Figure 6.9. A complete electrostatic actuator, with added elements representing the inertia of the moveable element, mechanical damping, and the source resistance of the electrical network.
Comb Drive – Another version of the electrostatic actuator.

• What is different?
 • Before, $C = \varepsilon A/g$
 • Now, $C = C_0 + C_1x$
 • Linear in x, the direction of motion.
 • Consequences?
• Look at one finger, treat capacitance as that of a parallel plate capacitor:
 • Then $C = \varepsilon A / g$.
 • $A = lt$.
 • $C = \varepsilon lt / g$, but remember that g is a constant.
 • So, $C = \varepsilon lt / g = C_1 l$ (or $=C_1 x$)
From Earlier in the class:

\[dW(Q, g) = Fdg + VdQ \]

\[W(Q, g) = \frac{Q^2g}{2EA} \]

Senturia has

\[F = \frac{dW(Q, g)}{dg} \bigg|_Q = \frac{d}{dg} \left(\frac{Q^2g}{2EA} \right) \bigg|_Q = \frac{Q^2}{2EA} \]

(as before)

\[V = \frac{dW(Q, g)}{dQ} \bigg|_g = \frac{d}{dQ} \left(\frac{Q^2g}{2EA} \right) \bigg|_g = \frac{Qg}{EA} = \frac{Q}{2} \]

(as expected)

Familiar:

\[F(e) = -\frac{dW}{dz} \]

for gravity

\[W(z) = mgz \]

\[F(e) = -mg \]

But why is the force in the +z direction??

Ans.: Because \(dW \) was written with \(F \) meaning the external force applied to put energy into the capacitor. (The electrostatic force is in the opposite direction.)
From Earlier in the class:

\[F = \frac{Q^2}{2EA} \]
\[z = \frac{F}{k} \quad \rightarrow \quad \text{(sentura's steps?)} \]
\[g = g_0 - z \]
\[g = g_0 - \frac{Q^3}{2EAk} \]

\[(g = 0 \text{ when } g = \frac{Q^2}{2EAk}) \]
\[(\text{when } Q = 2EAk g) \]

\[V = \frac{Qg}{EA} = \frac{Q \left(g_0 - \frac{Q^2}{2EAk} \right)}{EA} \]

Note: no instability - see voltage control next!
\[F = \frac{\partial w(Q, g)}{\partial g} \bigg|_Q = \frac{\partial}{\partial g} \left(\frac{Q^2 g}{2EA} \right) \bigg|_Q = \frac{Q^2}{2EA} \]

(as before)

\[V = \frac{\partial w(Q, g)}{\partial \varphi} \bigg|_g = \frac{\partial}{\partial \varphi} \left(\frac{Q^2 g}{2EA} \right) \bigg|_g = \frac{Qg}{EA} = \frac{Q}{C} \]

Charge control

\[w(Q, \ell) = \frac{Q^2 g}{2EA} = \frac{Q^2 g}{2\ell e} \]

\[F = \frac{\partial w(Q, g)}{\partial \ell} \bigg|_Q = \frac{\partial}{\partial \ell} \left(\frac{Q^2 g}{2\ell e} \right) = -\frac{Q^2 g}{2\ell e^2} \]
From Earlier in the class:

\[Q = \left. \frac{dW^*(V, g)}{dV} \right|_g \]

\[F = -\left. \frac{dW^*(V, g)}{dg} \right|_V \]

Now, \(W^*(V, g) = \int_0^V Q dV = \int_0^V \frac{EA}{g} V dV \)

\(W^*(V, g) = \frac{EA V^2}{2g} \quad (= \frac{1}{2} CV^2) \)

\[F = -\left. \frac{dW^*(V, g)}{dg} \right|_V = \frac{EA V^2}{2g^2} \]
From Earlier in the class:

\[F = \frac{EA V_{in}^2}{2g^2} \]

\[g = g_0 - z \]

\[z = \frac{F}{k} \]

\[g = g_0 - \frac{EA V_{in}^2}{2k g^2} \]

Electrical force

Spring force

(Cubic equation)

