Optics for Engineers Week 5

Charles A. DiMarzio
EECE-4646
Northeastern University

Feb 2024

Week 5 Agenda

- Coherent and Incoherent Light
- Mach-Zehnder Interferometer
- Michaelson Interferometer and Optical Testing
- Doppler Lidar
- Fabry-Perot Interfereometer
- Laser Cavities
- Dielectric Coatings

Superposition

- Output Toward the Right (Similar for Downward)
- Coherent Addition

$$
E=E_{1}+E_{2} \quad I=|E|^{2}=E E^{*}
$$

- Incoherent Addition

$$
I=I_{1}+I_{2}
$$

Coherent Superposition

- Inputs Both Have $I=1$
- Outputs Both Have $0 \leq E_{1}+E_{2} \leq 2$
- But $I_{\text {right }}+I_{\text {down }}=I_{\text {from top }}+I_{\text {from left }}$

Measuring the Field Amplitude Is Hard

- Easy for Ocean Wave Height
- Easy for Acoustic Pressure
- Even Easy for Radio Waves
- No Direct Measurement for Light
- Terahertz Frequencies
- Sub-Micrometer Wavelengths
- Use Interferometry
- Mix With Known Reference Wave
- Measure Irradiance
- Variations in Space or Time

Interferometry Equations

- Irradiance

$$
I=\frac{\left(E_{1}^{*}+E_{2}^{*}\right)\left(E_{1}+E_{2}\right)}{Z}
$$

- Expand

$$
I=\frac{E_{1}^{*} E_{1}+E_{2}^{*} E_{2}+E_{1}^{*} E_{2}+E_{1} E_{2}^{*}}{Z}
$$

- First Two Terms are "DC" Terms
- Third and Fourth are "Mixing" Terms
- Complex Conjugate Pair (Real Sum)

$$
I_{\operatorname{mix}}=\frac{E_{1} E_{2}^{*}}{Z} \quad \text { and } \quad I_{m i x}^{*}=\frac{E_{1}^{*} E_{2}}{Z}
$$

Mixing Terms

- Complex Conjugates Add to Real Value

$$
I_{\operatorname{mix}}=\frac{E_{1} E_{2}^{*}}{Z} \quad \text { and } \quad I_{\operatorname{mix}}^{*}=\frac{E_{1}^{*} E_{2}}{Z}
$$

- Magnitude

$$
\left|I_{m i x}\right|=\left|I_{m i x}^{*}\right|=\sqrt{I_{1} I_{2}}
$$

- Total Irradiance

$$
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \left(\phi_{2}-\phi_{1}\right)
$$

- Random Fields: Incoherent Superposition

$$
\bar{I}_{m i x}=0 \quad \bar{I}=I_{1}+I_{2}
$$

Mach-Zehnder Interferometer

$$
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \left(\phi_{2}-\phi_{1}\right)
$$

- Add Gas Pressure to Cell; $n \uparrow, \Delta=\triangle O P L \uparrow$

$$
\begin{aligned}
\Delta & =\delta\left(n \ell_{c}\right) \\
\delta \phi_{1}=k \Delta & =2 \pi \frac{\Delta}{\lambda}=2 \pi \frac{\ell_{c}}{\lambda} \delta n
\end{aligned}
$$

Fringe Amplitude and Contrast

- Total Signal

$$
I=I_{0}\left(R_{1} T_{2}+T_{1} R_{2}+2 \sqrt{R_{1} T_{2} T_{1} R_{2}} \cos \delta \phi\right)
$$

- Fringe Amplitude

$$
\begin{gathered}
I_{m}=I_{\max }-I_{\min } \\
\sqrt{R_{1} T_{1} R_{2} T_{2}} I_{0}=0.25 I_{0} \quad \text { for } R_{1}=R_{2}=0.5
\end{gathered}
$$

- Fringe Contrast Defined

$$
V=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} \quad(0 \leq V \leq 1) \quad V=2 \frac{\sqrt{R_{1} T_{2} T_{1} R_{2}}}{R_{1} T_{2}+T_{1} R_{2}}
$$

- For $R_{1}=R_{2}=R$ and $\left(T_{1}=T_{2}=T\right)$

$$
I=I_{0} 2 R T(1+\cos \delta \phi)
$$

Michelson Interferometer

Optical Testing

Synthetic Results Illustrating Fringe Patterns

Perfect Surface 2-Wavelength Bump 0.2-Wavelength Bump (4 Fringes) (0.4 Fringes)

Coherent Laser Radar (Lidar)

- Similar to Mach-Zehnder (Modified Mach-Zehnder?)
- Common Transmit/Receive Aperture: Use T/R Switch (Ch. 6)
- Transmitter Polarization: P at Beamsplitters
- Receiver Polarization: S: Need HWP in Reference (LO)
- Ideally QWP Between Telescope and Target to Reduce Narcissus (Not Practical)
- BS1 and Recombining Beamsplitter High Reflectivity

