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Abstract—We explore the resistance of deep learning methods
for radio fingerprinting to MAC ID spoofing. We demonstrate
that classifying transmission slices enables classification of a
transmission with a fixed-length input deep classifier, enhances
shift-invariance, and, most importantly, makes the classifier
resistant to MAC ID spoofing. This is a consequence of the fact
that the classifier does not learn to use the MAC ID to classifying
among transmissions, but relies on other inherent discriminating
signals, e.g., device imperfections. We demonstrate this via
experiments on transmissions generated using two protocols,
namely, WiFi and ADS-B.

I. INTRODUCTION

Radio fingerprinting methods identify salient, discriminative

characteristics of wireless devices from their transmissions,

that can be used to identify a transmitting device. Traditional

methods approach this problem by designing hand-crafted,

protocol-specific discriminative features [1]–[3]. A series of

recent works [?], [1], [4]–[11] approach the problem via

machine learning methods: transmission datasets, labeled by

the identities of their respective sources, are used to train

classifiers that detect these transmissions source identities.

These methods, and deep learning approaches in particular

[?], [6], [9], [11], forego the need of hand-crafted/protocol-

specific feature design, and can be readily trained directly over

raw transmissions (i.e., received sequences of I/Q samples).

Beyond the generalizability and protocol-independence of such

methods, operating directly on raw samples has additional

advantages, such as opening the possibility of real-time in-

ference via dedicated hardware implementations of neural

networks [12]. It also allows leveraging the broader arsenal

of neural network architectures developed for other machine

learning tasks that have been tremendously successful in

domains such as image [13]–[15] and speech recognition [16],

[17]. Indeed, deep learning methods have recently shown to be

extremely well-suited for radio fingerprinting tasks, achieving

high classification accuracy even when detecting hundreds of

transmitting devices [6], [11].

Despite this success, a long-standing criticism of deep

learning methods is their lack of interpretability [18]; in

contrast to shallow learning methods, features extracted by

deep models cannot be easily interpreted. This casts doubt on

whether correct classification occurs because a deep learner

indeed learns truly discriminative, generalizable input features,

or because it is simply picking up artifacts present in the data.

This issue is of direct relevance, and utmost significance, in the

context of radio fingerprinting from raw I/Q samples. Indeed,

in an ideal scenario, a learner should be identifying signal

features caused by imperfections of the transmitting device

hardware. These include, for example, I/Q imbalances, phase

noise, carrier frequency and phase offsets, and harmonic and

power amplifier distortions, to name a few [11]. Unfortunately,

the nature of wireless communication implies that almost

all transmissions contain a strongly discriminative artifact,

namely, the identity of the transmitting device (e.g., the MAC

address in the context of 802.11 transmissions), which is often

included in the header of a transmitted packet.

Training a neural network directly on raw I/Q samples

therefore runs the risk of, e.g., making it detect the transmitting

device’s MAC address. Clearly, this is catastrophic from a

radio fingerprinting perspective, as it makes the classifier

susceptible to MAC spoofing: a device can easily prevent

detection by placing a different identifier in its header. Iden-

tifying the portion of the transmission that contains the MAC

and removing it requires demodulation, which is in itself

protocol-specific, and obviously also limits the application

of the classifier to transmissions over known protocols. In

effect, this negates the inherent generality advantages of deep

learning methods outlined above. This motivates us to seek

deep learning methods that are resistant to MAC-learning (or,

more generally, resistant to identifier-learning). Nevertheless,

the lack of interpretability of deep learning architectures

implies that even the assessment of whether a neural network is

indeed learning salient features (like hardware imperfections)

or artifacts (like the MAC address) is a challenging task in it

own right.

In this work, we demonstrate that a slicing technique,

originally developed by Riyaz et al. [11] and Sankhe et al. [6],

indeed produces MAC-learning resistant deep learning archi-

tectures. In short, the slicing technique splits variable-length

transmissions into randomly selected slices of fixed length,

and trains a deep neural network (DNN) classifier over the

slices. The slices are generated by sliding a window across the

variable-length transmission sequence. Classification of a new

transmission is performed by again splitting the transmission

over slices, classifying each slice individually, and aggregating

the results (e.g., through a majority vote) to identify the source

of the entire transmission. Riyaz et al. [11] note that this

approach has the benefit of (a) enabling the application of a

fixed-length input DNN over a variable-length sequence, while

(b) producing the slices via sliding window also enhances the

shift-invariance of the produced classifier.