Set equal
\[Q = -\left. \frac{dw^*(V, g)}{dV} \right|_g \]

\[F = -\left. \frac{dw^*(V, g)}{dg} \right|_V \]

but for voltage control:

\[w^*(V, e) = \int_0^V Q \, dV = \int_0^V \frac{e t e V^2}{2g} \, V \, dV \]

\[w^*(V, e) = \frac{e t e V^2}{2g} \left(\frac{1}{2} \right) (V^2) \]

\[F = -\left. \frac{dw^*(V, e)}{de} \right|_V = -\frac{e t e V^2}{2g} \quad (\text{Constant in } e!) \]
\[F = -\frac{\epsilon e V^2}{2g} \]

\[e = \frac{E}{k} \]

\[e = -\frac{\epsilon e V^2}{2g K} \]

(well-behaved, no instability)
Revisit

\[F = \frac{dW(Q, g)}{dg} \bigg|_Q = \frac{d}{dg} \left(\frac{Q^2g}{2EA} \right) \bigg|_Q = \frac{Q^2}{2EA} \]

(as before)

\[V = \frac{dW(Q, g)}{dQ} \bigg|_g = \frac{d}{dQ} \left(\frac{Q^2g}{2EA} \right) \bigg|_g = \frac{Qg}{EA} = \frac{Q}{C} \]

Charge control

\[W(Q, \ell) = \frac{Q^2g}{2EA} = \frac{Q^2g}{2\ell e} \]

\[F = \frac{dW(Q, g)}{d\ell} \bigg|_Q = \frac{d}{d\ell} \left(\frac{Q^2g}{2\ell e} \right) = -\frac{Q^2g}{2\ell e^2} \quad ??? \]

Non-ideal effects?

Folded Flexure Spring
Figure 6.9. A complete electrostatic actuator, with added elements representing the inertia of the moveable element, mechanical damping, and the source resistance of the electrical network.
Dynamics: A realistic system:

\[Q = I = \frac{1}{R} (V_{in} - V_c) = \frac{1}{R} \left(V_{in} - \frac{Q}{C} \right) = \frac{1}{R} \left(V_{in} - \frac{Q_g}{EA} \right) \]

\[F = \frac{Q^2}{2EA} \]

(can't just use C - must include motion explicitly)
\[
\dot{Q} = I = \frac{1}{R} (V_{\text{in}} - V_c) = \frac{1}{R} (V_{\text{in}} - \frac{Q}{C}) = \frac{1}{R} (V_{\text{in}} - \frac{Q g}{EA})
\]

\[
F = \frac{Q^2}{2EA}
\]

\[
\frac{Q^2}{2EA} + b \dot{g} + m \ddot{g} + k(g - g_0) = 0
\]

In state variable form, identify 3 state variables

\[
x_1 = Q
\]
\[
x_2 = g
\]
\[
x_3 = \dot{g}
\]

\[
\dot{x}_1 = \frac{1}{R} \left(V_{\text{in}} - \frac{x_1 x_2}{EA} \right)
\]
\[
\dot{x}_2 = x_3
\]
\[
\dot{x}_3 = -\frac{1}{m} \left(\frac{x_1^2}{2EA} + k(x_2 - g_0) + b x_3 \right)
\]

Direct integration (Simulink, MATLAB ... H.W.)

Linearization about operating point
Linearization about operating point.

\[f(x) \]

\[s f(x) = \left. \frac{df(x)}{dx} \right|_{x_0} s x \quad \text{for small } s \]

So if we study small changes in \(x \) (small-signal analysis, EE terms) the equation is linear. In EE we have a bias point (DC) and often a small AC signal.
Linearization about an operating point.

