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Abstract
In many supervised learning settings, elicited labels comprise pairwise comparisons or rankings
of samples. We propose a Bayesian inference model for ranking datasets, allowing us to take a
probabilistic approach to ranking inference. Our probabilistic assumptions are motivated by, and
consistent with, the so-called Plackett-Luce model. We propose a variational inference method to
extract a closed-form Gaussian posterior distribution. We show experimentally that the resulting
posterior yields more reliable ranking predictions compared to predictions via point estimates.
Keywords: Variational inference, Plackett Luce, Softmax Bound.

1. Introduction

In many supervised learning settings, elicited labels comprise pairwise comparisons or rankings of
samples (Kamishima and Akaho, 2009; K-Cramer et al., 2016; Sculley, 2010; Negahban et al., 2018).
For example, labelers may sort objects according to an underlying preference order, or select maximal
or minimal items within a given set. Rankings and comparisons are, in general, more informative
than class labels (Guo et al., 2019; Yıldız et al., 2019; Tian et al., 2019). They are also preferable as,
in practice, human labelers find it easier to make comparative–rather than absolute–class membership
judgments; this has been observed in several experimental contexts, e.g., in movie (Brun et al., 2010;
Desarkar et al., 2010), travel (Zheng et al., 2009), and music (Koren and Sill, 2011) recommendations,
as well as in labeling medical images (Stewart et al., 2005; K-Cramer et al., 2016; Tian et al., 2019).

The Placket-Luce model (Luce, 1959; Plackett, 1975) is a popular probabilistic model for
performing inference over ranking datasets. Intuitively, it postulates that the probability that a sample
is ranked higher than another is proportional to an inherent parameter. Traditionally, inference in
this setting amounts to learning these sample parameters from ranking data (Hunter et al., 2004;
Negahban et al., 2016, 2018; Maystre and Grossglauser, 2015). When samples have features, the
Plackett-Luce model can naturally be extended to regress parameters, and thereby rankings, from
features (Yıldız et al., 2019; Tian et al., 2019; Guo et al., 2019, 2018; Cheng et al., 2010).
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GUO DY ERDOĞMUŞ KALPATHY-CRAMER OSTMO CAMPBELL CHIANG IOANNIDIS

Nevertheless, virtually all prior literature on regressing ranking from sample features has focused
on maximum a posteriori (MAP) estimation. In this work, we approach ranking inference from a
Bayesian point of view, allowing us to produce a posterior distribution on the learned Plackett-Luce
model linking ranking to features. This distribution can be used to reason about parameter uncertainty
(e.g, by constructing confidence intervals, etc.), which cannot be accomplished via point estimates.
In summary, we make the following contributions:

• We propose a Bayesian inference model for ranking datasets, allowing us to take a probabilistic
approach to ranking inference. Our probabilistic assumptions are motivated by, and consistent
with, the Plackett-Luce model (Luce, 1959; Plackett, 1975).

• We study the posterior distribution of a Plackett-Luce parametric model linking rankings to
sample features. We propose a variational inference method to extract a closed-form Gaussian
posterior distribution under the Plackett-Luce model.

• Finally, we extensively evaluate the resulting variational inference method over real-life
datasets. We show that the resulting closed-form posterior yields more reliable ranking
predictions compared to predictions via point estimates.

The remainder of this paper is organized as follows. We discuss related work in Sec. 2. Our problem
formulation and variational inference algorithm under the Plackett-Luce model can be found in Sec. 3
and Sec. 4, respectively. Our numerical evaluations are in Sec. 5, and we conclude in Sec. 7.

2. Related Work

The Placket-Luce Model (Plackett, 1975; Luce, 1959) is a classic generative model used for inference
over ranking datasets. In the absense of features, it postulates that the probability that a sample is
ranked higher than another is proportional to an inherent parameter, the so-called Plackett-Luce
score. Maximum Likelihood Estimator (MLE) can be used to estimate these scores; though the
log-likelihood function is not concave, there exists a reparametrization that converts MLE to a convex
optimization problem (Hunter et al., 2004). Alternatively, Expectation-Maximization (EM) and
Minorize-Maximation (MM) algorithms have been proposed to accelerate the computation of the
MLE solution (Hunter et al., 2004; Gormley and Murphy, 2008). Alternative algorithms for MLE
through shrinkage methods have also been proposed (Ragain et al., 2018; Rajkumar and Agarwal,
2014). Maystre and Grossglauser (2015) and Agarwal et al. (2018) propose spectral algorithms
that significantly accelerate Plackett–Luce score estimation. In the Maximum A Posteriori (MAP)
setting, given a Gamma prior distribution, Caron and Doucet (2012) provide iterative algorithms for
obtaining MAP estimates for Placket-Luce scores.

When samples have features, several works propose regressing Plackett-Luce scores as either
shallow (Cheng et al., 2010; Sculley, 2010; Tian et al., 2019; Guo et al., 2018) or deep (Yıldız et al.,
2019; Sun et al., 2017) functions of features. In the shallow case, an appropriate parameterization
again makes the log-likelihood function concave (Tian et al., 2019), and the Newton method can
be used for parameter estimation. All of these works focus on MLE or MAP estimation, and none
produce a Bayesian posterior on model parameters, as we do in this paper.

Bayesian inference has been applied to Plackett-Luce model scores, i.e., in the absence of sample
features. Guiver and Snelson (2009) propose an inference scheme based on power expectation
propagation, which is robust and can be applied to large datasets. By using an alternative Thurstonian
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interpretation, Caron and Doucet (2012); Caron and Teh (2012) introduce latent variables that allow
them to derive simple Gibbs samplers for the posterior distribution. Wang et al. (2017) propose an
variational inference model to learn the mixtures in the feature-less setting. Alquier et al. (2016)
discuss variational approximations of the Gibbs posterior. None of the above approaches readily
generalize to the regression setting (i.e., one where samples have features) that we consider here.

