Problem 1: (25)

9 a. Sketch a process flow to fabricate a cantilever-based microswitch using cross-sections from the side of the cantilever beam. Show the use of photoresist in patterning layers at least once in your sequence of cross-sectional views. The finished device should have 3 or 4 terminals; one or two actuator terminals and the two terminals for the switched signal (one of the actuator terminals may be common with one of the signal terminals).

2 b. How many masks are required by your process?

7 c. Describe each process step.

3 d. Identify all materials used.

4 e. Sketch a top view of the finished switch, showing the connections for the actuator and signals.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

b. 4 masks

c. with a.

d. with a.

e. 4 masks

c. with a.

d. with a.

Actuator connection

Input metal line

Output metal line

Anchor contacts

Deposit Cu sacrificial layer

Pattern + etch anchor + contact

Deposit metal (Au)

Release
Problem 2. Using the Deal-Grove model for silicon oxidation, determine the time required to grow a 1 micron oxide using wet oxidation on a wafer that already is covered with a 0.5 micron oxide at 920 and 1100 °C. (You want to end up with a total thickness of 1 μm.)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>A (μm)</th>
<th>B (μm²/hr)</th>
<th>B/A (μm/hr)</th>
<th>T_{DG} (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>920</td>
<td>0.05</td>
<td>0.203</td>
<td>0.406</td>
<td>0</td>
</tr>
<tr>
<td>1100</td>
<td>0.11</td>
<td>0.510</td>
<td>4.64</td>
<td>0</td>
</tr>
</tbody>
</table>

First find $\Sigma_{DG} = \frac{x_i^2}{B_{OC}} + \frac{x_i}{(B_{OC}/A_{OC})}$

At $920°$, $\Sigma_{DG} = \frac{(0.5)^2}{0.203} + \frac{0.5}{0.406} = 2.46$

At $1100°$, $\Sigma_{DG} = \frac{(0.5)^2}{0.510} + \frac{0.5}{4.64} = 0.60$

Σ_{DG} (or t) for 1 μm

At $920°$: $\Sigma_{DG} = \frac{1}{0.203} + \frac{1}{0.406} = 7.39$

At $1100°$: $\Sigma_{DG} = \frac{1}{0.510} + \frac{1}{4.64} = 2.18$

Process time is the time to grow 1 μm—time to grow 0.5 μm:

920°: $t = 7.39 - 2.46 = 4.93$ hr

1100°: $t = 2.18 - 0.60 = 1.58$ hr
Problem 3. Find electrical equivalent circuits for the following systems:

a.

\[V(t) \]

\[V(t) \]

b.

\[F(t) \]

\[F(t) \]

c.

\[F(t) \]

\[F(t) \]
Problem 4. Find a set of state equations (first-order differential equations in the state variables) for the following system. You can work directly with the system or transform it to an electrical equivalent first.

\[i_1 = v(t) \]

1. \[k_2 \int (i_2 - i_1) \, dt + m \frac{d^2 i_2}{dt^2} + k_1 \int (i_2 - i_3) \, dt = 0 \]
2. \[k_1 \int (i_3 - i_2) \, dt + b i_3 = 0 \]

From 1: \[k_2 i_2 - k_2 i_1 + m \frac{d^2 i_2}{dt^2} + k_1 i_2 - k_1 i_3 = 0 \]
From 2: \[k_1 i_3 - k_1 i_2 + b \frac{d i_3}{dt} = 0 \]

Substitute \[X_1 = \dot{i}_3 \]
\[X_2 = i_2 \]
\[X_3 = i_3 \]
\[\begin{aligned} \dot{X}_1 &= X_2 \\ \dot{X}_2 &= X_1 \\ \dot{X}_3 &= \frac{k_1}{b} X_2 - \frac{k_1}{b} X_3 \end{aligned} \]

State equations:
\[\begin{aligned} \dot{X}_1 &= X_2 \\ \dot{X}_2 &= X_1 \\ \dot{X}_3 &= \frac{k_1}{b} X_2 - \frac{k_1}{b} X_3 \end{aligned} \]
Problem 5. Give short answers to the following questions:

a. Give an example of a successful microfluidic MEMS product.
 Ink jet print head.

b. Give examples of two successful MEMS products that use the electrical and mechanical domains.
 Accelerometer
 Gyroscope
 Pressure sensor

c. Give an example of a MEMS product that uses (at least) the electrical and thermal domains.
 Ink jet print head
 IR imager

d. Explain why the electrostatic actuator has a snap down instability in the voltage controlled mode but not in the charge controlled mode.

 The force can be shown to be a function of charge, independent of gap. Charge control, force is a constant - no instability because the spring force increases. In the voltage control mode, the force increases with decreasing gap, without bound, so that as the gap becomes smaller, the electrostatic force eventually increases faster than the spring force and the actuator snaps down.

e. Considering the electromechanical electrostatic actuator, why is it difficult to drive the actuator in the charge controlled mode?

 1. The capacitance of the actuator is small - difficult circuit.
 2. The capacitance of the circuit, wires, leads, is relatively large and charge can be transferred from these capacitances to the actuator.

f. Considering an electrostatic actuator, describe electrical and mechanical methods to increase the damping of the motion.

 Mechanical - Small gap, high pressure - air damping
 Electrical - The damping is in the resistance - a large source resistance.