In this case the operating point will be some \(g_0, \varphi_0 \), and we will look at operation over a small range of \(g \) and \(\varphi \) around \(g_0, \varphi_0 \).

generally:

\[
\begin{align*}
\dot{x}(t) &= X_0 + \delta x(t) \\
\dot{u}(t) &= U_0 + \delta u(t)
\end{align*}
\]

\[
\dot{x} = f(x, u)
\]
Senturia: \[x(t) = X_0 + \int x(t) \]

\[x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix} \]

\[\dot{x} = f(x, u) \]

\[\dot{x} = f(x, u) = \left(\frac{\partial f}{\partial x} \right) \delta x(t) + \left(\frac{\partial f}{\partial u} \right) \delta u(t) \]

\[\text{Jacobian, } n \times n, n = \# \text{ of state variables, } n \times m, m = \# \text{ of inputs} \]

\[\Rightarrow \text{proceed to linearize set of three state equations} \]
\[
\dot{x}(t) = \left(\frac{df}{dx} \right)_{x_0, u_0} x(t) + \left(\frac{df}{du} \right)_{x_0, u_0} u(t)
\]

\[
\text{\{ Jacobian \}} \quad n \times m \\
\text{(h = \# of state variables)} \quad (m = \# of inputs)
\]

\[
\begin{pmatrix}
\dot{x}_1 \\
\vdots \\
\dot{x}_n
\end{pmatrix} =
\begin{pmatrix}
\frac{df_1}{dx_1} & \cdots & \frac{df_1}{dx_n} \\
\vdots & \ddots & \vdots \\
\frac{df_n}{dx_1} & \cdots & \frac{df_n}{dx_n}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix}
\begin{pmatrix}
X_0 \\
\vdots \\
X_0
\end{pmatrix}
+ \\
\begin{pmatrix}
\frac{df_1}{du_1} & \cdots & \frac{df_1}{du_m} \\
\vdots & \ddots & \vdots \\
\frac{df_m}{du_1} & \cdots & \frac{df_m}{du_m}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
\vdots \\
u_m
\end{pmatrix}
\begin{pmatrix}
X_0 \\
\vdots \\
X_0
\end{pmatrix}
\]
\[\begin{align*}
X_1 &= \eta \\
X_2 &= j \\
X_3 &= \dot{j}
\end{align*} \]

\[\begin{align*}
\dot{X}_1 &= \frac{1}{R} V_{in} - \frac{X_1 X_2}{EAR} \\
\dot{X}_2 &= X_3 \\
\dot{X}_3 &= -\frac{X_1^2}{2 m \varepsilon A} - \frac{V}{m} (X_2 - \eta) - \frac{b}{m} X_3
\end{align*} \]

For operating point, \(\dot{X}_1 = 0 \) \(\dot{X}_2 = 0 \) \(\dot{X}_3 = 0 \) solve equations!
This is now in the form of a linear problem.

How to proceed - find operating point

\{-
\quad \text{Find Jacobians}
\quad \text{Use to check stability of operating point}
\quad \text{Analyze system}
\}\n
Apply to Electrostatic actuator.

\begin{align*}
\dot{x}_1 &= 0 \\
\dot{x}_2 &= g \\
\dot{x}_3 &= g
\end{align*}

\[J = \begin{pmatrix}
-\frac{X_2}{RE A} & -\frac{X_1}{RE A} & 0 \\
0 & 0 & 1 \\
-\frac{X_2}{mE A} & -\frac{k}{m} & -\frac{b}{m}
\end{pmatrix} + \begin{pmatrix}
\frac{1}{R} \\
0 \\
0
\end{pmatrix} \]
Notes:

7.3.3

\[J = \begin{pmatrix}
 -\frac{X_2}{RE_A} & -\frac{X_1}{RE_A} & 0 \\
 0 & 0 & 1 \\
 -\frac{X_1}{RE_T} - \frac{k}{m} - \frac{b}{m} & 0 & 0 \\
\end{pmatrix} \]

For state variables

For input (voltage source)

\[\uparrow \text{need this to obtain 7.58} \]

Eq. 7.60 \[X_3 = -\frac{1}{200} X_1^2 - x_2 + 1 - 0.5X_3 \]

Note: error in sentencia (my printing)
\[\delta X_1 = \delta Q = \frac{X_2}{REA} \delta x_1 - \frac{X_1}{REA} \delta x_2 + \frac{1}{R} \delta V_n \]

\[\delta y = \delta X_2 = \delta X_3 \]

\[\delta y = \delta X_3 = \frac{X_1}{MEA} \delta x_1 - \frac{k}{m} \delta x_2 - \frac{b}{m} \delta x_3 \]