Using variational inference as a means to approximate an intractable posterior is also classic
(Bishop, 2006). In their seminal work, Jaakkola and Jordan (1997) consider a logistic regression
model with a Gaussian prior distribution over the parameters. Our approach can be seen as an
extension to the Plackett-Luce model; our algorithm reduces to the one by Jaakkola and Jordan
(1997) when sets are pairs, i.e., in the so-called Bradley-Terry setting (Bradley and Terry, 1952).
Khan et al. (2012) apply variational inference to multivariate categorical data using a stick-breaking
likelihood function. Khan and Lin (2017) propose a conjugate computation variational inference
which uses stochastic-gradient methods for non-conjugate terms. In our work, we exploit an upper
bound of softmax function due to Bouchard (2007), also used by Ahmed and Campbell (2010) and
Park and Choi (2010) for variational inference in a multi-class classification setting. We leverage and
combine these techniques to show that, given a Gaussian prior distribution on model parameters, the
approximation bound for the softmax function leads to a variational Gaussian posterior distribution
for the Plackett-Luce model.

3. Problem Formulation

We consider a dataset of samples labeled by an expert as follows: labels are collected via comparisons
that the expert makes among alternatives presented to her. We consider two different labeling settings,
the top-query and the ranking setting. In the top-query setting, given a subset of the samples, the
expert returns her top-choice among the presented alternatives. In the ranking setting, the expert is
again given a subset of samples, but she returns a ranking, i.e., an ordering of the alternatives from
highest to lowest. For example, the dataset could comprise medical images. When a subset of images
is presented to a medical expert, she can select the image in which a disease is most prominent
(top-query setting) or order the images w.r.t. the prevalence of the disease (ranking setting).

Formally, we have N samples, indexed by i ∈ N ≡ {1, 2, · · · , N}, each associated with a
vector xi ∈ Rd. The expert is presented with a set of alternatives A ⊆ N , where m = |A| > 2 is the
size of set A. In the top-query setting, the expert chooses the top item c ∈ A; in the ranking setting,
the expert ranks the samples in A into an ordered sequence (a1 � a2 � · · · � am). Hence, in the
top-query setting, for L = {1, 2, · · · , L}, we are given a dataset

D =
{

(Al, cl)
}
l∈L

, (1)

where cl ∈ Al is the top choice in the set of alternatives Al ⊆ N . In contrast, in the ranking setting,
we are given a dataset

D =
{(
Al, {ali}

ml
i=1

)}
l∈L

, (2)

where ali ∈ Al, i = 1, · · · ,ml = |Al|, indicates the preference order of Al: al1 is the most preferred
alternative, al2 is the second preferred alternative, alml is the least preferred, etc. In both cases, we
wish to perform Bayesian inference over dataset D. To do so, we describe our discriminative model
in more detail below. For notational convenienve, we partition set L into two sets L2,L>2, defined
as L2 = {l : |Al| = 2}, L>2 = {l : |Al| > 2}. Note that L = L2 ∪ L>2 and L2 ∩ L>2 = ∅.
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N number of samples L number of sets of alternatives i, j sample indices
Al the set of alternatives l index of a set of alternatives cl top-query of set Al
xi feature vector of sample i D dataset of comparison labels si Plackett Luce score for i

α, ζ, ξ variational parameters σ sigmoid function β, a gamma parametric
ni total times that sample i is top query ε exponential distribution Γ gamma distribution
L {1, 2, · · · , L} L2 {l : |Al| = 2} L>2 {l : |Al| > 2}
N the set for all samples ml the size of set Al s Plackett Luce model score

L(s;D) negative log-likelihood function 1 indicator function p0(s) prior distribution of s
δli whether i is in the set Al θ parameter vector p0(θ) prior distribution of θ
Lk variational lower bound at iteration k λ(t) λ(t) = 1

4t
tanh( t

2
) |E| number of experts

L∞ variational lower bound ceiling

Table 1: Summary of Notation

3.1. Plackett-Luce Model

Our descriminative model is based on the so-called Plackett-Luce model. Luce’s choice axiom
(Hunter et al., 2004; Luce, 1959; Maystre and Grossglauser, 2015) states that the relative preference
of one item over another is not affected by the presence or absence of other items in the set of
alternatives. Formally, let p(c = i|A) be the probability of choosing item i when faced with
alternatives in the set A. The Plackett Luce model postulates that: (a) events (cl, Al) are independent
and (b) there exist parameters si, i ∈ N , s.t. each event has probability:

p(c = i|A) = si/
(∑

j∈A sj

)
. (3)

A special case of Plackett Luce is the case when |Al| = 2, i.e. the set of alternatives comprises
pairwise-comparisons; this is also known as the Bradley-Terry model (Bradley and Terry, 1952).
This is important in practice, as datasets often contain only pairs. Moreover, as we will see later on,
our bounds become sharper in this case (see Lemma 2).

Under the Plackett-Luce model, the ranking setting can be reduced to the top-query setting
by treating a ranking as the outcome of multiple independent top-queries: that is, ranking (a1 �
a2 � · · · aK−1 � aK) can be seen as the outcome of a1 being selected as the top among the set of
alternatives A, a2 being the top among A \ {a1}, etc. Assuming these selections are independent,
Eq. (3) yields a joint probability:

p(a1 � a2 � · · · aK−1 � aK |A) =
sa1∑K
j=1 saj

sa2∑K
j=2 saj

· · · saK−1

saK−1
+saK

. (4)

Note that under the independence assumption of the Plackett-Luce model Eq. (4) implies that a
dataset of form Eq. (2) can be converted to a dataset of form (1) having the same joint probability
distribution. This amounts to breaking each ranking of a set Al to the equivalent |Al|−1 independent
top queries. For this reason, we focus on the top-query setting from this point on, keeping this
equivalence in mind.

3.2. Inference over the Plackett Luce Model

In the absence of features, inference amounts to the determination of parameters s given (top-query)
dataset D defined as in Eq. (1). As alternative sets are independent, the total probability is:

p(D|s) =
∏
l∈L p(Al|s) =

∏
l∈L

scl∑
i∈Al

si
, (5)
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where s = [si]i∈N ∈ RN+ . Given a prior distribution p0(s) for s, we can infer s through maximum a
posteriori estimation (MAP) over the model (5). Then, the estimation of s amounts to minimizing
the following negative log-likelihood function:

L(s;D) = −
∑L

l=1 log p(Al|s)− log p0(s). (6)

Under the Plackett Luce model, the negative log-likelihood function for s is not convex. For
Maximum Likelihood estimation (MLE) i.e., when we do not introduce a prior, we can write
si = eθi , which makes negative log-likelihood convex with respect to θ = [θi]i∈N ∈ RN (Hunter
et al., 2004; Khetan and Oh, 2016; Rajkumar and Agarwal, 2014; Negahban et al., 2016). There also
exist fast iterative algorithms to solve problem (5). For example, Hunter et al. (2004) proposes the
minorize-maximization (MM) algorithm for Eq. (5), while recent spectral algorithms accelerate this
further (Maystre and Grossglauser, 2015; Agarwal et al., 2018; Kumar et al., 2015). A commonly
used prior distribution for s is the Gamma distribution: p0(s) =

