Optics for Engineers Week 7

Charles A. DiMarzio EECE-4646 Northeastern University

Mar 2024

Week 7 Agenda

- Radiometry Concepts and Quantities
- Radiance Theorem
- Spectral Radiometry
- Photometry
- Instrumentation
- Blackbody Radiation
- Illumination
- Polar Bears

Radiometry

- Power is Proportional to
 - Area of Aperture Stop
 - Area of Field Stop
 - "Brightness" of the Source (Radiance)

Radiometry and Photometry

Radiometric Quantities

Quantity	Symbol	Equation	SI Units
Radiant Energy	Q		Joules
Radiant Energy Density	w	$w = \frac{d^3Q}{dV^3}$	Joules/m ³
Radiant Flux or Power	$P \text{ or } \Phi$	$\Phi = \frac{dQ}{dt}$	\mathbb{V}
Radiant Exitance	M	$M = \frac{d\Phi}{dA}$	W/m^2
Irradiance	E	$E = \frac{d\Phi}{dA}$	W/m^2
Radiant Intensity	Ι	$I = \frac{d\Phi}{d\Omega}$	W/sr
Radiance	L	$lm = \frac{d^2\Phi}{dA\cos\theta d\Omega}$	W/m^2
Fluence	Ψ	$\frac{dQ}{dA}$	J/m ²
Fluence Rate	F	$\frac{d\Psi}{dt}$	J/m ²
Emissivity	ϵ	$\epsilon = \frac{M}{M_{bb}}$	Dimensionless
Spectral ()	$()_{\nu}$	$\frac{d()}{d\nu}$	()/Hz
	or () $_\lambda$	$\frac{d()}{d\lambda}$	()/µm
Luminous Flux or Power	P or Φ		Im
Luminous Exitance	M	$M = \frac{d\Phi}{dA}$	lm/m ²
Illuminance	E	$E = \frac{d\Phi}{dA}$	lm/m ²
Luminous Intensity	Ι	$I = \frac{d\Phi}{d\Omega}$	lm/sr
Luminance	L	$L = \frac{d^2 \Phi}{dA \cos \theta d\Omega}$	lm/m ²
Spectral Luminous Efficiency	$V(\lambda)$		Dimensionless
Color Matching Functions	$\frac{\bar{x}(\lambda)}{\bar{u}(\lambda)}$		
	$\frac{g}{z}(\lambda)$		Dimensionless

Mar 2024

Irradiance

• Poynting Vector for Coherent Wave

$$d\mathbf{S} \approx \frac{dP}{4\pi r^2} \left(\sin\theta\cos\zeta\hat{x} + \sin\theta\sin\zeta\hat{y} + \cos\theta\hat{z}\right)$$

• Irradiance (Projected Area, $A_{proj} = A \cos \theta$)

$$dE = \frac{d^2P}{dA'} = \frac{dP}{\left(4\pi r^2\right)}$$

Irradiance and Radiant Intensity

• Solid Angle

• Intensity from Irradiance (Unresolved Source, A)

$$I = Er^2 \qquad E = \frac{I}{r^2}$$

$$dI = \frac{d^2 P}{d\Omega} = \frac{d^2 P}{d\frac{A'}{r^2}} = \frac{dP}{\left(4\pi r^2\right)}$$

Mar 2024

Intensity and Radiance

 Resolved Source: Many Unresolved Sources Combined

$$I = \int dI = \int \frac{\partial I}{\partial A} dA$$

• Radiance

$$L(x, y, \theta, \zeta) = \frac{\partial I(\theta, \zeta)}{\partial A}$$

$$I(\theta,\zeta) = \int_{A} L(x,y,\theta,\zeta) dxdy$$

• On Axis
$$(x' = y' = 0)$$

 $L(x, y, \theta, \zeta) = \frac{\partial I(\theta, \zeta)}{\partial A} = \frac{\partial^2 P}{\partial A \partial \Omega}$
• Off Axis (Projected Area)
 $L = \frac{\partial I}{\partial A \cos \theta} = \frac{\partial^2 P}{\partial A \partial \Omega \cos \theta}$

