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Abstract—As spectrum becomes crowded and spread
over wide ranges, there is a growing need for efficient
spectrum management techniques that need minimal,
or even better, no human intervention. Identifying and
classifying wireless signals of interest through deep
learning is a first step, albeit with many practical pit-
falls in porting laboratory-tested methods into the field.
Towards this aim, this paper proposes using Android
smartphones with TensorFlow Lite as an edge comput-
ing device that can run GPU-trained deep Convolu-
tional Neural Networks (CNNs) for modulation classi-
fication. Our approach intelligently identifies the SNR
region of the signal with high reliability (over 99%)
and chooses grouping of modulation labels that can be
predicted with high (over 95%) detection probability.
We demonstrate that while there are no significant
differences between the GPU and smartphone in terms
of classification accuracy, the latter takes much less
time (down to 1

870 x), memory space ( 1
3 of the original

size), and consumes minimal power, which makes our
approach ideal for ubiquitous smartphone-based signal
classification.

Index Terms—TensorFlow Lite, Modulation Classifi-
cation, Low SNR, Smartphone, Edge Computing

I. Introduction
Wireless spectrum is getting more crowded, with several

billions of devices, from large base stations to tiny IoT
sensors jostling for efficient utilization of the spectrum.
The future points towards a shared ecosystem, where
devices from different vendors and with different priority
levels will share a common set of spectrum bands. Already
cellular operators are pushing for access to unlicensed
bands [1], while opportunistic use of TV whitespace (400-
700 MHz) has now become a reality [2] [3]. In all such
use-cases detecting other signals of interest, or at least rec-
ognizing existing signals of a specific modulation type, is
of paramount importance. Importantly, coexisting devices
will likely be unable to demodulate each other’s signals,
and worse, may only have few symbol-length sensing dura-
tion to infer such information (to minimize any outage for
a higher priority transmission). Thus, fast and lightweight
modulation recognition techniques are needed.
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Fig. 1: Overview of the approach with separate processing
in the GPU (training, label grouping) and edge device
(classification).

A. Problem: Signal classification at the wireless edge

While the research community has demonstrated re-
markable success in signal classification using deep learn-
ing techniques [4] [5] [6], many of these approaches can-
not be directly ported to the field. Firstly, a rigorous
study of how deep learning architectures trained on ded-
icated GPUs perform in terms of accuracy on resource-
constrained wireless edge devices is needed. Secondly,
the impact on classification time and power consumption
becomes important. Finally, real world receivers observe
noisy conditions, with common occurrence of very low
SNR values. In such situations, there is a possibility
of some compromise– e.g., could some form of coarse
classification (with fewer labels) be obtained with high
detection probability vs. large number of labels with very
low probability? More importantly, can all these decisions



be automated, without involving human in-the-loop?
Given the scale and the density of today’s wireless

networks [7], we need solutions that are not only scalable,
but also cost-effective with a shorter time-to-market. Thus,
we propose to solve this problem by leveraging the most
ubiquitous edge platform currently available: smartphones.
Recent reports indicate that over 81% of the US adult
population use smartphones, with this number rising to
96% in the age range of 18-29 years old [8]. Furthermore,
the geographical breakdown into urban/rural categories
shows this percentage to be around 83% and 71%, re-
spectively. We wish to demonstrate how deep learning on
smartphones can democratize signal classification ability;
where any such handheld device can classify modulation
schemes used in signals of interest.

B. Approach: Deep learning on smartphones

There exist several works on using machine learning on
smartphones [9]. However, to the best of our knowledge,
we are the first to demonstrate the use of a smartphone as
a modulation classifying device, which was previously only
possible with software defined radios or expensive spe-
cialized spectrum analyzers. Given that wireless spectrum
is noisy and that previous works [10] [11] (summarized
in Section III) only permit as low as 10% accuracy in
low SNR conditions, we propose a secondary learning
network architecture that detects and activates coarse
classifications, i.e., fewer labels, in such adverse situations.
Thus while our approach gives 97% accuracy in high SNR
(≥10dB) for 24 different modulation labels, it can also
return a similar accuracy in low SNR (-10 to -2dB), when
these labels are grouped into 4 classes. We argue that there
are situations, such as detecting an intelligent network
intrusion, where some information but with reliably high
detection probability is needed. As shown in Figure 1, our
approach uses deep CNN trained on a cluster of NVIDIA
Tesla V100 GPUs, but then ported to multiple different
Android smartphone devices. Figure 2 shows the structure
and layers of the CNN (described in more details in the
following sections). The CNN model is compressed and
then executed in the TensorFlow Lite environment [12].