∏N
i=1

βa

Γ(a)e
−βsis

(a−1)
i , where

a, β > 0. There is an iterative algorithm to minimize L(s;D) in Eq. (6) under a Gamma prior
(Hunter et al., 2004; Caron and Doucet, 2012): at step k + 1,

s
(k+1)
i = (a− 1 + ni)

[
β +

∑L
l=1

δli∑
t∈Al

s
(k)
t

]−1
, ∀ i ∈ N , (7)

where ni =
∑

l∈L 1i=cl , i ∈ N , counts the total times that sample i is the top item amongst
alternatives, and δli = 1i∈Al (i ∈ N , l ∈ L) indicates whether sample i is in the set of alternatives
Al.
Bayesian Inference over the Plackett Luce Model. The posterior distribution p(s|D) satisfies:

p(s|D) = p0(s)p(D|s)p(D) ∝ p0(s)
∏
l∈L

scl∑
t∈Al

st
. (8)

Given a Gamma prior distribution p0(s), the posterior distribution may be intractable, but Gibbs
sampling can be used to estimate it (Caron and Doucet, 2012; Caron and Teh, 2012; Caron et al.,
2014). In particular, for l = 1, 2, · · · , L, we first sample z(k+1)

l from the exponential distribution
E(
∑

t∈Al s
(k)
t ) (zl is the auxiliary variable given by Thurstonian interpretation). Then, for i =

1, · · · , N , we sample s(k+1)
i from the Gamma distribution Γ(a+ni, β+

∑L
l=1 δliz

(k+1)
l ), where ni,

δli are defined as the same as Eq. (7).

4. Plackett Luce Model Incorporating Features

In our setting, every sample i ∈ N has a feature vector xi ∈ Rd. We assume that there exists a
parameter vector θ ∈ Rd, sampled from a prior distribution p0(θ), so that si in Eq. (6) satisfies:

si = eθ
Txi . (9)

Our goal is to perform variational inference to estimate the posterior of θ ∈ Rd. Given a prior p0(θ),
the posterior distribution p(θ|D) for parameter vector θ ∈ Rd satisfies:

p(θ|D) ∝p0(θ)
∏
l∈L

exp(xTcl
θ)∑

j∈Al
exp(xTj θ)

. (10)
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To approximate the posterior distribution by a distribution q(θ) that belongs to a restricted family
(e.g., it is Gaussian), we identify a q(θ) that maximizes the Evidence Lower Bound (ELBO):

L(q) = Eq(θ)

[
log

p(D|θ)p0(θ)

q(θ)

]
(5)(9)
== Eq(θ)

[
log

(∏
l∈L

exp(xTcl
θ)∑

j∈Al
exp(xTj θ)

)
p0(θ)

q(θ)

]
.

(11)

This is equivalent to maximizing the KL divergence between q(θ) and p(θ|D) (Murphy, 2012).

4.1. Variational Lower Bound

We first establish a variational lower bound on the ELBO. We make use of an auxiliary lemma:

Lemma 1 For the Plackett Luce model (3) in which si = eθ
Txi ,∀i ∈ N , if |A| = 2, i.e,A = {cl, cl}

for some cl, cl ∈ N , then for all ξ ∈ R+, we have that:

p(c = cl|A) > σ(ξ)e
(xTcl,cl

θ−ξ)/2−λ(ξ)((xTcl,cl
θ)2−ξ2)

, (12)

where σ(ξ) = 1
1+e−ξ

, λ(ξ) = 1
4ξ tanh( ξ2) and xcl,cl = xcl − xcl ∈ Rd, for cl, cl ∈ N . If |A| > 2,

for any ξj ∈ R+, j ∈ A, and any α ∈ R, we have that:

p(c = cl|A) > ex
T
cl
θ−α∏

j∈A

(
σ(ξj)e

(−xTj θ+α−ξj)/2−λ(ξj)((x
T
j θ−α)2−ξ2j )

)
. (13)

The proof is in Appendix A of the supplement. Lemma 1 allows us to bound the ELBO as follows:

Lemma 2 Assume that the prior distribution is Gaussian, i.e.: p0(θ) = 1
B0
e−

1
2

(θ−µ0)TS−1
0 (θ−µ0),

where B0 = (2π)d/2|S0|1/2,µ0 ∈ Rd, and S0 ∈ Rd×d. Assume that q(θ) is a Gaussian distribution
N (µ,S). Then, for all ξ = [ξlj ]l∈L>2,j∈Al ∈ R

∑
l∈L>2

|Al|, α = [αl]l∈L>2 ∈ R|L>2| and ζ =

[ζl]l∈L2 ∈ R|L2|, the ELBO L(q) in Eq. (11) is lower-bounded by:

L(ζ, ξ,α,µ,S) =Eq(θ)

[∑
l∈LQl

]
+ 1

2 log |S|
|S0| + Eq(θ)

[
(θ-µ)TS−1(θ-µ)

2 − (θ-µ0)
TS−1

0 (θ-µ0)
2

]
, (14)

where Ql is the logarithm of the lower bound in Lemma 1, given by:

Ql =

xTclθ−αl+
∑

j∈Al

[
log σ(ξlj)−

xTj θ−αl+ξlj
2 −λ(ξlj)

(
(xTj θ-αl)

2-ξ2
lj

)]
, l ∈ L>2,

log σ(ζl) + (xTcl,clθ − ζl)/2− λ(ζl)((x
T
cl,cl
θ)2 − ζ2

l ), l ∈ L2,
(15)

where Al = {cl, cl} and xcl,cl = xcl −xcl for l ∈ L2. The proof is in Appendix B of the supplement.