Doppler Velocity

- Target: Dust, Fo, Rain, Snow, Smoke, etc.
- Doppler Equation from Source to Target

$$
\begin{gathered}
2 \pi f_{d}=\mathbf{k} \cdot \mathbf{v} \quad(>0 \text { for Approaching Velocities) } \\
f_{d}=\frac{v_{\text {parallel }}}{\lambda} \quad \text { (Moving Source or Detector) }
\end{gathered}
$$

- Doppler Lidar (or Radar) on Round Trip

$$
f_{D R}=2 \frac{v_{\text {parallel }}}{\lambda}
$$

$$
\left(f_{D R}=100 \mathrm{kHz} \text { for } v_{\text {parallel }}=0.54 \mathrm{~m} / \mathrm{s} \text { at } \lambda=10.59 \mu \mathrm{~m}\right)
$$

Pulsed Laser Radar

- Range Resolution and Velocity Resolution

$$
\delta r=\frac{c \tau}{2} \quad \delta f_{D R} \approx \frac{1}{\tau} \quad \delta v_{\text {parallel }} \approx \frac{\lambda}{2 \tau}
$$

- Hundreds of Meters and m / s Typical at $10.59 \mu \mathrm{~m}$
- Average Power

$$
P_{a v g}=P_{\text {laser }} \times \tau \times P R F
$$

- Range Ambiguity May Limit PRF

Fabry-Perot

- Resonant Frequencies and Free Spectral Range

- Recirculating Power

$$
\begin{gathered}
P_{\text {recirculating }}=\frac{P_{\text {out }}}{T_{2}}= \\
\frac{P_{\text {out }}}{1-R_{2}}=\frac{P_{0}}{1-R_{2}}
\end{gathered}
$$

- N Round Trips

$$
P_{N}=\left(R_{1} R_{2}\right)^{N}
$$

- 50% Probability

$$
N=-\log 2 / \log \left(R_{1} R_{2}\right)
$$

$$
\text { e.g. } R_{1}=R_{2}=0.999 \text { : }
$$

$N=346$

- Resolution of a Longer Interferometer

Fabry-Perot Equations

The Infinite Sum, or "Barber's Chair" Approach

Computing the Sum

$$
E_{t}=E_{0} \tau_{1} \tau_{2} e^{j k \ell} \frac{1}{1-\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}}
$$

$$
E_{r}=E_{0} \rho_{1}+\tau_{1} \tau_{1}^{\prime} e^{2 j k \ell} \frac{1}{1-\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}}
$$

$$
\begin{gathered}
T=\left|\frac{E_{t}}{E_{0}}\right|^{2} \quad T=\tau_{1} \tau_{2} \tau_{1}^{*} \tau_{2}^{*} \frac{1}{1-\rho_{1}^{\prime} \rho_{2} e^{2 j k \ell}} \frac{1}{1-\left(\rho^{\prime}\right)_{1}^{*} \rho_{2}^{*} e^{-2 j k \ell}} \\
T=T_{1} T_{2} \frac{1}{1-2 \sqrt{R_{1} R_{2}} \cos (2 k \ell)+R_{1} R_{2}}
\end{gathered}
$$

Fabry-Perot Transmission

Thin Films: Approach

- Normal Incidence
- Wave from Left

$$
\begin{array}{ll}
E_{A}=E_{i}+E_{r} & E_{D}=E_{t} \\
H_{A}=H_{i}-H_{r} & H_{D}=H_{t}
\end{array}
$$

- Electric Field BC

$$
E_{B}=E_{A} \quad E_{C}=E_{D}
$$

- Magnetic Field BC

$$
\begin{array}{rlrl}
H_{B} & =H_{A} & H_{C}=H_{D} \\
\frac{E_{B}}{n Z_{0}}=\frac{E_{A}}{n_{0} Z_{0}} & \frac{E_{c}}{n Z_{0}}=\frac{E_{D}}{n_{t} Z_{0}} \\
\frac{E_{B}}{n} & =\frac{E_{A}}{n_{0}} & \frac{E_{C}}{n}=\frac{E_{D}}{n_{t}}
\end{array}
$$

Thin Films: In the Medium

- Right-Propagating

$$
E_{\text {right }} e^{i n k z} \quad \text { and } \quad H_{\text {right }} e^{i n k z}=\frac{1}{n Z_{0}} E_{\text {right }} e^{i n k z}
$$

- Left-Propagating

$$
E_{l e f t} e^{-i n k z} \quad \text { and } \quad H_{l e f t} e^{-i n k z}=-\frac{1}{n Z_{0}} E_{l e f t} e^{-i n k z}
$$

- Boundaries

$$
E_{B}=E_{l e f t}+E_{\text {right }} \quad E_{c}=E_{l e f t} e^{-j n k \ell}+E_{\text {right }} e^{j n k \ell}
$$

- Result

$$
\begin{aligned}
E_{i}+E_{r} & =E_{t} \cos (n k \ell)-E_{t} \frac{n_{t}}{n} \sin (n k \ell) \\
n_{0} E_{i}-n_{0} E_{r} & =-i n E_{t} \sin (n k \ell)+n_{t} E_{t} \cos (n k \ell)
\end{aligned}
$$

