Optics for Engineers Week 6

Charles A. DiMarzio
EECE-4646
Northeastern University

Mar 2024

Week 5 Agenda

- Aperture Size and Spot Size
- Fourier Optics
- Image Resolution
- Diffraction Gratings
- Gaussian Beams
- Laser Cavities
- Holography and Phase Conjugation

Diffraction

Focused Beam: Minimum Spot Size and Location

$$
\alpha=C \frac{\lambda}{D}
$$

Slit Experiments

A. Two slits

- Angular Divergence of Light Waves
- Alternating Bright and Dark Regions
- Near- and Far-Field Behavior
$\lambda=800 \mathrm{~nm}$. Axis Units are $\mu \mathrm{m}$

Two-Lens System

- Separation: $f_{1}+f_{2}$
- Magnification $m=\frac{x^{\prime}}{x}=-\frac{f_{2}}{f_{1}}$
- Angle from Axis $\theta^{\prime}=\frac{1}{m} \theta$
- $u=\sin \theta \quad u_{\max }=N A$
- Aperture Diameter $D=2 f_{1} \tan \theta=2 f_{2} \tan \theta^{\prime}$
- Fourier Optics: Epupil $\propto F T\left(E_{\text {field }}\right)$

Varying Spatial Frequencies

Coordinate Relationships

	Spatial Frequency	Pupil Location	Direction Cosines
Spatial Frequency		$\begin{aligned} & x_{1}=\lambda z f_{x} \\ & y_{1}=\lambda z f_{y} \\ & \hline \end{aligned}$	$\begin{gathered} u=f_{x} \lambda \\ v=f_{y} \lambda \end{gathered}$
Pupil Location	$\begin{aligned} & f_{x}=\frac{x_{1}}{\lambda z} \\ & f_{y}=\frac{\eta_{1}}{\lambda z} \end{aligned}$		$\begin{aligned} & u=\frac{x_{1}}{z} \\ & v=\frac{y_{1}}{z} \end{aligned}$
Direction cosines	$\begin{aligned} & f_{x}=\frac{u}{\lambda} \\ & f_{y}=\frac{v}{\lambda} \end{aligned}$	$\begin{aligned} & x_{1}=u z \\ & y_{1}=v z \end{aligned}$	
Angle			$\begin{aligned} & u=\sin \theta \cos \zeta \\ & v=\sin \theta \sin \zeta \end{aligned}$

Camera Example

- Pixel Pitch: $7.4 \mu \mathrm{~m}$

$$
\begin{equation*}
f_{\text {sample }}=\frac{1}{7.4 \times 10^{-6} \mathrm{~m}}=1.35 \times 10^{5} \mathrm{~m}^{-1} \tag{135permm.}
\end{equation*}
$$

- Nyquist Sampling: $f_{\max }=f_{\text {sample }} / 2$ at $u_{\max }=N A$

$$
N A=\frac{2 f_{\text {sample }} \lambda}{2}=f_{\text {sample }} \lambda \quad(\text { Coherent Imaging })
$$

- Green light at 500nm,

$$
N A=0.068
$$

- Lower NA Acts as Anti-Aliasing Filter
- Higher NA Allows Aliasing

Summary of Common Fraunhofer Patterns

Fraunhofer Pattern
Slice
SQUARE:
$d=2 \frac{\lambda}{D}$ (1st Nulls)
$I_{0}=\frac{P D^{2}}{\lambda^{2} z_{1}^{2}}$
$I_{1} / I_{0}=-13 d B$

CIRCULAR:
$d=2.44 \frac{\lambda}{D}$ (1st Nulls)
$I_{0}=\frac{\pi P D^{2}}{4 \lambda^{2} z_{1}^{2}}$
$I_{1} / I_{0}=-17 d B$

GAUSSIAN:
$d=\frac{4}{\pi} \frac{\lambda}{d_{0}}\left(e^{-2}\right.$ Width $)$
$I_{0}=\frac{\pi P d_{0}^{2}}{2 \lambda^{2} z_{1}^{2}}$
No sidelobes

Resolution of an Imaging System

- "To Resolve" or "Resolution" Defined
"...to distinguish parts or components of (something) that are close together in space or time; . . ."
"...the process or capability of rendering distinguishable the component parts of an object or image; a measure of this, expressed as the smallest separation so distinguishable, ..."
- Resolution is Not Number of Pixels or Width of Point-Spread Function

Resolution Analysis

- Diffraction Patterns of Two
"Point Objects"
- Point-Spread Functions
- From Fraunhofer Diffraction at Pupil
- Fourier Transforms (See Ch. 11)
- Add
- Set Criterion for Valley
- Noise Analysis?
- Contrast?
- Arbitrary Decision?

A complete and consistent definition would require knowledge we are not likely to have.