4.2. Variational Lower Bound Optimization

To produce our estimate of the posterior, we follow the classic approach (Bishop, 2006; Jaakkola
and Jordan, 1997) of minimizing the variational lower bound (14) on the ELBO rather the ELBO
itself. We do so using am alternating maximization algorithm, i.e., alternately optimizing (14) w.r.t.
its distribution and bound parameters. Formally, for k ∈ N:

S(k),µ(k) = argmaxS,µ L(ζ(k), ξ(k),α(k),µ,S) (16a)

ξ(k+1), ζ(k+1),α(k+1) = argmaxξ,ζ,α L(ζ, ξ,α,µ(k),S(k)). (16b)
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Algorithm 1 Variational Inference Alternating Maximization
Prior parameter µ0,S0, feature vectorX , top-query data D = {cl, Al}`∈L.
1: Initialize ξ, ζ,α
2: while stopping criterion (26) is not satisfied do
3: µ,S = MINORIZATION(ξ, ζ,α).
4: (ξ, ζ,α) = MAXIMIZATION(µ,S).
5: end while
6: return µ,S
1: procedure MINORIZATION( ξ, ζ,α )
2: Compute S via (17).
3: Compute µ via (18).
4: end procedure
1: procedure MAXIMIZATION( µ,S)
2: Compute ζ as (19).
3: while not converged do
4: fix ξ, compute α via (22).
5: fix α, compute ξ via (23).
6: end while
7: end procedure

In the Bradley-Terry case (i.e., over pairwise comparisons), we can compute both (16a) and (16b) in
closed form, using the approach outlined in Jaakkola and Jordan (1997). The general Plackett-Luce
model, however, cannot be addressed by this approach, as the step (16b) does not admit a closed-form
solution. Note that the conversion of rankings to top-queries described in Section 3.1 yields both
pairwise (i.e., Bradley-Terry) and general top-queries; we therefore describe how to treat both cases.
We outline our approach below; a summary of the algorithm is given in Alg. 1.
Step (16a) (MINORIZATION): Step (16a) admits a closed form, following the same argument as
Bishop (2006); this is given by the following lemma, proved in Appendix C of the supplement.

Lemma 3 The solution Sk, µk to (16a) can be written as:

[S(k)]−1 = S−1
0 + 2

∑
l∈L2 λ(ζ

(k)
l )xcl,clx

T
cl,cl

+ 2
∑

l∈L>2

∑
j∈Al λ(ξ

(k)
lj )xjx

T
j , (17)

µ(k) =S(k)
(
S−1

0 µ0+
∑

l∈L2 xcl,cl/2+
∑

l∈L>2

(
xcl+

∑
j∈Al

(
2λ(ξ

(k)
lj )α

(k)
l xj-xj/2

)))
. (18)

Step (16b) (MAXIMIZATION): For step (16b), we first observe that the maximization of ζ can be
done independently of the optimization w.r.t. ξ and α; moreover, it again admits a closed-form
solution; the proof is identical to the one by Jaakkola and Jordan (1997), which we prove in Appendix
D of the supplement; this is precisely because, in the Bradley-Terry case (i.e., when |Al| = 2),
inferring θ amounts to logistic variational inference over the feature differences xcl,c̄l :

Lemma 4 Given S(k),µ(k), the solution of (16b) w.r.t. ζ can be written as

ζ
(k+1)
l =

√
xTcl,cl(S

(k) + µ(k)µ(k)T )xcl,cl , l ∈ L2. (19)

Given S(k),µ(k), optimizing (16b) w.r.t. ξ and α can again be done separately from optimizing ζ;
however, the former two variables are coupled. We solve this optimization via an inner alternating
maximization as well. In particular, problem (16b) amounts to solving problems of the following
form:

ξ
(k+1)
l , α

(k+1)
l = argmaxξl,αl Eq(θ)[Ql], l ∈ L>2, (20)

7
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where Ql are given by (15). We solve these problems via alternating maximization for n ∈ N
(Ahmed and Campbell, 2010):

α
(n+1)
l = argmaxαl fl(ξ

(n)
l , αl), l ∈ L>2, (21a)

ξ
(n+1)
l = argmaxξl fl(ξl, α

(n+1)
l ), l ∈ L>2, (21b)

where fl(ξl, αl) = Eq(θ)[Ql]. By decoupling this computation via alternating maximization, we can
again obtain closed-form formulas for (21):

Lemma 5 Given S(k),µ(k), the solution of (21a) w.r.t αl has a closed form:

α
(n+1)
l =

(
(ml − 2)/4 +

∑
j∈Al λ(ξ

(n)
lj )xTj µ

(k)
)
/
∑

j∈Al λ(ξ
(n)
lj ), l ∈ L>2, (22)

where ml is the size of set Al, and the solution of (21b) w.r.t ξl also has a closed form:

ξ
(n+1)
lj =

√
xTj S

(k)xj +
(
xTj µ

(k) − α(n+1)
l

)2
, l ∈ L>2, j ∈ Al. (23)

The proof is in Appendix E of the supplement.

4.3. Tracking the Lower Bound

The monotonicity of steps (16a) and (16b) implies that:

L(ζ(k), ξ(k),α(k),µ(k),S(k)) ≤L(ζ(k+1), ξ(k+1),α(k+1),µ(k),S(k))

≤L(ζ(k+1), ξ(k+1),α(k+1),µ(k+1),S(k+1)).
(24)

We can thus see that function L(ζ(k), ξ(k),α(k),µ(k),S(k)) is monotone w. r. t k. As noted in Bishop
(2006), the intermediate value in (24)–i.e., the lower bound after (16a) step–has a simple form, and
can keep track of the lower bound. In our setting, this is given by:

Lk =L(ζ(k+1), ξ(k+1),α(k+1),µ(k),S(k))

=
∑

l∈LM
(k)
l + (log(|S(k)|/|S0|))/2 + µ(k)T [S(k)]−1µ(k)/2− µT0 S

−1
0 µ0/2,

(25)

whereM (k)
l =

{∑
j∈Al

(
log σ(ξ

(k)
lj )-ξ

(k)
lj /2+λ(ξ

(k)
lj )([ξ

(k)
lj ]2-[α

(k)
l ]2)

)
+(ml-2)α

(k)
l /2, l ∈ L>2,

log σ(ζ
(k)
l )− ζ(k)

l /2 + λ(ζ
(k)
l )[ζ

(k)
l ]2, l ∈ L2.

The proof is in Appendix F of the supplement.