- \(X_2 \) - operating point gap
- \(X_1 \) - operating point chuga
Using Senturia's values

Area \(A \) = 100
Permittivity \(\varepsilon \) = 1
Initial gap \(g_0 \) = 1
Mass \(m \) = 1
Damping constant \(b \) = 0.5
Spring constant \(k \) = 1
Resistance \(R \) = 0.001

\[
\begin{align*}
\dot{X}_1 &= 1000 V_{\text{in}} - 10 X_1 X_2 \\
\dot{X}_2 &= X_3 \\
\dot{X}_3 &= -\frac{1}{200} X_1^2 - X_2 + 1
\end{align*}
\]

\(X_2 = 0 = X_3 = g \) (velocity = 0)

\[
\begin{align*}
0 &= 1000 V_{\text{in}} - 10 X_1 X_2 \\
0 &= -\frac{1}{200} X_1^2 - X_2 + 1
\end{align*}
\]

\[
\begin{cases}
X_1^2 - 200X_1 + 20000V_0 = 0 \rightarrow \text{solve for } X_1,
\hline
X_2 = 1 - \frac{1}{200} X_1^2
\end{cases}
\]
Can model as a linear transducer. (To be inserted in a variety of systems.)

Transforms voltage to source.

Find operating point. \(I = 0 \Rightarrow V = V_{in} \)

\(U = 0 \)
From before, \(g = g_0 - \frac{F}{4} \)

\[F = \frac{\varepsilon A V^2}{2 g^2} \]

\[g = g_0 - \frac{\varepsilon A V^2}{24 g^2} \]

\[V = \frac{Q_0}{EA} \]

\[F = \frac{Q^2}{2EA} \]

\[F_{out} = \frac{Q^2}{2EA} - k (g_0 - g) \]
operating point gap \neq g_0 which is the zero voltage gap.

\[
\begin{pmatrix}
 \delta V \\
 \delta I
\end{pmatrix} = \begin{pmatrix}
 \frac{g_0}{E_A} & \frac{Q_0}{E_A} \\
 \frac{Q_0}{E_A} & K
\end{pmatrix} \begin{pmatrix}
 \delta Q \\
 \delta g
\end{pmatrix}
\]

\[\delta f(x) = \frac{df(x)}{dx} \bigg|_{x_0} \delta x\]
\[\delta f(x,y) = \frac{df(x,y)}{dx} \bigg|_{x_0,y_0} \delta x + \frac{df(x,y)}{dy} \bigg|_{x_0,y_0} \delta y\]

need \(SI, SQ \)

\[SQ = \int SI \, dt \]
\[\downarrow \text{s-plane of the Laplace transform} \]
\[SQ = \frac{SI}{s}\]

\[\delta g = \int SD \, dt\]
\[\delta g = \frac{SD}{s}\]
\[
(\delta V) = \left(\frac{\hat{g}_0}{\text{SEA}} \quad \frac{Q_0}{\text{SEA}} \quad \frac{k}{5}\right) \cdot (\delta I)
\]

Identify elements

\[Z_{EB} = \frac{\hat{g}_0}{\text{SEA}} \quad \text{capacitor} \quad Z_c = \frac{1}{5C}\]

\[Z_{MO} = \frac{k}{5} \quad \text{"capacitance" of spring}\]

\[T_{EM} = T_{ME} = \frac{Q_0}{\text{SEA}} \quad \phi = \frac{T_{EM}}{Z_{EB}} = \frac{Q_0}{\hat{g}_0} \quad \text{Newtons/meter (Coulombs/volt)}\]
\[Z_{ms} = Z_{m0} (1 - K_e^2) \]

\[K_e^2 = \frac{T_{EM}^2}{Z_{EE} Z_{m0}} = \frac{Q_{o0}^2}{EA k_0} \]

\[Z_{ms} = \frac{k}{s} \left(1 - \frac{Q_{o0}^2}{EA k_0} \right) \quad \text{spring, spring constant decreasing} \]

\[\text{(spring softening)} \]

Direct Integration - see SIMULINK example.
- must use for large variations.
- MATLAB
- MathCad
- Matumath