Optics for Engineers
 Week 4

Charles A. DiMarzio
EECE-4646
Northeastern University

Feb 2024

Week 4 Agenda

- Introduction and Some Definitions
- Linear Polarization
- Fresnel Coefficients
- Waveplates
- T/R Beamsplitter
- E/O Modulator
- Rotators

Overview of Polarized Light

- Fundamentals
- Devices (What They Do)
- Physics (How They Do It)
- Interfaces
- Jones Matrices (Bookkeeping)
- Coherency Matrices (Partial Polarization)

- Mueller Matrices (More Bookkeeping)

Linear Polarization

- Vertical and Horizontal Basis

$$
\mathbf{E}=\left[E_{v} \widehat{v}+E_{h} \hat{h}\right] e^{j(\omega t-k z)}
$$

- x, y Basis

$$
\begin{aligned}
\mathbf{E} & =\left[E_{x} \widehat{x}+E_{y} \widehat{y}\right] e^{j(\omega t-k z)} \\
\mathbf{H} & =\left[-\frac{E_{y}}{Z} \widehat{x}+\frac{E_{x}}{Z} \widehat{y}\right] e^{j(\omega t-k z)}
\end{aligned}
$$

Polarizing Devices

- Ideal Polarizers

Pass or Block

- Others Transform
- Linear Polarizer
- e.g. Pass x, Block y
- Characterization
* Direction
(x, y, other)
* Insertion Loss (Pass Direction)
* Extinction (Block Direction)
- The Waveplate (Retarder)
- Change Relative Phase
- Characterization
* Axis Direction
* Phase Difference
* Insertion Loss
- The Rotator (Circular Retarder)
- Rotate Linear Pol.
- Phase Change E_{r} vs. E_{ℓ}
- Characterization
* Rotation Angle or Phase Shift
* Insertion Loss

Linear Polarizer

- Input Polarization Example (θ Direction)

$$
\mathbf{E}_{i n}=E_{x} \widehat{x}+E_{y} \widehat{y}=E_{o}[\cos (\theta) \widehat{x}+\sin (\theta) \widehat{y}]
$$

- Perfect x Polarizer

$$
\mathbf{E}_{\text {out }}=1 \times E_{x} \widehat{x}+0 \times E_{y} \widehat{y}=E_{o} \cos (\theta) \widehat{x}
$$

- Irradiance

$$
\left|\mathbf{E}_{i n}\right|^{2}=E_{o}^{2} \quad\left|\mathbf{E}_{o u t}\right|^{2}=E_{o}^{2} \cos ^{2} \theta
$$

- Transmission (Malus Law for This Case)

$$
T=\frac{\left|\mathbf{E}_{o u t}\right|^{2}}{\left|\mathbf{E}_{i n}\right|^{2}} \quad T=\cos ^{2} \theta
$$

Polarizers in "Real Life"

- General Equation

$$
\mathbf{E}_{o u t}=\tau_{x} \times E_{x} \widehat{x}+\tau_{y} \times E_{y} \widehat{y} \quad \tau_{x} \approx 1 \quad \tau_{y} \approx 0
$$

- Insertion Loss

$$
1-\left|\tau_{x}\right|^{2} \quad \text { or in } \mathrm{dB}, \quad 10 \log _{10}\left|\tau_{x}\right|^{2}
$$

- Extinction

$$
\left|\tau_{y}\right|^{2} \quad \text { or in } \mathrm{dB}, \quad 10 \log _{10}\left|\tau_{y}\right|^{2}
$$

- Extinction Ratio

$$
\left|\tau_{x}\right|^{2} /\left|\tau_{y}\right|^{2}
$$

- Good Extinction $\approx 10^{5}$ or 45 dB

Linear Polarizer Analysis

Derive the Cosine-Squared Law

S,P Basis at an Interface

- P Means E Parallel to Plane of Incidence
- S Means E Perpendicular (Senkrecht) to Plane of Incidence

$$
\mathbf{E}=\left[E_{s} \widehat{s}+E_{p} \hat{p}\right] e^{j(\omega t-k z)}
$$

S Polarization (TE)