Our main contributions are as follows:
• We identify how flexible labeling strategies for mod-

ulation classification based on perceived SNR condi-
tions can boost the detection probability of that label
category (e.g., transitioning flexibly from 24 distinct
labels of modulations in high-SNR to 4 labels in low-
SNR conditions). We propose an automated label-
assignment algorithm that uses raw I/Q samples in
conjunction with CNN for training. [Section III]

• We demonstrate, with the help of TensorFlow Lite,
how smartphones can be enabled as the capable edge
platforms for implementing deep CNNs for several
wireless applications, such as SNR detection and mod-
ulation classification. [Section IV]

• We experimentally show that not only our algorithm
improves prediction accuracy for a reduced number
of labels for low SNR conditions up to 93%, but
also using smartphones as the classification engine
results in 870x speedup in time compared to GPUs.
Interestingly, we achieve this without reducing the
accuracy or consuming extensive power (less than 2W
including screen and WiFi module power). [Section V]

We discuss related work in Section II, limitations, and
future research directions in Section VI, and conclude in
Section VII.

II. Related Work

Modulation classification: Understanding the wire-
less environment is a first step towards building an in-
telligent radio that has myriad of military, day-to-day
civilian applications, as well as use-cases in first-responder
networks where dissimilar protocols/agencies operate in
a shared space [13]. The most common scenarios include
device authorization and network anomaly detection that
can be done either at the physical or the link layer [14] [15].
Signal analysis with modulation classification is a way to
ensure only authorized transmitters are present, and apart
from more classical, ground-based networks, such tech-
niques have also been demonstrated for flying UAVs [16].
The goal of classifying users using physical layer raw
I/Q samples has been attempted in the state-of-the-art
works [5] [10] [11], from pure modulation classification to
RF device fingerprinting.

Learning the spectrum: Deep learning schemes for
wireless networking have emerged in the last few years
given the abundance of data available today [17] [4] [18].
Such techniques are used in data aggregation, localiza-
tion, interference management, performance optimization
of mmWave communication, and spectrum management.
Our focus is to classify the modulation schemes for better
spectrum management. Current deep learning solutions
result in low accuracy (≈ 10%) in noisy (SNR<0 dB)
environments [10]. Hence, through this work, we aim to
improve the detection accuracy for low-SNR regions.

Bringing spectrum learning to the edge: Cus-
tomized edge platforms with micro-architectures for deep
learning are previously proposed for classification on FP-
GAs [19] [20]. This platforms can be used for classifying
streaming data in different applications ranging from wire-
less signal processing to image processing. Edge solutions
for classification of wireless signals is proposed by Restuc-
cia and Melodia [21]. They develop an FPGA implementa-
tion of a CNN for two example applications – modulation
classification (for 5 classes) and detecting number of FFT
points (for 3 classes). FPGA-based approaches are good
candidates for implementing deep learning architectures
because of their high performance. However, designing
customized architectures for deep learning using hardware
description languages such as, VHDL, and Verilog requires
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Fig. 2: Baseline CNN for modulation classification

a lot of effort. Vivado HLS, which is a high level synthesis
tool and obviates VHDL/Verilog designing, also needs the
architecture to be described in C++, which is still a step
away from the algorithm described in python. Therefore,
the need for a candidate platform that minimizes the step
between algorithm and edge implementation, is sensed.

Learning on smartphones: Smartphones are now
commonly used as a learning platform for a variety of
use-cases, such as, on-device QnA [9], personalized text
input [22], and image processing [23]. Google has a soft-
ware framework for running deep learning algorithms on
embedded devices called as TensorFlow Lite [12]. Tensor-
Flow Lite consists of a set of tools that allow execution of
deep learning algorithms in the constrained environments
including smartphones. Python APIs provided by Tensor-
Flow Lite optimize the size of model binaries to efficiently
execute on the low-end edge devices. We leverage this
tool to port our deep learning algorithm on Android
smartphones. We believe this is the first experimental work
on wireless modulation classification at the edge using
smartphones.

