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Week 5 Agenda

• Aperture Size and Spot Size

• Fourier Optics

• Image Resolution

• Diffraction Gratings

• Gaussian Beams

• Laser Cavities

• Holography and Phase Conjugation
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Diffraction

Collimated Beam: Divergence in Far Field

Focused Beam: Minimum Spot Size and Location

α = C
λ

D
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Slit Experiments
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A. Two slits B. Aperture

• Angular Divergence of Light Waves
• Alternating Bright and Dark Regions
• Near– and Far–Field Behavior

λ = 800nm. Axis Units are µm
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Two–Lens System

• Separation: f1 + f2

• Magnification m = x′

x = −
f2
f1

• Angle from Axis θ′ = 1
mθ

• u = sin θ umax = NA

• Aperture Diameter D = 2f1 tan θ = 2f2 tan θ
′

• Fourier Optics: Epupil ∝ FT
(

Efield
)
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Varying Spatial Frequencies

.
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Coordinate Relationships

Spatial Pupil Direction

Frequency Location Cosines

Spatial Frequency x1 = λzfx u = fxλ
y1 = λzfy v = fyλ

Pupil Location fx = x1
λz u = x1

z
fy = y1

λz v = y1
z

Direction cosines fx = u
λ x1 = uz

fy = v
λ y1 = vz

Angle u = sin θ cos ζ
v = sin θ sin ζ
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Camera Example

• Pixel Pitch: 7.4µm

fsample =
1

7.4× 10−6m
= 1.35× 105m−1 (135 per mm.)

• Nyquist Sampling: fmax = fsample/2 at umax = NA

NA =
2fsampleλ

2
= fsampleλ (Coherent Imaging)

• Green light at 500nm,

NA = 0.068

– Lower NA Acts as Anti–Aliasing Filter

– Higher NA Allows Aliasing
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Summary of Common
Fraunhofer Patterns

Pupil Pattern Fraunhofer Pattern Slice

SQUARE:
d = 2 λ

D
(1st Nulls)

I0 = PD2

λ2z21
I1/I0 = −13dB
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CIRCULAR:
d = 2.44 λ

D
(1st Nulls)

I0 = πPD2

4λ2z21
I1/I0 = −17dB
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GAUSSIAN:
d = 4

π
λ
d0

(e−2 Width)

I0 =
πPd2

0

2λ2z21
No sidelobes
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Resolution of an Imaging System

• “To Resolve” or “Resolution” Defined

“. . . to distinguish parts or components of (something) that are

close together in space or time; . . . ”

“. . . the process or capability of rendering distinguishable the

component parts of an object or image; a measure of this, ex-

pressed as the smallest separation so distinguishable, . . . ”

• Resolution is Not Number of Pixels or Width of Point–Spread

Function
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Resolution Analysis

• Diffraction Patterns of Two

“Point Objects”

– Point–Spread Functions

– From Fraunhofer Diffraction

at Pupil

– Fourier Transforms (See Ch. 11)

• Add

• Set Criterion for Valley

– Noise Analysis?

– Contrast?

– Arbitrary Decision?

γ = 2
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A complete and consistent definition would require knowledge

we are not likely to have.
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Rayleigh Criterion

• Frequently Used, but Arbitrary
• Defined by Nulls of Point–Spread Function

– Peak of One over Valley of Other
• Produces Inconsistent Valley (Depends on Pattern)

– Square Aperture

δ = z1λ/D

δθ = λ/D

– Valley Depth

2

[

sin (π/2)

π/2

]2

=

8

π2
= 0.81

– Circular Aperture

δθ = 1.22
λ

D

δ = 0.61
λ

NA

– Valley Depth

0.73
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Resolution at the Rayleigh Limit
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Square Aperture, λ/D, 81% Valley
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Circular Aperture, 1.22λ/D, 73% Valley

• Issues

– Noise

– Contrast

– Statistics

– Sampling*

• Other

Definitions

– MTF*

(Ch. 11)

– Any Valley

(Sparrow)

– 81% Valley

(Wadsworth)

– PSF FWHM

(Houston)*

* Not really resolution
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The Diffraction Grating (1)

• The Grating Equation

Nλ = d (sin θi+ sin θd)

sin θd = − sin θi+N
λ

d
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The Diffraction Grating (2)