5. Evaluation

5.1. Datasets

ROP Dataset. The ROP dataset (K-Cramer et al., 2016) is a comparison dataset, i.e., it is of the form
given by Eq. (1) with ml = 2. It consists of N = 100 images of retinas, labeled by experts w.r.t. the
presence of a disease called Retinopathy of Prematurity (ROP). We represent each image through a
vector xi ∈ Rd where d = 156, using the feature extraction procedure of K-Cramer et al. (2016),
comprising statistics of several indices such as blood vessel curvature, dilation, and tortuosity. Five

8
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Name Labelers |E| Repetitions Ne d ml |Le| sample Type ε
ROP 5 6 100 156 2 4950 100 Comparison 1e−6

Netflix-Com 30 1 1079-1198 30 2 6000 1000 Comparison 1e−7

CAMRa-Com 30 1 1028-3300 10 2 6000 1000 Comparison 1e−7

MLSR-Com 30 1 100-400 134 2 6000 1000 Comparison 1e−6

Netflix-Rank 30 1 1079-1198 30 5 1500 300 Ranking 1e−7

CAMRa-Rank 30 1 1028-3300 10 5 1500 300 Ranking 1e−7

MLSR-Rank 30 1 100-400 134 3 1500 250 Ranking 1e−6

Sushi 1(General) 30 100 20 10 500 100 Ranking 1e−6

Table 2: Dataset Summary

experts provide binary comparison labels indicating severity between image pairs. Each expert e
provides |Le| = 4950 pairwise comparisons between these 100 images1.
Netflix Dataset. The Netflix dataset has 600 users and 17770 movies. We select 30 users who have
rated more than N = 1079 movies. Each movie has a feature vector xi ∈ Rd, with d = 30, obtained
via matrix factorization (Koren et al., 2009) over the entire dataset. In the original data, each movie
has a score between 1 to 5. We generate 2 synthetic datasets, one containing rankings (Netflix-Rank)
and one containing pairwise comparisons (Netflix-Com). For each user, we can generate synthetic
ranking data in the form (2) with ml = 5 and pairwise comparison data in the form (1) with ml = 2.
For Netflix-Rank data, we select sets Al uniformly at random among all sets of 5 movies with
different ratings, then rank the five movies from highest to lowest. We set |Le| = 6000 per user
for Netflix-Rank. For Netflix-Com data, each pairwise comparison {cl, cl} is selected by uniformly
at random among a pair of samples with different scores; in this data, we generate |Le| = 1500
comparisons per user e.
CAMRa Dataset. The CAMRa dataset (Bento et al., 2011) has 640 users and 23893 movies. We
select 30 users who have rated more than N = 1028 movies. Each movie has a feature vector
xi ∈ Rd, with d = 10, obtained via matrix factorization over the entire dataset. Each movie has a
score ranging from 1 to 5. As for Netflix, we generate 2 synthetic datasets, one containing rankings
(CAMRa-Rank) and one containing pairwise comparisons (CAMRa-Com). We set |Le| = 6000
rankings per user e for CAMRa-Rank and |Le| = 1500 comparisons per user e in CAMRa-Com.
MSLR Dataset. The MSLR-WEB10K dataset (Qin and Liu, 2013) has 10000 queries. The dataset
consists of 134-dimensional features such as covered query term number, covered query term ratio,
stream length, inverse document frequency (IDF), etc. Relevance judgments are obtained from a
labeling set of a commercial web search engine (Microsoft Bing) queries, which take 5 values from
0 (irrelevant) to 4 (perfectly relevant). As we did for users in the Netflix and CAMRa datasets, for
each query ID e, we generate synthetic ranking data in the form (2) with ml = 3 (the sample with
relevance judgment from 0 to 2) and pairwise comparison data in the form (1) with ml = 2. We
generate |Le| = 6000 per query ID e for MLSR-Rank and |Le| = 1500 comparisons per query ID e
for MSLR-Com.
SUSHI Dataset. The SUSHI Preference dataset (Kamishima et al., 2009) consists of rankings of
N = 100 sushi food items by |L| = 5000 customers. Each customer ranks ml = 10 items according
to her preferences, hence the data can be expressed in form (2) in which ml = 10. Each sushi item is
associated with a feature vector xi ∈ Rd where d = 20, consisting of features such as style, group,
heaviness/oiliness in taste, frequency, and normalized price.

1. Some experts observe and rate the same pair more than once.
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5.2. Experiment Setup

Cross Validation. We perform two types of 3-fold cross-validation: over the dataset L and over
samples N ; we describe both in more detail below.
L Partition: For the dataset D defined in either form (1) or (2), we perform standard cross-validation
over L: that is, we split L into a training set Ltrain and test set Ltest. This corresponds to a standard
partitioning of set D into Dtrain = {Al|l : l ∈ Ltrain} and Dtest = {Al|l : l ∈ Ltest}. Note that,
under this partitioning, samples N appear in both the training and test set.
N Partition: We also partition the dataset D by N . To do so, we first partition N into Ntrain
and Ntest, and then set the training set to Dtrain = {Al|l : Al ⊆ Ntrain} and the test set to
Dtest = {Al|l : Al ⊆ Ntest}. Note that, for every l ∈ L, sets Al that contain samples in both Ntrain
and Ntest are dropped.
For ROP, Netflix, CAMRa and MLSR we cross validate each dataset De separately across ex-
perts/users/queries e ∈ E. For ROP (in which we only have 5 experts), we repeat the 3-fold
partitioning 6 times. For Sushi, we treat all rankings as generated by one labeller, and repeat the
random 3-fold partitioning 30 times. The size |E| and the number of repetitions for each dataset are
summarized in Table 2: note that, as a result, we perform exactly 30 cross-validations in total per
dataset. To speed up training, we train only on a sample of the entire training set Dtrain(Le); the
sample size for each dataset is also in Table 2. In all cases, although we subsample the training set,
we evaluate our models on entire test set Dtest.
Algorithms. We use a Gaussian prior with mean 0 and covariance S0=1/ηId ∈ Rd×d, where η is a
hyperparameter. We implement Alg. 1 to infer post parameter µ,S. We set the stopping criterion to:√

||ξ(k+1) − ξ(k)||22 + ||ζ(k+1) − ζ(k)||22 6 ε, (26)

where ζ and ξ are given by Eq. (19) and Eq. (23) respectively. We define L∞ as the variational lower
bound Lk given by (25), at the last iteration. We also implement maximum a posteriori estimation
(MAP) to infer an estimate θ̂MAP , which is the θ ∈ Rd maximizing Eq. (6) with si = xTi θ, i ∈ N .
Metrics. We measure two evaluation metrics in the test set for both ranking and comparison data.
First, we measure comparison AUC, by treating comparisons as binary variables; to measure AUC
over rankings, we break rankings of length M to the correspondingM(M −1) pairwise comparisons
and treat them as binary variables to be predicted. We also measure a top-K metric, defined below;
we use this metric as a means of evaluating performance over a task that would be more sensitive to
correct posterior distribution estimation than AUC. Intuitively, the top-K metric measures the “value”
of an estimate of the K top ranked items in the test set. Formally, for each item i ∈ S , where S is the
set of items in the test set, we define i’s ground truth “value” as:

wi = #comparison pairs in Dtest which i is the winner
#comparison pairs in Dtest containing i =