Radiant Intensity and Radiant Flux

• Solid Angle • I · I · • Flux or Power, P or Φ Integrate Intensity $P = \Phi = \int \int I(\theta, \phi) \sin \theta d\theta d\zeta$

• Constant Intensity

$$P = \Phi = I\Omega$$

$$\Omega = \int \int \sin \theta' d\theta' d\zeta$$

$$\Omega = \int_0^{2\pi} \int_0^{\Theta} \sin \theta' d\theta' d\zeta = 2\pi \left(1 - \cos \Theta\right) = 2\pi \left(1 - \sqrt{1 - \sin^2 \Theta}\right)$$

Radiance and Radiant Exitance

$$\begin{array}{ccc} \cdot & M \\ \cdot & \cdot & L \end{array}$$

• Radiant Exitance from a Source (Same Units as Irradiance)

$$M(x,y) = \int \int \left[\frac{\partial^2 P}{\partial A \partial d\Omega}\right] \sin \theta d\theta d\zeta$$

• Radiant Exitance from Radiance

$$M(x,y) = \int \int L(x,y,\theta,\zeta) \cos\theta \sin\theta d\theta d\zeta$$

• Radiance from Radiant Exitance

$$L(x, y, \theta, \zeta) = \frac{\partial M(x, y)}{\partial \Omega} \frac{1}{\cos \theta}$$

Radiance and Radiant Exitance: Special Cases

• Constant *L* and Small Solid Angle

$$M(x,y) = L\Omega\cos\theta$$
$$\Omega = 2\pi \left(1 - \sqrt{1 - \left(\frac{NA}{n}\right)^2}\right) \quad \text{or} \quad \Omega \approx \pi \left(\frac{NA}{n}\right)^2$$

• Constant L, over Hemisphere

$$M(x,y) = \int_0^{2\pi} \int_0^{\pi/2} L\cos\theta\sin\theta d\theta d\zeta = 2\pi L \frac{\sin^2\frac{\pi}{2}}{2}.$$

$$M(x,y) = \pi L$$
 (Lambertian Source)

Radiant Exitance and Flux

• Power or Flux from Radiant Exitance

$$P = \Phi = \int \int M(x, y) \, dx \, dy,$$

• Radiant Exitance from Power

$$M(x,y) = \frac{\partial P}{\partial A}$$

The Radiance Theorem in Air

• Solid Angle two ways

$$\Omega = \frac{A'}{r^2} \qquad \Omega' = \frac{A}{r^2}$$

• Power Increment

$$dP = LdAd\Omega = LdA\frac{dA'}{r^2}\cos\theta$$
 $dP = LdA'd\Omega' = LdA'\frac{dA}{r^2}\cos\theta$

Using the Radiance Theorem: Examples Later

- Radiance is Conserved in a Lossless System (in Air)
- Losses Are Multiplicative
 - Fresnel Reflections and Absorption
- Radiance Theorem Simplifies Calculation of Detected Power
 - Determine Object Radiance
 - Multiply by Scalar, T_{total} , for Loss
 - Find Exit Window (Of a Scene or a Pixel)
 - Find Exit Pupil
 - Compute Power

$$P = L_{object} T_{total} A_{exit \ window} \Omega_{exit \ pupil}$$

Etendue and the Radiance Theorem

• Abbe Invariant:

$$n'x'd\alpha' = nxd\alpha$$

• Etendue

$$n^2 A \Omega = \left(n'\right)^2 A' \Omega'$$

• Power Conservation

$$\int \int \int \int Ld^2Ad^2\Omega = \int \int \int \int \int L'd^2A'd^2\Omega'$$

$$\int \int \int \int \frac{L}{n^2} n^2 d^2 A d^2 \Omega = \int \int \int \int \frac{L'}{n^2} \left(n'\right)^2 d^2 A' d^2 \Omega'$$

$$\frac{L}{n^2} = \frac{L'}{\left(n'\right)^2}$$

• Basic Radiance, L/n^2 , Conserved (Thermodynamics Later)

Radiance Theorem Example: Imaging

• Imaging Matrix Equation

$$\mathcal{M}_{SS'} = \begin{pmatrix} m & 0 \\ ? & \frac{n}{n'm} \end{pmatrix}$$

Mar 2024

Practical Example: Imaging the Moon

- Known Moon Radiance $L_{moon} = 13 W/m^2/sr$
- Calculation
 - Transmission (0.25), other multiplicative losses (12 Lenses: $(0.96^2)^{12}$).