We show that this sliding window technique, combined with

randomization during training, has the additional important

benefit of attaining MAC-learning resistance. In particular, we

make the following contributions:

1) We extend the slicing scheme by Riyaz et al. [11]

and Sankhe et al. [6] to incorporate randomization,

by sampling only a subset of all possible slices per
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transmission. As a side effect, this also significantly

accelerates training.

2) We show through an extensive set of experiments that

this slicing technique achieves MAC-learning resistance.

Our experiments are designed to overcome the opaque-

ness of deep-learning methods, establishing that indeed

the neural network does not learn the device’s identifier.

We establish this over transmissions generated by two

protocols, namely, WiFi and ADS-B.

3) For ADS-B transmissions, we know the precise location

in the device ID within the I/Q sequence. We show

that, when training a DNN without slicing, prediction

accuracy increases rapidly when exposing the classifier

to the portion of the transmission that contains the device

ID. This phenomenon, which indicates that the DNN is

learning the ID, vanishes when using slicing.

4) We train the classifier over a dataset of WiFi trans-

missions by 100 devices, and test it over a test set

of transmissions in which devices have shuffled their

MAC addresses. When using slicing, our classifier is

able to detect the devices with a 99.7%; this strongly

suggests that the DNN is not relying on the MAC when

classifying a transmission.

The rest of this paper is organized as follows. We first

describe in detail our slicing scheme, followed by a description

of our DNN architecture and its adaptation to the radio fin-

gerprinting domain (Sec. II). We then describe the datasets we

use and present our experimental results (Sec. III). Finally, we

conclude with a discussion on open research issues (Sec. IV).

II. METHODOLOGY

Our overall approach is as follows: we are given a dataset

of wireless transmissions, each consisting of a sequence of I/Q

samples, i.e., complex numbers capturing phase and amplitude

information. We treat each such sample as a two-dimensional

vector; as such, transmissions are represented as finite, variable

length sequences in R
2. We separate this dataset into a training

set and a test set. We train a deep neural network classifier

which we call RFMLSNet on the training set, with labels being

the identities of the transmitting devices. We subsequently test

the accuracy of the classifier on the test set, predicting the

labels (i.e., source devices) of the test transmissions. During

this process, we further separate 20% of the training set into

a validation set used to determine network hyperparameters.

Following Riyaz et al. [11] and Sankhe et al. [6], we

slice transmissions, generating fixed length sequences that

are subsequently fed to the neural network. In the remainder

of this section, we describe this slicing procedure in detail,

along with how the trained neural network is used to classify

transmissions in the test set. We conclude with an overview

of the DNN architecture we used in our experiments.

A. Random Slicing

Recall that both WiFi and ADS-B transmissions are se-

quences of varying length of I/Q samples. To be able to process

this data with neural networks that take as input only data

of fixed length, Riyaz et al. [11] propose a sliding window

Fig. 1. Generating Mk − L+ 1 slices from a transmission of length Mk .

approach to cut transmissions into a number of slices. More

specifically, they first define a desired slice length, L. Then,

given a transmission k of length Mk, they generate Mk−L+1
slices, as illustrated on Figure 1.

Not all generated slices have to be used to effectively

train a classifier. To that end, we use only a small portion

of slices, chosen randomly among the total number of slices

(Mk − L+ 1). This has several advantages: (a) it is a natural

way to satisfy the requirement of fixed-size input for neural

networks, (b) it improves classifier’s ability to learn shift-

invariant features, and (c) it inherently reduces computations

during training. More specifically, for each transmission k of

Mk length, we randomly sample nk = Mk−L+1

L
κ slices, where

L is the slice length, and κ ∈ [1, L] is a hyperparameter.

Intuitively, hyperparameter κ captures the number of slices that

each I/Q sample of transmission k participates, in expectation;

equivalently, this is also the number of times an I/Q is seen

by a network during a training epoch.