Thin Films: Matrix Equation

- Previous Result

$$
\begin{aligned}
E_{i}+E_{r} & =E_{t} \cos (n k \ell)-E_{t} \frac{n_{t}}{n} \sin (n k \ell) \\
n_{0} E_{i}-n_{0} E_{r} & =-i n E_{t} \sin (n k \ell)+n_{t} E_{t} \cos (n k \ell)
\end{aligned}
$$

- Matrix Equation

$$
\binom{1}{n_{0}} E_{i}+\binom{1}{-n_{0}} E_{r}=\left(\begin{array}{cc}
\cos (n k \ell) & -\frac{i}{n} \sin (n k \ell) \\
-i n \sin (n k \ell) & \cos (n k \ell)
\end{array}\right)\binom{1}{n_{t}} E_{t}
$$

- Characteristic Matrix

$$
\begin{gathered}
\mathcal{M}=\left(\begin{array}{cc}
\cos (n k \ell) & -\frac{i}{n} \sin (n k \ell) \\
-i n \sin (n k \ell) & \cos (n k \ell)
\end{array}\right) \\
\binom{1}{n_{0}}+\binom{1}{-n_{0}} \rho=\mathcal{M}\binom{1}{n_{t}} \tau
\end{gathered}
$$

Multiple Layers

$$
\mathcal{M}=\left(\begin{array}{cc}
\cos (n k \ell) & -\frac{i}{n} \sin (n k \ell) \\
-i n \sin (n k \ell) & \cos (n k \ell)
\end{array}\right) \quad\binom{1}{n_{0}}+\binom{1}{-n_{0}} \rho=\mathcal{M}\binom{1}{n_{t}} \tau
$$

$$
\mathcal{M}=\mathcal{M}_{1} \mathcal{M}_{2} \mathcal{M}_{3} \ldots
$$

$$
\begin{gathered}
\mathcal{M}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \\
\rho=\frac{A n_{0}+B n_{t} n_{0}-C-D n_{t}}{A n_{0}+B n_{t} n_{0}+C+D n_{t}} \\
\tau=\frac{2 n_{0}}{A n_{0}+B n_{t} n_{0}+C+D n_{t}}
\end{gathered}
$$

Dielectric Stacks

- High Reflectivity (Often Better than Metal)
- Anti-Reflection Coatings or Stacks
- Narrow-Band Filters, Mirrors, etc.
- Bandpass Devices that Are Not Narrow-Band
- Hot Mirror or Cold Mirror
- Long-Pass Dichroic
- Short-Pass Dichroic
- Beamsplitters (Specific Reflectivity, Angle, Polarization, Wavelength Range, etc.)

High-Reflectance Stack (1)

One Pair

Multi-Layer Stack

- One Layer ($\lambda / 4$)

$$
\mathcal{M}_{i}=\left(\begin{array}{cc}
0 & -i / n_{i} \\
i n_{i} & 0
\end{array}\right)
$$

- One Pair

$$
\begin{aligned}
\mathcal{M}_{p}= & \left(\begin{array}{cc}
0 & -i / n_{h} \\
i n_{h} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i / n_{\ell} \\
i n_{\ell} & 0
\end{array}\right)= \\
& \left(\begin{array}{cc}
-n_{\ell} / n_{h} & 0 \\
0 & -n_{h} / n_{\ell}
\end{array}\right)
\end{aligned}
$$

High-Reflectance Stack (2)

- One Pair of $\lambda / 4$ Layers

$$
\mathcal{M}_{p}=\left(\begin{array}{cc}
-n_{\ell} / n_{h} & 0 \\
0 & -n_{h} / n_{\ell}
\end{array}\right)
$$

- Multiple Pairs

$$
\mathcal{M}_{N}=\left(\begin{array}{cc}
\left(-n_{\ell} / n_{h}\right)^{N} & 0 \\
0 & \left(-n_{h} / n_{\ell}\right)^{N}
\end{array}\right)
$$

- Reflectivity

$$
R=\left(\frac{\left(\frac{n_{\ell}}{n_{h}}\right)^{2 N}-\frac{n_{t}}{n_{0}}}{\left(\frac{n_{\ell}}{n_{h}}\right)^{2 N}+\frac{n_{t}}{n_{0}}}\right)^{2}
$$

- Narrow Band ($\lambda / 4$)
- Almost Indep.of n_{t}, n_{0}
- Example
- Zinc Sulfide, $n_{h}=2.3$
- Magnesium Fluoride,

$$
n_{\ell}=1.35
$$

- 8 Layers

$$
N=4 \rightarrow R=0.97
$$

- 30 Layers

$$
N=15 \rightarrow R=0.999
$$

- For Lasers, eg. HeNe
- Compare Metal (≈ 0.96 Typical)
- Near-Zero Heating

Anti-Reflection Coating

- Ideal AR Coating
- Quarter-Wave Coating

$$
n_{\text {layer }}=\sqrt{n_{t}}
$$

- Other Issues
- Durability
- Cost
- Safety

- Example
- One Layer
- Magnsium Fluoride

$$
n=1.35
$$

- $R=0.01$ at Design λ
- $R=0.04$ at Extremes
- Looks Pink or Purple

Multi-Layer AR Stacks