 $\mathit{L} = 13 W/m^2/sr \times 0.25 \times 0.96^{24} = 13 W/m^2/sr \times 0.25 \times 0.367 = 1.2 W/m^2/sr$

- Exit Pupil (NA = 0.1) and exit window (Pixel: $d = 10 \mu m$).
- Irradiance, $E = L\Omega$ and Power on a Pixel, $P = EA = LA\Omega$

$$P = 1.2 \text{W/m}^2/\text{sr} \times 2\pi \left(1 - \sqrt{1 - NA^2}\right) \times \left(10 \times 10^{-6} \text{m}\right)^2$$

 $P = 1.2 W/m^2/sr \times 0.315 sr \times 10^{-10} m^2 = 3.8 \times 10^{-12} W$

- If desired, multiply by time (1/30sec) to obtain energy.
 - * About One Million Photons (and Electrons)
- Alternative to Solve in Object Space (Need Pixel Size on Moon)

Radiometry Summary

- Five Radiometric Quantities: Radiant Flux Φ or Power P, Radiant Exitance, M, Radiant Intensity, I, Radiance, L, and Irradiance, E, Related by Derivatives with Respect to Projected Area, $A\cos\theta$ and Solid Angle, Ω .
- Basic Radiance, L/n^2 , Conserved, with the Exception of Multiplicative Factors.
- Power Calculated from Numerical Aperture and Field Of View in Image (or Object) Space, and the Radiance.
- Losses Are Multiplicative.
- Finally "Intensity" is Not "Irradiance."

Spectral Radiometry Definitions

- Any Radiometric Quantity Resolved Spectrally
 - Put the Word Spectral in Front
 - Use a Subscript for Wavelength or Frequency
 - Modify Units
- Example: Radiance, L, Spectral Radiance (Watch Units)

$$L_{\nu} = \frac{dL}{d\nu} \text{ W/m}^2/\text{sr/THz}$$
 or $L_{\lambda} = \frac{dL}{d\lambda} \text{ W/m}^2/\text{sr/}\mu\text{m}$

• Spectral Fraction

$$f_{\lambda}(\lambda) = \frac{X_{\lambda}(\lambda)}{X}$$
 for $X = \Phi, M, I, E$, or L

Spectral Radiometric Quantities

Quantity	Units	d/d u	Units	$d/d\lambda$	Units
Radiant	W	Spectral	W/Hz	Spectral	$W/\mu m$
Flux, Φ		Radiant		Radiant	
		Flux, Φ_{ν}		Flux, Φ_{λ}	
Power,					
P					
Radiant	W/m^2	Spectral	W/m ² /Hz	Spectral	$W/m^2/\mu m$
Exi-		Radiant		Radiant	
tance,		Exi-		Exi-	
$\mid\mid M$		tance,		tance,	
		$M_{ u}$		M_{λ}	
Radiant	W/sr	Spectral	W/sr/Hz	Spectral	$W/sr/\mu m$
Inten-		Radiant		Radiant	
sity, I		Inten-		Inten-	
		sity, $I_ u$		sity, I_λ	
Radiance,	W/m²/sr	Spectral	W/m ² /sr/Hz	Spectral	W/m ² /sr/ μ m
$\parallel L$		Radi-		Radi-	
		ance, $L_{ u}$		ance, L_λ	

Photometry and Colorimetry

- Spectral Luminous Efficiency, $\bar{y}(\lambda)$
- Source Spectral Radiance, $L_{red\lambda}(\lambda, x, y)$
- Eye Response

$$Y(x,y) = \int_0^\infty \bar{y}(\lambda) L_{\lambda}(\lambda, x, y) d\lambda$$

- Four LEDs: Equal Radiance
 - Blue, 400 Appears Weak
 - Green, 550 Appears Strong
 - Red, 630 Moderately Weak
 - IR, 980 Invisible