B. Classifying an Unlabeled Transmission

Given a classifier trained to predict device of an input

sequence of I/Q samples and an unlabeled transmission k from

the test set, we perform the following steps to identify the

device that transmitted k. First, just as in the training set, we

slice transmission k and randomly pick nk slices, according

to slicing procedure described in Section II-A. For each slice

i, we use the pretrained classifier to classify each slice. As

described below (Section II-C), the classifier produces a set of

probabilities pij , indicating whether slice i belongs to device

j, where
∑

jpij for every slice i ∈ {1, . . . , nk}. Therefore,

we infer the predicted device label of the transmission via:

ĵ = argmax
j

nk∑

i=1

pij . (1)

Intuitively, treating pij as the probability slice i came from de-

vice j, this classification rule identifies the transmission source

as the device ĵ that labeled the most slices, in expectation.

C. Architecture Overview

Our RFMLSNet architecture is illustrated on Figure 2. The

model takes a slice (i.e., sequence of I/Q samples of fixed

length) as an input and outputs a vector of probabilities.

The length of the output vector equals to the number of

devices in the dataset, and each vector’s element represents

the probability of a given sequence to be transmitted by a

corresponding device. Besides the input and output layers, the

model comprises 10 convolutional layers (CL), 5 max-pooling
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Fig. 2. RFMLSNet architecture. RFMLSNet is a modified version of AlexNet,
adapted for use in the radio fingerprinting domain. To adapt to slices which
are timeseries with two features (I and Q) per time step, we use 1D CLs.
For each stack, the first CL convolves 128 different 1D filters of size 1 × 7

across the full length of an input sequence of I/Q samples, and the second CL
uses 128 1D filters of size 1× 5. Each CL produces a vector of 128 feature
maps, identifying when a specific type of temporal feature is detected in the
input. Non-linearities are introduced via ReLU activation functions after each
CL. MPLs down-sample the input. Three FCLs of different size (256 and
128 neurons, respectively) with a ReLU activation function learn high-level
non-linear features. Finally, the output layer is also a FCL with a softmax
activation function.

layers (MPL) and 3 fully-connected layers (FCL). CLs and

MPLs are combined into 5 consecutive stacks, each containing

two CLs with rectified linear unit (ReLU) activations followed

by a single MPL. Three FCLs, also with ReLU activations, and

an FCL output layer with a soft-max activation, learn high-

level features; we use a categorical cross-entropy objective

during training. We use 20% of the training set as a validation

set to determine hyperparameters, such as the number of

consecutive stacks/overall depth, the number of final FCLs and

the size of filters in CLs, the learning rate, and the stopping

time: we terminate learning when the validation accuracy

ceases to improve.

III. MAC-SPOOFING RESISTANT LEARNING

A. Datasets

In our experiments, we use three datasets with different

properties designed to confirm the MAC-learning resistance of

our approach. We provide a brief description of each dataset

below; Table III summarizes each dataset’s statistics.

ADS-B Dataset. The first dataset consists of wireless trans-

missions communicated by 50 devices through the ADS-B

protocol. All transmissions are recorded at a center frequency

of 1.09 GHz with the sampling rate 100 MS/s. Each device

transmits 196 signals with the average length of 9519 I/Q

samples. For each device, 141 randomly selected transmissions

form the training set and the remaining 55 the test set.

Scrambled MAC WiFi Dataset. The second dataset involves

synthetic WiFi signals with a fixed length of 45183 I/Q

samples. The training set consists of 100000 signals from 100

unique devices (1000 signals/device), and the test set consists

of 100000 signals from those same 100 unique devices.

However, the MAC IDs are randomly permuted among the

signals in the test set. This dataset aims to confirm whether the

network is learning to recognize the MAC ID of a particular

device as its discriminating feature.

Bitwise Identical WiFi Dataset. Finally, the bitwise identical

WiFi dataset comprises of 11191 transmissions communicated

by 19 identical devices (same manufacturer and MAC) in

the same channel conditions. The WiFi standard, Commercial

(a) Test accuracy without slicing

(b) Test accuracy with slicing

Fig. 3. Test accuracy over ADS-B dataset with and without slicing. The
dashed line at 800 samples indicates the position where the packet payload
(which includes the identifier) begins. (a) When measuring test accuracy
without slicing, we see that the test accuracy hovers around 50% initially;
at around 2000 samples, the accuracy increases rapidly, reaching 99.56%
accuracy by crop size 3000. This sharp increase strongly indicates that this is
due to learning the device ID. (b) Test accuracy with slicing does not exhibit a
sharp increase once surpassing the 800 sample mark; accuracy improvement is
gradual, which is consistent with the ability of the network to classify better
due to being able to observe more data, rather than because it is actually
learning the device ID.

off the shelf (COTS) 802.11a, were used for data collection.