III. SNR-Based Modulation Classification
We show in this section how low-SNR regions pose a

significant challenge in modulation classification, as well
as present our approach towards implementing a deep
learning CNN architecture. Then, we explain how the SNR
itself can be an input towards grouping modulation labels
together so that the confusion across groups is minimized.

A. Classification problem in the low-SNR region
We start with a deep CNN classifier, shown in Figure 2

to improve the classification accuracy in the low-SNR
region.

This network, henceforth called as baseline, consists of
multiple convolutional layers, each with 128 one dimen-
sional filters of sizes of 7× 1 or 5× 1.

For purposes of comparison with prior work and for
repeatability, we choose the difficult dataset provided
in [10]. The dataset has 24 classes of modulation, shown
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Fig. 3: Classification accuracy for our baseline and DeepSig
CNN. Note that for both classifiers average accuracy
remains <24% for SNRs<0 dB.

in Table I, each having SNRs ranging from -10 to 30
dB with increments of 2 dB. Each modulation/SNR
pair has 4096 sequences of each 1024 I and Q sam-
ples. The dataset thus contains over 2 million examples
of <I/Q, SNR, Modulation> with the labels (prediction
classes) as the modulation schemes. We partition the
dataset into 60%, 20%, and 20% train, validation and
test sets, respectively. We train and test our baseline
architecture shown in Figure 2 with this dataset using
Keras libraries with TensorFlow backend. Figure 3 shows
classification accuracy for the baseline architecture. We
compare the accuracy with the results from [10] shown as
DeepSig CNN in Figure 3. We observe that our classifi-
cation accuracy is slightly better than the DeepSig CNN,
however more importantly, classification accuracy is poor
at low SNRs for both models. On average modulation
classification accuracy is ≈ 24% when SNR is below 0 dB.

To gain a deeper insight on the issues impacting ac-
curacy, we plot confusion matrices for each individual
SNR<10 dB. Such a representation helps us better identify
the specific classes that are being confused with each other,
and ultimately drop the overall accuracy.

By studying the confusion matrices for each SNR level,
we see how they demonstrate similar patterns in the
confused classes within each SNR range of [-10,-2] dB, [0,8]
dB and [10,30] dB. The difference of 2 dB for each range
comes from 2 dB increment between values in the original
dataset. We define these ranges as Low, Medium and High
SNR regions, respectively.

In the next step, average confusion matrices for Low
and Medium SNRs are plotted and shown in Figures 4a
and 4b. The number in each element shows the fraction of
test sequences where the two labels are confused with each
other (multiplied by 100). For example, in Figure 4a the
value in intersection of row 256QAM and column QPSK
shows 45, which means the true label 256QAM is confused
with QPSK in 45% of test sequences. Note that, we do not
show the matrix for High SNR as we get considerably high,
≈ 97%, classification accuracy for that region.

Based on this observation, we regroup the fine-grained



TABLE I: Class to modulation scheme mapping
Class 1 2 3 4 5 6 7 8 9 10 11 12

Modulation 32PSK 16APSK 32QAM FM GMSK 32APSK 0QPSK 8ASK BPSK 8PSK AM-SSB-SC 4ASK
Class 13 14 15 16 17 18 19 20 21 22 23 24

Modulation 16PSK 64APSK 128QAM 128APSK AM-DSB-SC AM-SSB-WC 64QAM QPSK 256QAM AM-DSB-WC OOK 16QAM

(a) Low SNR region (b) Medium SNR region
Fig. 4: Confusion matrices that show the percentage of testing set where a particular modulation class is confused with
another class. In an all-correct classification, all highlighted cells will be on the diagonal.

individual modulation schemes into course-grained aggre-
gated modulation schemes to help the neural network
detect groups of modulation schemes with a high accuracy.

B. Compromising detection resolution for higher accuracy
We aim to improve the accuracy of modulation detection

by compromising the finer per-modulation classification.
Hence, when we regroup the modulation schemes, we
assign them our custom labels. For example, Figure 4a
shows that 256QAM and QPSK are generally confused
with each other, while they are rarely confused with other
classes. Therefore, we group these two classes into one
single class. The grouping and re-labelling helps the CNN
to more easily classify the signal.