Mar 2024

Lumens

• Power or Radiant Flux (Watts)

$$P = \int_0^\infty P_\lambda\left(\lambda\right)$$

• Eye Response

$$Y = \int_0^\infty \bar{y}(\lambda) P_\lambda(\lambda) d\lambda$$

• Luminous Flux (Lumens, Subscript $_V$ for Clarity)

$$P_{(V)} = \frac{683 \text{ lumens/Watt}}{\max(\bar{y})} \int_{0}^{\infty} \bar{y}(\lambda) P_{\lambda}(\lambda) d\lambda$$

• Luminous Efficiency

$$\frac{P_{(V)}}{P} = 683 \text{ lumens/Watt} \int_{0}^{\infty} \frac{\bar{y}(\lambda)}{\max(\bar{y})} \frac{P_{\lambda}(\lambda)}{P} d\lambda$$

Mar 2024

Some Typical Radiance and Luminance Values

Object	W/m ² /sr		$nits = Im/m^2/sr$	Footlamberts	lm/W
Minimum Visible	7×10^{-10}	Green	5 ×10 ⁻⁷	$1.5 imes 10^{-7}$	683
Dark Clouds	0.2	Vis	40	12	190
Lunar disk	13	Vis	2500	730	190
Clear Sky	27	Vis	8000	2300	300
Bright Clouds	130	Vis	2.4×10^4	7×10^{3}	190
	300	All			82
Solar disk	4.8×10 ⁶	Vis	7×10^{8}	2.6×10^{7}	190
	1.1×10^{7}	All		×10 ⁷	82

Tristimulus Values: Three is Enough

• X, Y, Z

$$X = \int_{0}^{\infty} \bar{x}(\lambda) L_{\lambda}(\lambda) d\lambda$$

$$Y = \int_{0}^{\infty} \bar{y}(\lambda) L_{\lambda}(\lambda) d\lambda$$

$$Z = \int_{0}^{\infty} \bar{z}(\lambda) L_{\lambda}(\lambda) d\lambda$$
• Example: 3 Lasers
Krypton $\lambda_{red} = 647.1$ nm

$$X_R = \int_0^\infty \bar{x}(\lambda) \,\delta\left(\lambda - 647.1\,\mathrm{nm}\right) d\lambda = \bar{x} \,(647.1\,\mathrm{nm})$$

 $\begin{array}{ll} X_R = 0.337 & Y_R = 0.134 & Z_R = 0.000 \\ \mbox{Krypton} & \lambda_{green} = 530.9 \mbox{nm} & \\ X_G = 0.171 & Y_G = 0.831 & Z_G = 0.035 \\ \mbox{Argon} & \lambda_{blue} = 457.9 \mbox{nm} & \\ X_B = 0.289 & Y_B = 0.031 & Z_B = 1.696 \end{array}$

Mar 2024

Chromaticity Coordinates (1)

- Three Laser Powers, R, G, and B, Watts
- Tristimulus Values

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X_R & X_G & X_B \\ Y_R & Y_G & Y_B \\ Z_R & Z_G & Z_B \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

 \bullet Chromaticity Coordinates (Normalized X, Y

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z}$$

• Monochromatic Light

 $x = \frac{\bar{x}(\lambda)}{\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)} \qquad y = \frac{\bar{y}(\lambda)}{\bar{x}(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)}$ Mar 2024 $g(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)$ $g(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)$ $g(\lambda) + \bar{y}(\lambda) + \bar{z}(\lambda)$

Chromaticity Coordinates (2)

The Radiometer or Photometer

- Aperture Stop
- Field Stop
- Measured Power

 $P = LA\Omega = LA'\Omega'$

- Adjustable Stops (Match FOV)
- Sighting Scope?