∑
Al⊆Dtest

∑
(i,j)∈Al

1(c=i|i,j)∑
Al⊆Dtest

∑
(i,j)∈Al

1 . (27)

We estimate the value of item i ∈ S as:

ŵi =
(∑

Al⊆Dtest
∑

(i,j)∈Al P(c = i|i, j)
)
/
(∑

Al⊆Dtest
∑

(i,j)∈Al 1
)
. (28)

where P(c=i|i, j)=1/(1+ exp(−xTi,j θ̂)) for MAP, and P(c=i|i, j)=Eθ∼N(µ,S)[1/(1+exp(-xTi,jθ))]

for variational inference. We define the top-K metric as the ratio TK=W (Ŝ+)/(maxS:|S|=KW (S)),

where W (S)=
∑

i∈S wi, and Ŝ+= arg maxS:|S|=K Ŵ (S) for Ŵ (S)=
∑

i∈S ŵi. Intuitively, this is
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Figure 1: Variational lower bound ceiling for different datasets

the ration of the (ground truth) value of the estimated top-K set, over the (ground truth) value of the
(true) optimal set.

6. Experiment Results

Variational Lower Bound Ceiling. For each dataset, we plot the mean variational lower bound
ceiling L∞ across different experts or different splits as a function of the hyperparameter η in Fig. 1.
This lower bound can be used to determine hyperparameter η, without cross-validation (i.e., without
observing the test-set labels): this is one of the advantages of using variational inference. We denote
by ηL the value of η that maximizes L∞. We observe that ηL is similar for N and L partitions.2

Top-K Metric. Table 3 includes top-K metric for both M-VI (variational inference) and MAP
estimation. In particular, we show performance for both algorithms with hyperparameter η determined
by cross validation (η∗V and η∗M respectively) and as well as for ηL determined by maximizing the
lower bound as in Fig. 1. Note that MAP estimation for ηL is only provided for comparison purposes,
as variational inference is needed to compute ηL. We provide results under both L and N partitions.
Comparing M-VI and MAP under L partition and cross-validated η, we see that, with the exception
of the MLSR dataset, M-VI is better than MAP. Using ηL rather than the parameter determined by
cross validation slightly decreases performance. On the same vein, the N partition setting is slightly
more difficult than L partition setting; performance is again slightly lower.

Fig. 2 shows the full effect of η for the CAMRa-Rank dataset. Overall, M-VI is better than MAP,
while ηL acquired by Fig. 1 is close to (but not exactly equal to) the η that maximizes the top-K value
across cross validation.
AUC Metric. Table 4 shows AUC metric performance for both M-VI and MAP estimation; we
note that AUC is a metric towards which MAP estimation is best suited to, so we expect MAP to
perform well. Again, the table shows AUC performance for both algorithms with hyperparameter
η determined by cross validation (η∗V and η∗M respectively) and as well as for ηL determined by
maximizing the lower bound as in Fig. 1; we again also provide results under both L andN partitions.
Comparing M-VI and MAP under L partition and N partition we see that, except for MLSR-Com
and Netflix-Rank datasets, M-VI is almost identical as MAP. Using ηL rather than the parameter
determined by cross validation slightly decreases performance. Again, the N partition setting is
slightly more difficult than L partition setting except for Netflix-Rank and CAMRa-Rank dataset.

2. Our code is publicly available at: https://github.com/neu-spiral/VariationalPlackettLuce
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Size(K) M-VI (η∗V ) MAP (η∗M ) M-VI (ηL) MAP (ηL)
L

Pa
rt

iti
on

C
am

ra 15 0.967 0.961 0.966 0.961

20 0.958 0.952 0.957 0.952
N

et
fli

x 15 0.993 0.993 0.991 0.992

20 0.993 0.993 0.993 0.993

Su
sh

i 15 0.805 0.805 0.79 0.803

20 0.824 0.824 0.809 0.823

M
L

SR 15 0.936 0.937 0.926 0.928

20 0.922 0.924 0.911 0.916

N
Pa

rt
iti

on C
am

ra 15 0.839 0.838 0.839 0.837

20 0.821 0.821 0.82 0.819

N
et

fli
x 15 0.914 0.91 0.914 0.908

20 0.903 0.903 0.901 0.903

M
L

SR 15 0.607 0.611 0.529 0.521

20 0.602 0.603 0.538 0.528

CAMRa: CAMRa-Rank; Netflix: Netflix-Rank; MLSR: MLSR-Rank.

(a) Top-K metric for ranking datasets

Size(K) M-VI (η∗V ) MAP (η∗M ) M-VI (ηL) MAP (ηL)

L
Pa

rt
iti

on
C

am
ra 15 0.899 0.898 0.899 0.897

20 0.89 0.89 0.888 0.887

N
et

fli
x 15 0.972 0.971 0.971 0.97

20 0.967 0.967 0.967 0.967

R
O

P 15 0.925 0.924 0.922 0.919

20 0.925 0.924 0.919 0.918

M
L

SR 15 0.86 0.853 0.828 0.83

20 0.85 0.841 0.817 0.817

N
Pa

rt
iti

on
C

am
ra 15 0.841 0.84 0.837 0.837

20 0.836 0.836 0.835 0.836

N
et

fli
x 15 0.932 0.931 0.929 0.929

20 0.928 0.928 0.925 0.925

R
O

P 15 0.899 0.899 0.899 0.898

20 0.914 0.91 0.914 0.909

M
L

SR 15 0.641 0.641 0.628 0.627

20 0.636 0.634 0.628 0.625

CAMRa: CAMRa-Com; Netflix: Netflix-Com; MLSR: MLSR-Com.