To automate the grouping process, we develop an ap-
proach described in Algorithm 1. We run the algorithm
separately for each SNR region of Low and Medium. The
inputs of this algorithm are the confusion matrices shown
in Figures 4a and 4b, and the output is cluster list that
gives the new grouping with multiple modulation labels
fused together into a single class for the given SNR region.

In our algorithm, to define new classes for each SNR
region, first, independent labels that are easily distin-
guished from others are added to a cluster list. They
form clusters with only one member. Following this, 2-4
member clusters are formed and added to a candidate list
along with a sum value. The sum value is the summation of

elements in the confusion matrix for all the members of the
cluster and shows how strongly these labels were confused.
Once we have the candidate list ready, the clusters inside
it compete based on the sum value to become a final class.
The winning clusters are the ones with larger sum values. If
two clusters have mutual member and the same sum value,
the one with fewer members wins, to provide us higher
detection resolution. In our algorithm, ei is an element in
confusion matrix and Li is the true label associated with
ei. Variable acc shows the lower limit of overall expected
accuracy after re-labelling. For our evaluation, we set it
as 90%. Additional variables such as margin = 5 imply
that if there is an element ei ≥ 85(= 90 − 5) and there
is no other elements in that row ≥ 5, then the true label
Li associated with that element ei will be added to the
cluster list. Variables acc and margin can be tuned by
the user as a trade-off between detection accuracy and
resolution.

The cluster list output of Algorithm 1, is a list of new
labels that is composed of clusters of old labels for each
SNR range. For the given dataset that we use in this paper,
the labels obtained are as shown in Figure 5. We note,
however, that our approach is generic in nature and will
form different label groups when given other datasets.

Figure 5 shows that as the output of re-labelling al-
gorithm, I/Q sequences in Low-SNR region can now be
identified with 4 labels, which is a hierarchical grouping of



Algorithm 1 Re-labelling Algorithm
1: Set acc; Set margin;
2: for all row in conf matrix do
3: for all ei in row do
4: if ei ≥ (acc+margin) then
5: cluster list.append(Li)
6: else if ei ≥ (acc−margin) and no en in row≥ 5

then
7: cluster list.append(Li)
8: end if
9: end for

10: ignore ei ≤ 5
11: sort eis in descending order as ei, ej , ek, em, ...
12: if sum(ei, ej) ≥ acc then
13: candidate list.append([Li,Lj , sum])
14: else if sum(ei, ej , ek) ≥ acc then
15: candidate list.append([Li,Lj ,Lk, sum])
16: else if sum(ei, ej , ek, em) ≥ acc then
17: candidate list.append([Li,Lj ,Lk,Lm, sum])
18: end if
19: end for
20: Sort candidate list with descending sums
21: for all clusters in candidate list do
22: if sum ≥ acc then
23: if two clusters have same sums and have mutual

members then
24: cluster list.append(cluster with fewer mem-

bers)
25: end if
26: if None of members are in candidate list then
27: cluster list.append(cluster)
28: end if
29: end if
30: end for

the old labels. Similarly, Medium-SNR region is identified
with 12 labels and High-SNR region with 24 labels (as
before).

Following the grouping process, the CNN architecture
in Figure 2 is re-trained independently, in our case with
3 new datasets (each associated with an SNR range and
each with new labels) at the output layer. Thus, we
have 3 separately trained models, named Model High,
Model Med and Model Low, each for one specific SNR
region. Classification accuracy obtained on GPU testing
for these models is shown in Figure 6. The plot shows
average accuracies as 94%, 93% and 97% in three regions
of Low, Medium, High SNR, respectively. Such higher
accuracies are achieved at the expense of lower resolution
in detecting the modulation scheme compared to classical
baseline CNN.

To summarize, for SNR<10 dB using the baseline
method, the classifier returns one of the 24 modulation
schemes in Table I as the predicted label, with a very
high (up to 90%) chance that the prediction is incorrect.
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Fig. 5: New classes after re-labelling. For High-SNR region,
each modulation scheme is a label (class)

The SNR-based re-labeling scheme reduces the resolution
of detecting 24 different modulation schemes for SNR<10
dB, but in a way that the predicted label is correct with
up to 94% probability.