Transmissions were recorded at a center frequency of 5 GHz

with the sampling rate varying between 20-200 MS/s.

B. Results

ADS-B Experiments. In the case of the ADS-B transmissions,

we know precisely the portion of the transmission that contains

the device ID. Indeed, the ADS-B protocol signal format

consists of (a) a sync pulse, which lasts 8 µs (800 samples)

followed by, (b) either 56 or 112 µs of data payload, depending

on the type of transmission. The device ID appears in the data

payload of the packet.

To study whether the neural network learns the device ID,

we crop transmissions: each transmission in both the training

set and the test set is truncated after a certain number of

I/Q samples. We investigated at crop sizes (i.e., truncation

thresholds) ranging from 64 to 512. In short, for both training

and testing, we only look at a prefix of each packet, com-

pletely discarding the remainder. Note that, as a consequence,

all (previously variable-length) transmissions have the same

length (namely, equal to the crop size).

Subsequently, we train a DNN on top of these cropped

transmissions in two ways. The first is without slicing: in

this case, the entire cropped transmission is fed to the neural

network, both in training and in testing. The second is with

the slicing procedure introduced in Section II-C: for test

transmissions, the sum of weights rule is used to produce the

classification outcome for the entire cropped transmission.

Figure 3(a) shows the test accuracy of the network without

slicing, as a function of the crop size. The behavior of the
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TABLE I
DATASET DESCRIPTION

Dataset # Devices
# Train

transmission/device
# Test

transmission/device
Average transmission length

ADS-B 50 141 55 9519

Scrambled MAC WiFi 100 1000 1000 45183

Bitwise Identical WiFi 19 8953 2238 20088

For each dataset, we provide the total number of devices, number of transmissions per device in training and test sets,
respectively, and the average length of transmitted signals.

TABLE II
DATASET DESCRIPTION

Dataset # Devices
# Train

transmission/device
# Test

transmission/device
Average transmission length

Scrambled MAC WiFi 100 1000 1000 45183

For each dataset, we provide the total number of devices, number of transmissions per device in training and test sets,
respectively, and the average length of transmitted signals.

TABLE III
DATASET DESCRIPTION

Dataset # Devices
# Train

transmission/device
# Test

transmission/device
Average transmission length

Bitwise Identical WiFi 19 8953 2238 20088

For each dataset, we provide the total number of devices, number of transmissions per device in training and test sets,
respectively, and the average length of transmitted signals.

TABLE IV
TEST ACCURACY WITH SLICING FOR FULL/UNCROPPED TRANSMISSIONS

Dataset Slice length
Accuracy

Per-slice / Per-transmission

ADS-B 1024 0.810/0.919

Scrambled MAC WiFi 1024 0.972/0.997

Bitwise Identical WiFi 128 0.778/1.000

The prediction accuracy of the classifier with slicing over the Scrambled
Mac WiFi and Bidwise Identical WiFi datasets indicate that the neural
network, combined with slicing, is MAC-learning resistant. In both ex-
periments, if the network was indeed learning the MAC address, the per
transmission accuracy on the test set would be no better than random (1%
and ≈5%, respectively). In contrast, the per transmission accuracy is very
high on both datasets (99.7% and 100%, respectively).

