compute distances between
them using nine different algorithms; only the distances in our family (DSL1,
DSL2, ORTHOP, and ORTHFR) are metrics. The quality of clusters induced by
our metrics are far superior than clusters induced by non-metrics; in fact, OR-
THOP and ORTHFR can lead to no misclassifications. This experiment strongly
suggests our produced metrics correctly capture the topology of the metric space
between these larger graphs.

Triangle Inequality Violations. Given graphs A, B and C and a distance d, a Trian-
gle Inequality Violation (TIV) occurs when d(A,C) > d(A,B) + d(B,C). Being met-
rics, none of our distances induce TIVs; this is not the case for the remaining algo-
rithms in Table 2. Fig. 2 shows the TIV fraction across the synthetic graphs of Ta-
ble 3 while Fig. 3 shows the fraction of TIVs found on the 853 small graphs (n = 7).
NetAlignMR also produces no TIVs on the small graphs, but it does induce TIVs
in synthetic graphs. We observe that it is easier to find TIVs when graphs are close:
in synthetic graphs, TIVs abound for n = 10. No algorithm performs well across
all categories of graphs.

Effect of TIVs on Clustering. Next, to investigate the effect of TIVs on clustering,
we artificially introduced triangle inequality violations into the pairs of distances
between graphs. We then re-evaluated clustering performance for hierarchical ag-
glomerative clustering using the Ward method, which performed best in Fig. 1.
Fig. 4 shows the fraction of misclassified graphs as the fraction of TIVs intro-
duced increases. To incur as small a perturbation on distances as possible, we in-
troduce TIVs as follows: For every three graphs, A,B,C, with probability p, we set
d(A,C) = d(A,B) + d(B,C). Although this does not introduce a TIV w.r.t. A,B, and
C, this distortion does introduce TIVs w.r.t. other triplets involving A and C. We
repeat this 20 times for each algorithm and each value of p, and compute the aver-
age fraction of TIVs, shown in the x-axis, and the average fraction of misclassified
graphs, shown in the y-axis. As little as 1% TIVs significantly deteriorate cluster-
ing performance. Note that the fraction of TIVs is computed over the total number
of TIVs possible, which grows cubicly with the number of graphs being clustered.
We also see that, even after introducing TIVs, clustering based on metrics outper-
forms clustering based on non-metrics.

Comparison to Chemical Distance. We compare how different distance scores re-
late to the chemical distance EXACT through two experiments on the small graphs
(computation on larger graphs is prohibitive). In Figure 5(a), we compare the dis-
tances between small graphs with 7 nodes produced by the different algorithms
and EXACT using the DISTATIS method of [75]. Let D ∈ R835×835

+ be the matrix
of distances between graphs under an algorithm. DISTATIS computes the normal-
ized Laplacian of this matrix, given by L = −UDU/‖UDU‖2 where U = I − 11>

n .
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The DISTATIS score is the cosine similarity of such Laplacians (vectorized). We see
that our metrics produce distances attaining high similarity with EXACT, though
NetAlignBP has the highest similarity. We measure proximity to EXACT with an
additional test. Given D, we compute the nearest neighbor (NN) meta-graph by
connecting a graph in D to every graph at distance less than its average distance
to other graps. This results in a (labeled) meta-graph, which we can compare to
the NN meta-graph induced by other algorithms, measuring the fraction of dis-
tinct edges. Fig. 5(b) shows that our algorithms perform quite well, thoughNatalie
yields the smallest distance to EXACT.

Incorporating Constraints. Computation costs can be reduced through metric em-
beddings, as in (17). To show this, we produce a copy of the 5242 node collabo-
ration graph with permuted node labels. We then run the WL algorithm [47] to
produce structural colors, which induce coloring constraints on P ∈Wn. The WL
algorithm reaches a fixed point after k = 5 iterations. The support of P (i.e., the
number of variables in the optimization (12)), the support of AP − PA (i.e., the
number of non-zero summation terms in the objective of (12)), as well as the ex-
ecution time τ of the WL algorithm, are summarized in Table 4. The original un-
constrained problem involves 52422 ≈ 27.4M variables. However, after using WL
and induced costraints, the effective dimension of the optimization problem (12)
reduces considerably. This, in turn, speeds up convergence time, shown in Fig. 6:
including the time to compute constraints, a solution is found 110 times faster
after the introduction of the constraints.

7 Conclusion

Our work suggests that incorporating soft and hard constraints has a great poten-
tial to further improve the efficiency of our metrics. In future work, we intend to
investigate and characterize the resulting equivalence classes under different soft
and hard constraints, and to quantify these gains in efficiency. We also plan to de-
velop scalable distributed solvers for our family of metrics. A good starting point
is the Alternating Direction Method of Multipliers [76, 77], which enjoys several
useful properties. Specifically, under proper tuning and mild convexity assump-
tions, it achieves the convergence rate of the fastest-possible first-order method
[78, 79], it can be less affected by the topology of the communication network
in a cluster than, e.g. gradient descent [80, 81], and it parallelizes well both on
share-memory multiprocessor systems, GPUs and computer clusters [18, 82, 83].
Determining the necessity of the conditions used in proving that dS is a metric is
also an open problem. Finally, we are investigating generalizations of our family
of metrics to multi-metrics, i.e. we want to define a tractable closeness score for a
set of n > 2 graphs that satisfies a generalization of the properties of metrics for
more than two elements [84].