C. SNR-level based modulation classification
In order to select the proper model among Model High,

Model Med, or Model Low, we need an automated
method to detect SNR level from raw I/Q samples. Fig-
ure 7 conceptualizes this flow. We describe our approach
of automated SNR detection as follows.

1) SNR-level detection: In a deterministic approach for
measuring SNR, first an estimation of the noise floor is
acquired, in a specified bandwidth that requires collecting
I/Q samples when no information signal is being trans-
mitted. Then, the absolute power level of the information
signal is measured and its ratio with estimated noise power
is taken. This deterministic approach generates an exact
number as SNR value.

Note that our approach does not require an exact SNR
computation; but only needs to detect which of the 3
classes of Low, Medium or High is a better descriptor of
the observed SNR level. Thus, we do not need to measure
the noise floor if we can simply obtain these labels from
the signal itself. Towards this goal, we train and test on
GPUs, a shallow neural network architecture shown in
Figure 8 with the same dataset described in III-A, this
time with SNR labels instead of modulation labels. Our
neural network distinguishes between 3 SNR classes – Low,
Medium, High with an accuracy of 99.9%. We refer to this
model as Model SNR through the rest of the paper.

Next, we discuss the method of porting the trained
models on Android smartphones.

IV. System Implementation

The process of SNR-based modulation classification de-
scribed in the previous section, must now be ported for
an edge implementation. This is complicated given the
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memory size required for multiple models and timing con-
straints, which makes edge implementation difficult with-
out frameworks that compress models. Thus, we choose
Google’s framework for Android devices, TensorFlow Lite,
as a possible solution.

A. From TensorFlow to TensorFlow Lite
To transfer a model from the laboratory environment to

the smartphone, we first train models on regular GPUs us-
ing Keras libraries with TensorFlow backend. Next, these
trained models are saved in an .hdf5 files that contain the
neural network architecture, the optimizer configuration,
and model weights. Then, these trained models are cross-
compiled for Android, using TensorFlow Lite converter.
The result is a file with .lite extension. Cross compilation
using TensorFlow Lite converters results in a compression
process that stores the model as a flat buffer, which allows
serializing data without unpacking/parsing at the time of
de-serialization [24]. The .lite file is used in Java code

Training set I/Q samples 

GPU model
.hdf5 format

large size

Tensorflow
Lite

converter

Phone model
.lite format
small size

I/Q samples 

Prediction

Fig. 9: Converting a model from TensorFlow to Tensor-
Flow Lite

on an Android device, as described next. Figure 9 shows
the process of a model trained by regular TensorFlow on
GPUs, and then converted to a TensorFlow Lite classifier
on an Android device.

B. Executing classifiers via Android app
After the TensorFlow Lite file is generated, we begin

the process of porting the classifier to the edge device.
TensorFlow Lite libraries make it possible for the Android
device to interpret and operate on the model contained in
the .lite file. An Interpreter driver class creates a high level
Application Programming Interface (API) for the user to
run the model. We create an Android app using Android
Studio 3.3.2. App execution needs – .lite models, the labels
associated with each model – Label.txt, and the test set
of raw I/Q samples – for the purposes of evaluation. We
provide files corresponding to models and labels to the app
through it’s assets folder. Files containing raw I/Q samples
will be saved on a general folder in internal memory of
the phone. When the app is launched, the user is asked
through GUI to select an input file that contains the
dataset of raw I/Q samples. In the background, all model
files in the assets folder are loaded and mapped to the
memory of the device. Next, a Lite Classifier object is
created for each model using the Interpreter driver class.
The input file is memory-mapped to a flat buffer, as needed
by the Lite Classifier object. When the flat buffer is fed to
the Lite Classifier Object, a probability vector is generated
whose length is equal to the number of classes in the
model. This tells us the probability of each predicted label,
with the sum of the elements in the probability vector
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equal to one. Taking the simple maximum of the elements
in the probability vector gives the prediction decision of
the model for the input sequence. Depending on the index
of the maximum, the corresponding label from Label.txt
file is reported as the predicted label. Figure 10 shows this
process for an example model.