TABLE V
TEST ACCURACY WITH SLICING FOR FULL/UNCROPPED TRANSMISSIONS

Dataset Slice length
Accuracy

Per-slice / Per-transmission

Bitwise Identical WiFi 128 0.778/1.000

The prediction accuracy of the classifier with slicing over the Scrambled
Mac WiFi and Bidwise Identical WiFi datasets indicate that the neural
network, combined with slicing, is MAC-learning resistant. In both ex-
periments, if the network was indeed learning the MAC address, the per
transmission accuracy on the test set would be no better than random (1%
and ≈5%, respectively). In contrast, the per transmission accuracy is very
high on both datasets (99.7% and 100%, respectively).

accuracy strongly indicates that the network is indeed learning

the device ID. The dashed line at 800 samples indicates the

position where the packet payload (which includes the identi-

fier) begins. When only the preamble is used (crop size <800

TABLE VI
TEST ACCURACY WITH SLICING FOR FULL/UNCROPPED TRANSMISSIONS

Dataset Slice length
Accuracy

Per-slice / Per-transmission

Scrambled MAC WiFi 1024 0.972/0.997

The prediction accuracy of the classifier with slicing over the Scrambled
Mac WiFi and Bidwise Identical WiFi datasets indicate that the neural
network, combined with slicing, is MAC-learning resistant. In both ex-
periments, if the network was indeed learning the MAC address, the per
transmission accuracy on the test set would be no better than random (1%
and ≈5%, respectively). In contrast, the per transmission accuracy is very
high on both datasets (99.7% and 100%, respectively).

I/Q samples), the accuracy relatively quickly reaches 50%, and

remains relatively stable. At around 2000 samples, we observe

a sharp increase in accuracy, reaching a 99.56% accuracy by

crop size 3000. This regime is precisely the regime where a

big fraction of the data (i.e., cropped transmissions) seen by

the network is in effect the device ID. When this becomes

available to the neural network, the network quickly learns to

ignore the remaining portion of the transmission, enabling it

to reach an almost 100% accuracy on the test set.

We observe a very different form of behavior under slicing,

as indicated in Figure 3(b). In almost all cases, we observe

an increase in accuracy as the crop size grows, but at a

very slow rate: this is consistent with a behavior in which

“more data helps”: the network becomes better at detecting

the device when it can see a bigger part of the transmission.

There is a sharp improvement in the beginning, i.e., when

the network can see more than one slice per transmission.
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However, all subsequent improvements in accuracy happen at

a slow rate: no sharp increase akin to the one observed at

Figure 3(a) occurs when the network is exposed to the entire

ID. This suggest that the network is not learning the ID, but

is learning to focus on other discriminative features present in

the transmission.

The test accuracy with slicing over the entire transmission

(i.e., without cropping) is shown on the first row of Table VI.

Both per slice and per-transmission accuracy are reported.

Although the accuracy attained is quite high, at 91.9%, it is

below the 99.56% accuracy achieved by the network without

slicing, that learns the device ID.

Scrambled MAC-Wifi Dataset. The strongest evidence of the

MAC-learning resistance of training the network with slicing

is provided by its performance on the MAC-shuffling dataset.

Recall that, on this dataset, the MAC addresses of devices in

the test set are shuffled: each device broadcasts a transmission

with a different MAC ID than the one it used in the training

set.

The test accuracy of the neural network with slicing is

provided on the second line of Table VI. The observed per-

formance strongly indicates that the neural network, combined

with slicing, is indeed not learning the MAC address embedded

within the training set transmissions! If it were so, the accuracy

on the (MAC-shuffled) test set would be no better than random

(1%). In contrast, both per slice and per transmission accuracy

are very high (97.2% and 99.7%, respectively).

Bitwise Identical Devices. We reach the same conclusion

when observing the network performance with slicing over the

dataset of bitwise identical devices. Recall that, in this case,

all 19 devices transmit the same sequences, broadcasting the

same MAC address. The testing accuracy (both per slice and

per transmission) is provided on the third line of Table VI. If

the network was using the MAC address as a discriminative

feature, prediction accuracy over the test set would be no better

than random (≈ 5%). Nevertheless, the neural network is again

able to classify unseen transmissions in the test set with 100%

accuracy (no device is misclassified as another).

IV. FUTURE RESEARCH DIRECTIONS

In this paper, we demonstrate that classifying transmission

slices enhances shift-invariance, and makes the classifier resis-

tant to learning MAC IDs as features. Channel variations could

be another inherent feature among transmissions which may

hamper classifier performance; building classifiers invariant to

channel conditions is an important open problem. Another

interesting future direction could be using adversarial learn-

ing [?], [?] to increase resistance against MAC ID spoofing,

channel variations, or any other feature we should be ignoring

during inference.
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