Abbreviations

ADMM: Alternating Directions Method of Multipliers, CKS: Chartrand-Kubiki-Shultz, GPU: Graph Processing Unit,
LCM:Least Common Multiple, WL: Weisfeiler-Lehman
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Figure 1: Clustering Misclassification Error. A clustering experiment using met-
rics and non-metrics (y-axis) for different clustering parameters (x-axis) is shown
in (a), left. We sample graphs with n = 50 nodes from the six classes, shown in
the adjacent table in (d), bottom-center. We compute distances between them us-
ing nine different algorithms from Table 2. Only the distances in our family (DSL1,
DSL2, ORTHOP, and ORTHFR) are metrics. The resulting graphs are clustered us-
ing hierarchical agglomerative clustering [44] using Average, Centroid, Complete,
Median, Single, Ward, Weighted as a means of merging clusters. Colors repre-
sent the fraction of misclassified graphs, with the minimal misclassification rate
per distance labeled explicitly. Metrics outperform other distance scores across all
clustering methods. The error rate of a random guess is ≈ 0.8.
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Figure 2: Fraction of triangle inequality violations (TIVs) for different algorithms
on random graphs of different types and sizes. DSL1, DSL2, ORTHOP, and OR-
THOP, are not shown since, as pseudometrics, they have zero TIVs.
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Figure 3: Triangle Inequality Violations (TIVs) over the small graphs dataset.
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Figure 4: Effect of introducing triangle inequality violations on the performance
of different algorithms on the clustering experiment of Figure 1 when using the
Ward method.
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Figure 5: (a) Cosine similarity between the Laplacian of distances produced by
each algorithm and the one by EXACT, measured via DISTATIS [75]. (b) Edit dis-
tance between nearest neighbor (NN)meta-graphs induced by different algorithms
and NN meta-graph induced by EXACT.
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Figure 6: Convergence of ADMM algorithm [18] computing DSL2 on two copies
of the collaboration graph as a function of time, implemented using Apache Spark
[19] on a 40 CPU machine.
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Tables

Table 1: Notation Summary
[n] Set {1, . . . ,n}

Rn×n The set of real n×nmatrices.
Sn The set of real, symmetric matrices.
I The identity matrix of size n×n.
1 The n-dimensional vector whose entries are all equal to 1.

σmax(·) Largest singular value of a matrix.
tr(·) The trace of a matrix.

conv(·) The convex hull of a set.
G(V ,E) Graph with vertex set V and edge set E.
A,B Matrices [ai,j ]i,j∈[n], [bi,j ]i,j∈[n].
‖ · ‖p Operator or entry-wise p-norm.
‖ · ‖F Frobenius norm.
Pn Set of permutation matrices of size n×n, c.f. (4)
Wn Set of doubly stochastic matrices (a.k.a. the Birkhoff polytope) of size n×n, c.f. (5)
On Set of orthofonal matrices (a.k.a. the Stiefel manifold) of size n×n, c.f. (6)
Ω, Ω̃ Sets over which a metric is defined.
d(x,y) A metric over spaceΩ.
d̄(x,y) The symmetric extension of d(x,y).
(Ω,d) A metric space.
GA,GB Graphs with adjacency matrices A,B.
P ,W ,O n×nmatrices.
S A closed and bounded subset of Rn×n.

dS (A,B) A class of distance scores defined by minimization (12) over set S.
dPn Pseudometric dS , where S is the set of permutation matrices.
dWn Pseudometric dS , where S is the set of doubly stochastic matrices.
dOn Pseudometric dS , where S is the set of orthogonal matrices.
Ψ n
Ω̃

Set of all embeddings from [n]→ Ω̃, where (Ω̃, d̃) is a metric space.
ψA,ψB Embeddings in Ψ n

Ω̃
of nodes in graphs GA and GB, respectively.

DψA,ψB n×nmatrix of all pairwise distances between images of nodes inGA andGB, under
embeddings ψA and ψB.

Table 2: Competitor Distance Scores & Our Metrics
(Non-metric) Distance Score Algorithms

NetAlignBP Network Alignment using Belief Propagation [14, 72]
IsoRank Neighborhood Topology Isomorphism using Page Rank [72, 85]

SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page Rank [14, 72]
InnerPerm Inner Product Matching with Permutations [15]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-wise 1-norm

[15]
InnerDSL2 Inner Product Matching with Matrices inWn and Frobenius norm [15]
NetAlignMR Iterative Matching Relaxation [13, 72]
Natalie (V2.0) Improved Iterative Matching Relaxation [16, 73]

Metrics from our Family (2)
EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobenius norm

ORTHOP Orthogonal Relaxation of Chemical Distance dOn with operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with Frobenius norm

Table 3: Synthetic Graph Classes
Description

Bd Barabasi Albert of degree d [86]
Ep Erdős-Rényi with probability p [87]
P Power Law Tree [88]
Rd Regular Graph of degree d [89]
S Small World [90]
Wd Watts Strogatz of degree d [91]
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Table 4: Effect of coloring/hard constraints.
k ‖P ‖0 ‖AP−PA‖0 τ
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s

Effect of coloring/hard constraints on the numbers of variables (‖P ‖0) and terms of objective
(‖AP − PA‖0) using k iterations of the WL coloring algorithm. The last column shows the execution
time of WL on a 40 CPU machine using Apache Spark [19].