Rayleigh Criterion

- Frequently Used, but Arbitrary
- Defined by Nulls of Point-Spread Function
- Peak of One over Valley of Other
- Produces Inconsistent Valley (Depends on Pattern)
- Square Aperture

$$
\begin{gathered}
\delta=z_{1} \lambda / D \\
\delta \theta=\lambda / D
\end{gathered}
$$

- Valley Depth

$$
\begin{gathered}
2\left[\frac{\sin (\pi / 2)}{\pi / 2}\right]^{2}= \\
\frac{8}{\pi^{2}}=0.81
\end{gathered}
$$

- Circular Aperture

$$
\delta \theta=1.22 \frac{\lambda}{D}
$$

- Valley Depth

Resolution at the Rayleigh Limit

Square Aperture,

$1.22 \lambda / D, 73 \%$ Valley

- Issues
- Noise
- Contrast
- Statistics
- Sampling*
- Other

Definitions

- MTF*
(Ch. 11)
- Any Valley (Sparrow)
- 81\% Valley (Wadsworth)
- PSF FWHM (Houston)*
* Not really resolution

The Diffraction Grating (1)

- The Grating Equation

$$
N \lambda=d\left(\sin \theta_{i}+\sin \theta_{d}\right)
$$

$$
\sin \theta_{d}=-\sin \theta_{i}+N \frac{\lambda}{d}
$$

The Diffraction Grating (2)

- Grating Equation

$$
N \lambda=d\left(\sin \theta_{i}+\sin \theta_{d}\right)
$$

- Grating Dispersion

$$
\delta \lambda=\frac{d}{N} \delta\left(\sin \theta_{d}\right)
$$

- Applications
- Monochromator
- Spectrometer
- Aliasing Issues
- N to $N+1$

$$
\lambda_{N+1}=\lambda_{N} \times \frac{N}{N+1}
$$

- Maximum Width:

Factor of 2

Gaussian Beams

- Applications
- Many Laser Beams
- Minimum-Uncertainty
- Simple Equations
- Good Approximation
- Extensible (e.g. HermiteGaussian)
- Equations
- Solution of Helmholz Equation
- Solution to Laser Cavity
- Kogelnik and Li, 1966
- Spherical Gaussian Waves
- "Gaussians Are Forever"
- Imaginary Part of Field
- Gaussian Profile
- Spherical Wavefront

- Focusing and Propagation
- Simple Equations

Physical Meaning of Parameters

$E \approx \sqrt{\frac{2 P}{\pi w^{2}}} e^{j k z} e^{j k \frac{x^{2}+y^{2}}{2 \rho}} e^{-\frac{x^{2}+y^{2}}{w^{2}}} e^{-\jmath \psi}$

- Distance from Waist, z
- Rayleigh Range, b

$$
b=\frac{\pi w_{0}^{2}}{\lambda}=\frac{\pi d_{0}^{2}}{4 \lambda}
$$

- Radius of Curvature, ρ Dashed Black Line
- Beam Diameter, d Black Diamonds

Gouy Phase

- Phase Term

- See White Circle
- Plot is $\Im E$

The Really Useful Equations

- Beam Diameter, d

$$
d=d_{0} \sqrt{1+\frac{z^{2}}{b^{2}}}
$$

- Near Field $d_{g} \approx d_{0}$
- Far Field $d_{d} \approx \frac{4}{\pi} \frac{\lambda}{d_{0}} z$
- Radius of Curvature, ρ

$$
\rho=z+\frac{b^{2}}{z}
$$

- Near Field $\rho \approx b^{2} / z \rightarrow \infty$
- Far Field $\rho \approx z \rightarrow \infty$

Stable Laser Cavity Design

A. Flat Output Coupler

B. Flat Rear Mirror

C. Confocal Resonator

Steady State in Laser Cavity

- The amplitude after a round trip is unchanged. This means that any loss (including power released as output) must be offset by corresponding gain. (Gain Saturation)
- The phase after a round trip must be unchanged. We discussed, in our study of interference, how this requirement on the axial phase change, $e^{j k z}$, affects the laser frequency.
- The beam shape must be unchanged, so that the phase and amplitude is the same for all x and y. This is the subject to be considered in this section.

Design Problem

- Carbon Dioxide Laser: $\mathrm{P}(20), \lambda=10.59 \mu \mathrm{~m}$
- Beam Output: Collimated, 5mm Diameter
- Cavity Length: 1m (Probably because of Gain)
- Solution
- Collimated Output: Flat Output Coupler
- Rear Mirror to Match Curvature at $z=-1 \mathrm{~m}$

$$
b=1.85 \mathrm{~m} \quad \rho=-4.44 \mathrm{~m} \quad d=5.7 \mathrm{~mm}
$$

- Rear Mirror Concave, $\rho=-4.44 \mathrm{~m}$
- Diameter Larger than $d=5.7 \mathrm{~mm}$ (Typically 1.5 X)

Stable Cavity Examples

Output toward Bottom

A. Flat Output Coupler

C. Confocal Resonator

B. Flat Rear Mirror

D. Focusing Cavity

Some Hermite-Gaussian Modes

0:0

1:1
1:0
4

2:0

1:3

Making a Hologram

$$
\text { Ghost }=R R O^{*}
$$

Conjugate Hologram

$R=$ Reference Wave
$O=$ Object Wave
Expose Film: Irradiance at Film Plane:

$$
I=(R+O)\left(R^{*}+O^{*}\right)
$$

Develop Film:

$$
H=P R^{*} O+P R O^{*}+\ldots
$$

Match Playback to Conjugate of Reference:

$$
\text { Ghost }^{*}=R^{*} R^{*} O
$$

$$
I^{*}=R^{*} R O^{*}
$$

Guidestar