Mar 2024

- Calibration Required
- Spectrometer on Output?
- Spectral Filter?
- Photometric Filter?
- Computer
 - Radiance, $P/(\Omega A)$
 - Luminance (All Units)
 - Spectral Quantities

Integrating Sphere

- Power from Intensity
- Integrate over Solid Angle
 - Goniometry
 - * Information-Rich
 - * Time–Intensive
 - * Integrating Sphere
 - · Easy
 - · Single Measurement
- Applications
 - Wide-Angle Sources
 - Diffuse Materials
- Variations
 - Two Spheres
 - Spectroscopic Detector
 - More

Blackbody Radiation Outline

- Background
- Equations, Approximations
- Examples
- Illumination
- Thermal Imaging
- Polar Bears, Greenhouses

Mar 2024

©C. DiMarzio (Based on *Optics for Engineers*, CRC Press) 12515..slides7–28

The Planck Equation

• Fractional Linewidth

$$|d\nu/\nu| = |d\lambda/\lambda|$$

$$M_{\lambda} = \frac{dM}{d\lambda} = \frac{d\nu}{d\lambda}\frac{dM}{d\nu} = \frac{\nu}{\lambda}\frac{dM}{d\nu} = \frac{c}{\lambda^2}\frac{dM}{d\nu}$$

• Planck Law vs. Wavelength

$$M_{\lambda}(\lambda,T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{h\nu/k_B T} - 1}$$

Useful Blackbody Equations

- Wien Displacement Law
- 10¹⁰ **O** 10000 m_{λ} , Spect. Radiant Exitance, W/m²/ μ m 5000 10⁸ 3000 $\lambda_{peak}T = 2898 \mu \mathrm{m} \cdot \mathrm{K}$ 1000 Δ 500 Þ 10^{6} 300 100 Stefan-Boltzmann **10**⁴ Law **10**² $M(T) = \frac{2\pi^5 k^4 T^4}{15h^3 c^2}$ $= \sigma_e T^4$ **10**⁰ 10 10^{-2} 10^{-1} **10**⁰ 10^{1} 10^{2} λ , Wavelength, μ m
- Stefan-Boltzmann Constant

$$\sigma_e = 5.67032 \times 10^{-12} \text{W/cm}^2/\text{K}^4 = 5.67032 \times 10^{-8} \text{W/m}^2/\text{K}^4$$

Chromaticity Coordinates of Blackbody

• Chromaticity

Solar Spectrum

- Exo-Atmospheric
 - -6000K, 1480W/m²

 $E_{\lambda}(\lambda) = 1560 \mathrm{W/m^2} \times$

 $f_{\lambda}(\lambda,6000\mathrm{K})$

Sea Level
 – 5000K, 1000W/m²

$$E_{\lambda}(\lambda) = 1250 \mathrm{W}/\mathrm{m}^2 \times$$

 $f_{\lambda}(\lambda, 5000 \text{K})$

Constants are higher than total irradiance to account for absorption in certain regions of the spectrum.

Outdoor Radiance

• Radiant Exitance, M of Object Surface Illuminated with E $M_{\lambda}(\lambda) = R(\lambda) E_{\lambda}(\lambda)$

Mar 2024

Illumination

Thanks to Dr. Joseph F. Hetherington

IR Thermal Imaging

Infrared Imaging

$$\int_{\lambda_{1}}^{\lambda_{2}} \rho(\lambda) \epsilon(\lambda) M_{\lambda}(\lambda, T) d\lambda$$

- ρ is Responsivity
- ϵ is Emissivity
- Maximize Sensitivity

$$\frac{\partial M_{\lambda}\left(\lambda,T\right)}{\partial T}$$

- Work in Atmospheric Pass Bands
- Shorter Wavelength for Higher Temperatures
- Hard to Calibrate (Emissivity, etc.)
- Reflectance and Emission

Mar 2024

Polar Bears

- Thermal Equilibrium
 - Heating by Sun
 - * High Temperature
 - * High Radiance
 - * Small Solid Angle
 - Cooling to
 - Surroundings
 - * Body Temperature
 - * Low Radiance
 - * $\Omega = 2\pi$
 - Extra Heat from
 Metabolism
- Short–Pass Filter
 - Pass Visible

 $E_{incident} = 50 W/m^2$, 200W/m² 600W/m², top to bottom

Heating (—), Cooling (- -), Net $(\cdot \cdot)$

Wavelength Filtering

- Bare Bear: No Filter
- 800nm Short Pass
- 2.5nm Short Pass Like Glass
- Best Bear is a Dynamic Filter

• Net Cooling for Two Best

- Dynamic Filter Follows Zero Crossing of Net M_{λ}
- Perfect: No Cooling (Impossible: Nothing Out Means Nothing In)