• Grating Equation

Nλ = d (sin θi+ sin θd)

• Grating Dispersion

δλ =
d

N
δ (sin θd)

• Applications

– Monochromator

– Spectrometer

• Aliasing Issues

– N to N +1

λN+1 = λN ×
N

N +1

– Maximum Width:

Factor of 2

• Anti–Aliasing Filter

– e.g. Colored Glass

– e.g. “Filter Wheel”

• Monochromator

(More Later)
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Gaussian Beams

• Applications

– Many Laser Beams

– Minimum–Uncertainty

– Simple Equations

– Good Approximation

– Extensible (e.g. Hermite–

Gaussian)

• Equations

– Solution of Helmholz

Equation

– Solution to Laser Cavity

– Kogelnik and Li, 1966

– Spherical Gaussian

Waves

– “Gaussians Are Forever”

• Imaginary Part of Field

– Gaussian Profile

– Spherical Wavefront

• Focusing and Propagation

– Simple Equations
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Physical Meaning of Parameters

E ≈

√

2P

πw2
ejkzejk

x2+y2

2ρ e−
x2+y2

w2 e−ψ

• Distance from Waist, z

• Rayleigh Range, b

b =
πw2

0

λ
=
πd20
4λ

• Radius of Curvature, ρ

Dashed Black Line

• Beam Diameter, d

Black Diamonds
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Gouy Phase

• Phase Term

ψ = arctan
z

b

• See White Circle

• Plot is ℑE

Mar 2024 ©C. DiMarzio (Based on Optics for Engineers, CRC Press) 12515..slides6–17



The Really Useful Equations

• Beam Diameter, d

d = d0

√

1+
z2

b2

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z/b, Scaled Axial Distance

d
/d

0
, 
S

ca
le

d
 B

ea
m

 D
ia

m
et

er

• Near Field dg ≈ d0
• Far Field dd ≈

4
π
λ
d0
z

• Radius of Curvature, ρ

ρ = z+
b2

z
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• Near Field ρ ≈ b2/z → ∞

• Far Field ρ ≈ z → ∞
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Stable Laser Cavity Design

A. Flat Output Coupler

B. Flat Rear Mirror

C. Confocal Resonator
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Steady State in Laser Cavity

• The amplitude after a round trip is unchanged. This means

that any loss (including power released as output) must be

offset by corresponding gain. (Gain Saturation)

• The phase after a round trip must be unchanged. We dis-

cussed, in our study of interference, how this requirement on

the axial phase change, ejkz, affects the laser frequency.

• The beam shape must be unchanged, so that the phase and

amplitude is the same for all x and y. This is the subject to

be considered in this section.
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Design Problem

• Carbon Dioxide Laser: P(20), λ = 10.59µm

• Beam Output: Collimated, 5mm Diameter

• Cavity Length: 1m (Probably because of Gain)

• Solution

– Collimated Output: Flat Output Coupler

– Rear Mirror to Match Curvature at z = −1m

b = 1.85m ρ = −4.44m d = 5.7mm

– Rear Mirror Concave, ρ = −4.44m

– Diameter Larger than d = 5.7mm (Typically 1.5X)
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Stable Cavity Examples

Output toward Bottom

A. Flat Output Coupler B. Flat Rear Mirror

C. Confocal Resonator D. Focusing Cavity
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Some Hermite–Gaussian Modes

0:0 0:1

1:0

(0:1) + i (1:0) = Donut

1:1 1:3 2:0 2:1

2:3 5:0 5:1 5:3
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Making a Hologram

Adapted from Lei Sui

R = Reference Wave

O = Object Wave

Expose Film: (Or use PRC for

memory.) Irradiance at Film

Plane:

I = (R+O)
(

R∗ +O∗
)

Develop Film:

H = PR∗O+ PRO∗ + . . .

Match Playback to

Reference:

I = RR∗O

Ghost = RRO∗
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Conjugate Hologram

R = Reference Wave

O = Object Wave

Expose Film: Irradiance at Film

Plane:

I = (R+O)
(

R∗ +O∗
)

Develop Film:

H = PR∗O+ PRO∗ + . . .

Match Playback to Conjugate of

Reference:

Ghost∗ = R∗R∗O

I∗ = R∗RO∗
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Guidestar

A. Layout B. Probe C. Sideband D. PCS
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