V. evaluation
In this section we first describe our evaluation method-

ology and provide the hardware and software details of
our platforms. Next, we evaluate and compare our GPU
and smartphone models against model size, classification
time, given that both return similar detection probability.
We also report power consumption on the smartphone.

A. Methodology
We implement our design on 3 smartphone devices

shown in Table II, and we present our results in the
next subsection. The results are compared with GPU
implementation that runs on NVIDIA Tesla V100 with
640 Tensor Cores and 100 teraFLOPS.

TABLE II: Specifications for the three smartphones of LG,
HTC and Lenovo used in our experimental study.

LG HTC Lenovo
Model K20 Desire 610 Note K3
Android
version

8.1.0 4.4.2 6.0

Processor MSM8917
Quad-core
1.4 GHz

1.2 GHz
Quad-core
Cortex-A7

MT6753
8-core 1.7
GHz

RAM 2 GB 1GB 2 GB

TABLE III: Number of parameters in trained models
Model Number of trained parameters
Model SNR 262, 719
Model Low 1, 953, 668
Model Med 1, 954, 700
Model High 1, 956, 248
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Fig. 11: Memory size of the model on the GPU and the
smartphone. Compressed model, with TensorFlow Lite,
occupies 1

3 of the original model.

Consider the CNNs for SNR and modulation classi-
fication described in earlier sections and ported to the
smartphone. We use the term number of parameters, as
shown in Table III, as a representative measure of the
model size and the number of operations that will be
done at classification time. Model Low, Model Med and
Model High have the same architecture but different
number of classes in the last layer. This results in slightly
different number of parameters.

B. Results

We present quantitative results for our metrics here.
1) Model size: Model size is the memory space occupied

in the device. We recall that TensorFlow Lite conversion
compresses the original model as a special format in a
flat buffer, as explained in Section IV-A. The size of the
compressed models in our case is approximately 1

3 that
of the original Keras model. We show a comparison in
Figure 11. Model Low, Model Med and Model High have
the same size because of having the same architecture.
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Fig. 12: Classification time shows up to a 870x boost in
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Fig. 13: Average of the difference between probability vectors in GPU (Keras) model and smartphone model per class

2) Classification time: The time taken by the classifier
on any platform to classify a single I/Q sequence from
the instance that sequence is fed to it, to the instance the
probability vector is generated is called classification time.
This time is measured by feeding in the same I/Q sequence
to the model on GPU and on smartphones 10 times to
smooth out the impact of interrupts on the operating
system.

The mean classification time on different platforms is
shown in Figure 12. Here, y-axis has log-scale to better
show the large difference between classification time on
the platforms. We observe a boost ranging from 1533

295 ≈ 5x
to 1533

1.75 ≈ 870x in classification time compared to GPU.
The reason for the shorter classification time is that

GPUs are massively parallel, and their architecture is
perfect for working on large batch sizes of data, e.g. for
training process or testing on a large batch, however, as
edge platforms work on streaming data (only one sequence
or frame of the input) GPUs have a considerably lower
performance. Classification time for each of our 4 models
on the GPU is significant, regardless of the size of the
model. This is due to massive under-utilization of GPU
resources in all these cases.

3) Detection probability vector comparison as a measure
of accuracy: We obtain classification accuracy on GPUs
by testing large batch sizes of data in the classification
phase. For each sequence, we save a predicted label at the
end of this phase. After that, we compare the true label
against the predicted label and decide whether or not that
sequence is predicted correctly. For measuring accuracy,

we divide the number of correctly predicted sequences by
the total number of sequences in the test set. On edge
devices, however, the same process might not be possible,
because of constraints of memory on the device. Therefore,
we explore other alternatives for checking how accurately
deep learning at the edge device is performing. Thus,
instead of directly measuring accuracy on the smartphone,
we compare detection probability vectors between the
smartphone and the GPU models. Note that such a vector
is the output of the CNN, whose length equals to the
number of classes and whose sum of elements equals to
1. Probability vector tells us the probability of prediction
of each class for a single input sequence.

We feed 100 different I/Q sequences to our modulation
classifiers on the GPU and smartphone, and we save the
probabilities. We calculate the difference between prob-
abilities on GPU and at the edge for each class using
Equation 1.