(b) Top-K metric for comparison datasets
Table 3: Top-K metric for ranking and comparison datasets.
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Figure 2: The top-K metric result: left two figures are CAMRa-Rank dataset for L partition and right
two figures are CAMRa-Rank dataset for N partition. Red curve: variational inference; blue curve:
MAP; best bound position: the ηL that can maximize the ceiling of variational lower bound.

The reason is that, in these datasets, under the N partition, the total number of pairwise comparisons
in the test set is much smaller than the number under the L partition.
Posterior Distribution. We also conduct additional experiments to assess the quality of the inferred
distribution. Recall that we reduce rankings in the test set to comparison pairs. As our variational
inference method gives us a posterior Gaussian distribution θ ∼ N (µ,S), based on the Bradley
Terry model, the score difference si,j = si−sj , that governs a pairwise outcome, also has a Gaussian

distribution si,j ∼ N (µ, %), where µ = xTi,jµ, % =
√
xTi,jSxi,j . Intuitively, high µ should indicate

high probability of i � j, and low µ should indicate high probability of i ≺ j. In contrast, high
variance, as captured by %, should ameliorate this effect. In Fig. 4, we bin comparisons in the test set
with respect to values of mean µ and %, and plot the positive ratio (PR) capturing the number of pairs
in a bin for which i � j, over the total number of pairs in the bin. Behavior is exactly as expected:
there is an increase of PR as µ increases overall; however, higher variance % worsens the accuracy of
this prediction: PR tends towards 0.5 as % increases in both the high and low µ regime.
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Name M-VI (η∗V ) MAP (η∗M ) M-VI (ηL) MAP (ηL)
L

pa
rt

iti
on CAMRa 0.731 0.732 0.731 0.732

Netflix 0.872 0.877 0.871 0.876

Sushi 0.591 0.592 0.579 0.589

MLSR 0.723 0.728 0.698 0.702

N
pa

rt
iti

on CAMRa 0.821 0.821 0.821 0.821

Netflix 0.902 0.902 0.901 0.901

MLSR 0.64 0.64 0.592 0.586

CAMRa: CAMRa-Rank; Netflix: Netflix-Rank; MLSR: MLSR-Rank.

(a) AUC for ranking dataset

Name M-VI (η∗V ) MAP (η∗M ) M-VI (ηL) MAP (ηL)

L
pa

rt
iti

on CAMRa 0.822 0.822 0.822 0.822

Netflix 0.884 0.884 0.884 0.884

ROP 0.87 0.875 0.865 0.865

MLSR 0.789 0.779 0.738 0.738

N
pa

rt
iti

on CAMRa 0.813 0.812 0.813 0.812

Netflix 0.867 0.867 0.867 0.867

ROP 0.835 0.832 0.835 0.832

MLSR 0.635 0.635 0.629 0.628

CAMRa: CAMRa-Com; Netflix: Netflix-Com; MLSR: MLSR-Com.

(a) AUC for comparison dataset

Table 4: AUC metric for ranking and comparison datasets.
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Figure 3: The AUC result: left figure is CAMRa-Rank dataset for L partition and right figure is
CAMRa-Rank dataset for N partition. Red curve: variational inference; blue curve: MAP; best
bound position: the ηL that can maximize the ceiling of variational lower bound.

For CAMRa-Rank and Netflix-Rank dataset, as we have many experts, so we check the positive
ratio for a specific mean interval described in Sec. 5.2. We find that the expert with low variance
can have a more stable prediction result. For a positive range, if the standard deviation is small, the
positive ratio would be higher.

In Fig. 5, we plot the positive ratio (PR) for each expert as a function of the inferred standard
deviation of predictions for this expert, for two multi-expert datasets. We again observe a downwards
trend, with PR decreasing as the inferred standard-deviation of experts increases.

7. Conclusion

Variational inference can be used to learn posterior distributions under the Plackett-Luce model in
both the ranking and top-choice settings. We have demonstrated the suitability of this approach for
tasks beyond prediction; an additional use of a posterior would be to perform, e.g., active learning
or experimental design, as in, e.g., Guo et al. (2018) and Guo et al. (2019); investigating this is an
interesting future direction.
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Figure 4: The positive ratio histogram for one expert: the left one is for Sushi dataset, the middle one
is L partition for Netflix-Rank dataset, the right one is L partition for Netflix-Rank dataset.
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Figure 5: The positive ratio among different experts with different variance: the left one is L partition
for CAMRa-Rank dataset, the right one is N partition for CAMRa-Rank dataset.
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Appendix A. Proof of Lemma 1

We first use the standard quadratic bound (Jaakkola and Jordan, 1997; Bishop, 2006): for any y ∈ R
and ξ ∈ R,

log(1 + e−y) 6 λ(ξ)(y2 − ξ2) + (−y + ξ)/2 + log(1 + e−ξ), (29)

which implies:
σ(y) > σ(ξ)e(y−ξ)/2−λ(ξ)(y2−ξ2). (30)

When A = {cl, cl}, we have:

p(c = cl|A)
(3)
=

scl
scl + scl

(9)
=

1

1 + e−θ
T (xcl−xcl )

= σ(xTcl,clθ)

(30)
> σ(ξ) exp

(
(xTcl,clθ − ξ)/2− λ(ξ)((xTcl,clθ)2 − ξ2)

)
.

(31)

To prove Eq. (13), we use Bouchard’s inequality (Bouchard, 2007), which states that for all y =
[yi]i ∈ RK and all α ∈ R:

log(
K∑
k=1

eyk) 6α+
K∑
k=1

log(1 + eyk−α). (32)

Combining Eq. (32) with Eq. (29), for every ξ = [ξi]i=1,··· ,K ∈ RK+ we get

K∑
k=1

eyk 6eα
K∏
k=1

(
(1 + e−ξk)e(yk−α+ξk)/2+λ(ξk)((yk−α)2−ξ2k)

)
. (33)

Hence, the top query probability under the Plackett Luce model satisfies:

p(c = cl|A) =
exp(xTclθ)∑
j∈Al exp(xTj θ)

(3)(33)
>

exp(xTclθ)

eα
∏
j∈A

(
(1 + e−ξj )e(xTj θ−α+ξj)/2+λ(ξj)((xTj θ−α)2−ξ2j )

)
= exp(xTclθ − α)

∏
j∈A

(
σ(ξj)e

(−xTj θ+α−ξj)/2−λ(ξj)((x
T
j θ−α)2−ξ2j )

)
(34)

�

Appendix B. Proof of Lemma 2

The posterior q(θ) has the Gaussian form, i.e.:

q(θ) =
1

Bq
e−

1
2

(θ−µ)TS−1(θ−µ) (35)
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where Bq = (2π)d/2|S|1/2,µ ∈ Rd and S ∈ Rd×d and the ELBO L(q) satisfies:

L(q)
(11)
= Eq(θ)

[
log

p0(θ)

q(θ)

]
+ Eq(θ)

[∑
l∈L

log
exp(θTxcl)∑
j∈Al exp(θTxj)

]

=Eq(θ)

[
(θ − µ)TS−1(θ − µ)

2
− (θ − µ0)TS−1

0 (θ − µ0)

2

]
+

1

2
log
|S|
|S0|

+ Eq(θ)

[∑
l∈L

log
exp(θTxcl)∑
j∈Al exp(θTxj)

]
.