δi = 1
N

N−1∑
j=0
|pi,j − qi,j | i = 0, 1, ..., L− 1 (1)

Where L is the number of classes in each SNR range,
N = 100 is the number of sequences used for testing
and pi,j is element i from probability vector associated
with sequence j on the GPU and q is similar vector on
the phone. Equation 1 leads to a δ between probability
vectors per class. For High-SNR range we have δ1, ..., δ24
each corresponding to a class. For Medium-SNR range
and Low-SNR range, we have δ1, ..., δ12 and δ1, ..., δ4,
respectively. These δis can be illustrated as Figure 13a,
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Fig. 14: Power consumption snapshot for TensorFlow Lite
on Lenovo phone

13b and 13c for Model High, Model Med and Model Low,
respectively. Theoretically the δ would be very small, as
seen in practice. This is because the compressed model is
not quantized and it is still a floating-point model.

4) Power Consumption: We use Trepn power pro-
filer [25], provided by Qualcomm, to estimate the power
consumption on Snapdragon processors. As advised by
Trepn documentation [26], to measure app power, we
put the profiler in delta power mode, run the profiler
and then we choose our classifier app. In this manner,
the power consumption level before launching the app
would be considered as the baseline power consumption
of the phone. In our test, we have fed to the classifier,
10 sequences of 1024 I/Q samples. Figure 14 shows a
snapshot of delta power consumption graph for the Lenovo
phone. The achieved power consumption for the learning
operation on the phone are comparable with the state-of-
the-art [27]. Note that the majority of the power consumed
is due to the screen and WiFi module, while the classifier
takes minimal time.

To calculate the average, we add all the non-zero points
in graph of Figure 14 and divide the sum by 10 which is
the number of times the classifier is run in our test. The
average power consumption is 1964.2 mW. This number in-
cludes the power consumed for all the app stages described
in Figure 10, not only the stage running TensorFlow Lite.

VI. Discussion and Future Work
Our study revealed some non-intuitive results. For

instance, we observe that the classification process is faster
on smartphones than GPUs, mainly because, unlike GPUs,
smartphones are not customized for operating on large
batch sizes of data, which needs specialized hardware
resources. Moreover, TensorFlow Lite makes the CNN
model compact enough to be ported to a smartphone and
the model execution is not memory and battery intensive.
Although, we have made concrete forays in this rich area
of research, there remain interesting open problems to
be solved. We identify those problems that will require
collective efforts from the community to address them.

Real-time I/Q Samples: In its current shape, the I/Q
samples are read from a local file stored on the smart-
phone. In a practical end-system, the phone should be able
to record live I/Q samples from the spectrum and detect
the modulation classification in real-time. We are working
on a more advanced version of the presented framework
that integrates the real-time processing capabilities [28].

Detailed resource analysis: Our focus in this paper
is to demonstrate experimentally that the concept of an
intelligent modulation classifier at the edge is feasible.
A deeper evaluation is needed that helps analyze the
performance of model in varied platforms across operating
system, device memory, computation power, and battery
consumption. To that end, we are experimenting with
different smartphones that include both Android and iOS
versions.

Model robustness: The baseline CNN used in this
paper is based on the dataset collected in a particular
environment. While it may help benchmarking with other
results, we still do not know how this model will perform
when exposed to numerous other conditions with a multi-
tude of heterogeneous device vendors. There is a possibility
of channel impairments affecting the accuracy of model.
Ideally, an apt model is the one that can automatically
adapt to its environment. An in-depth experimental eval-
uation is needed to answer these questions and develop a
robust learning that is independent of any channel effects.

VII. Conclusion
In this paper we proposed an SNR-based classification

scheme to characterize modulation codes for the purpose of
spectrum management. We proposed a new convolutional
neural network for the modulation classification task and
trained the network with data labelled in a novel manner.
The labelling mechanism is derived with the insights about
modulation classes learned from the confusion matrices.
We validated the proposed mechanism and the models
empirically with multiple Android smartphones running
TensorFlow Lite framework. Our implementation showed
considerable boost in classification time, without any loss
of accuracy as compared to the same neural network
running on a GPU.
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