(36)

By Lemma 1, exp(θTxcl)/
∑

j∈Al exp(θTxj) is bounded by Ql, and Lemma 2 follows. �

Appendix C. Proof of Lemma 3

The variational lower bound (14) is an expectation of a quadratic function of θ, and we can obtain
the corresponding variational parameters S,µ by identifying the linear and quadratic terms in θ. To
maximize the lower bound in Eq. (14), the quadratic term satisfies:

θTS−1θ = θTS−1
0 θ + θT

(
2
∑
l∈L2

λ(ζ
(k)
l )xcl,clx

T
cl,cl

+ 2
∑
l∈L>2

∑
j∈Al

λ(ξ
(k)
lj )xjx

T
j

)
θ, (37)

and the linear term satisfies:

θTS−1µ = θTS−1
0 µ0 + θT

(∑
l∈L2

xcl,cl
2

+
∑
l∈L>2

(
xcl +

∑
j∈Al

(
2λ(ξ

(k)
lj )α

(k)
l xj −

xj
2

)))
. (38)

As the Eq. (37) and Eq. (38) hold for any θ, Lemma 3 follows.
�

Appendix D. Proof of Lemma 4

From (14), objective of (16b) is separable w.r.t. ζ and ξ,α, and

ζ
(k+1)
l = argmax

ζl

Eq[Ql], l ∈ L2, (39)

where Ql is given by (15). Hence, the optimal ζl is a stationary point:

∂L(ζ, ξ,α,µ(k),S(k))

∂ζl
=− λ′(ζl)

(
Eq(θ)

[
(θTxcl,cl)

2
]
− ζ2

l

)
= 0, l ∈ L2, (40)

As λ′(ζl) > 0, stationary points satisfy Eq(θ)

[
(θTxcl,cl)

2
]

= ζ2
l , which yields (19) for ζl ≥ 0. �

Appendix E. Proof of Lemma 5

By (15), we have that:

fl(ξl, αl) = −αl +
∑
j∈Al

(
log σ(ξlj) +

αl − ξlj
2

− λ(ξlj)
(
Eq(θ)[(x

T
j θ-αl)

2]− ξ2
lj

))
. (41)
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This is a quadratic function with respect to αl. The solution for Eq. (21a) is a stationary point, so we
have:

∂fl
∂αl

=
(ml − 2)

2
− 2

∑
j∈Al

λ(ξ
(n)
lj )αl + 2

∑
j∈Al

λ(ξlj)Eq(θ)[x
T
j θ] = 0, l ∈ L>2, (42)

which implies Eq. (22). For ξl, the solution for Eq. (21b) should also be a stationary point:

∂fl
∂ξlj

=− λ′(ξlj)
(
Eq(θ)

[
(θTxj − α(n+1)

l )2
]
− ξ2

lj

)
= 0, l ∈ L>2, j ∈ Al, (43)

As λ′(ξlj) > 0, stationary points satisfy Eq(θ)

[
(θTxlj − α

(n+1)
l )2

]
= ξ2

lj , which implies (23) for
ξlj ≥ 0. �

Appendix F. Proof of Lemma 6

The derivation follows the same argument as in Jaakkola and Jordan (1997). Briefly, to see why
Eq. (25) holds, note that in step (16a), covariance S and mean µ are updated. Subsequently, L
defined as in Eq. (14) is the sum of two terms: the KL divergence between two Gaussian distributions
and a normalization factor. The optimum in step (16a) therefore occurs when the two Gaussian
distributions are identical. Because of this, we can omit all quadratic and linear terms from (14)
when computing (25): we only need to calculate the normalization factor by adding the constant
items in Eq. (14).

In more details, quantity Ql defined in Eq. (15) can be written as:

Ql = Q
′
l +Q

′′
l +Ql (44)

where Q
′
l, Q

′′
l and Ql are defined as:

Q
′
l =

x
T
cl
θ +

∑
j∈Al

[
− xTj θ/2 + 2αlλ(ξlj)

(
xTj θ

)]
, l ∈ L>2,

xTcl,clθ/2, l ∈ L2,
(45a)

Q
′′
l =

−
∑
j∈Al

λ(ξlj)
(
xTj θ

)2
, l ∈ L>2,

−λ(ζl)(x
T
cl,cl
θ)2, l ∈ L2,

(45b)

Ql =

−αl +
∑
j∈Al

[
log σ(ξlj) +

αl−ξlj
2 − λ(ξlj)

(
α2
l − ξ2

lj

)]
, l ∈ L>2,

log σ(ζl)− ζl/2 + λ(ζl)ζ
2
l , l ∈ L2.

(45c)

After step (16a), the following equations hold:

Eq(θ)

[∑
l∈L

Q
′
l

]
+ Eq(θ)

[
− θTS−1µ+ θTS−1

0 µ0

]
= 0, (46a)

Eq(θ)

[∑
l∈L

Q
′′
l

]
+ Eq(θ)

[
θTS−1θ/2− θTS−1

0 θ0/2

]
= 0, (46b)
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which are equivalent to Eq. (38) and Eq. (37). Thus, Eq. (14) can be written as:

L(ζ, ξ,α,µ,S) =Eq(θ)

[∑
l∈L

Ql

]
+

1

2
log
|S|
|S0|

+ Eq(θ)

[
µTS−1µ

2
− µ

T
0 S
−1
0 µ0

2

]

=
∑
l∈L

Ql +
1

2
log
|S|
|S0|

+
µTS−1µ

2
− µ

T
0 S
−1
0 µ0

2
.

(47)

This is equivalent to Eq. (25). �
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