Fresnel Coefficents

- S Polarization

$$
\rho_{s}=\frac{E_{r}}{E_{i}}=\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}} \quad \tau_{s}=1+\rho_{s}
$$

- P Polarization $\left(\left|\rho_{P}\right| \leq\left|\rho_{S}\right|\right)$

$$
\rho_{p}=\frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}-\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}} \quad \tau_{p}=\left(1+\rho_{p}\right) \frac{n_{1}}{n_{2}}
$$

Air To Glass

Brewster's Angle

- $\rho_{p}=0$ Means No Reflection
- 100\% Transmission (Different from $\tau_{p}=1$) Q: Why?

$$
\tan \theta_{B}=\frac{n_{2}}{n_{1}}
$$

- Application: Windows in Laser (Polarized Laser)

- Q: What is the Direction of Polarization?

Critical Angle

- Critical Angle ($n_{1}>n_{2}$)

- Brewster's Angle

Irradiance and Power

- Irradiance

$$
I=\frac{|\mathbf{E}|^{2}}{Z}, \quad I=\frac{d P}{d A^{\prime}}=\frac{d P}{\cos \theta d A}
$$

- Reflection

$$
\frac{I_{r}}{I_{i}}=R=\rho \rho^{*}
$$

- Transmission

$$
\frac{I_{t}}{I_{i}}=T=\tau \tau^{*} \frac{Z_{1}}{Z_{2}} \frac{\cos \theta_{t}}{\cos \theta_{i}}=\tau \tau^{*} \frac{n_{2}}{n_{1}} \frac{\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}}
$$

- Conservation

$$
T+R=1
$$

Fresnel Reflection at Normal Incidence

- Reflection

$$
R(0)=\left|\frac{\left(n_{2} / n_{1}\right)-1}{\left(n_{2} / n_{1}\right)+1}\right|^{2}
$$

- Special Case (Air to Medium)

$$
R(0)=\left|\frac{n-1}{n+1}\right|^{2}
$$

- Examples

Air-Water:	$n=1.33$	$R(0)=0.02$
Air-Glass:	$n=1.5$	$R(0)=0.04$
Air-Germanium (IR):	$n=4$	$R(0)=0.36$

Air to Water (dB)

Air-Water:

$$
R(0)=0.04
$$

Generally:

$$
\begin{gathered}
R_{s}(0)=R_{p}(0) \\
R\left(90^{\circ}\right)=1
\end{gathered}
$$

Elsewhere

$$
\begin{gathered}
R_{s}(0)>R_{p}(0) \\
R_{p}\left(\theta_{b}\right)=0
\end{gathered}
$$

$R(\theta)$ for n to $n^{\prime}=R\left(\theta^{\prime}\right)$ for n^{\prime} to n

Polished-Floor Reflection

No Polarizer

Horizontal Polarizer

Q: Which is Which?

Vertical Polarizer

Air to Glass (dB)

Glass to Air (dB)

Maltese Cross

Side View

Top View

Birefringence

- Two Indices of Refraction
- Different Ray Bending
(Double Image)
- Different Speeds
- Epsilon Tensor
- 3-D Matrix
- Can be Diagonalized
- Two or Three Eigenvalues * Uniaxial

$$
\varepsilon=\left(\begin{array}{ccc}
\epsilon_{x x} & 0 & 0 \\
0 & \epsilon_{y y} & 0 \\
0 & 0 & \epsilon_{y y}
\end{array}\right)
$$

- Ordinary Ray (y Polarized)
- Extraordinary Ray (x)
* Biaxial (All 3 Different)

The Wave Plate

- Input Polarization Example (θ Direction Again)

$$
\mathbf{E}_{i n}=E_{x} \widehat{x}+E_{y} \widehat{y}=E_{o}[\cos (\theta) \widehat{x}+\sin (\theta) \widehat{y}]
$$

- Half-Wave Plate

$$
\begin{gathered}
\tau_{x}=1 \quad \tau_{y}=-1 \\
\mathbf{E}_{h w p}=E_{o}[\cos (\theta) \hat{x}-\sin (\theta) \hat{y}] \quad \angle \mathbf{E}_{o u t}=-\theta
\end{gathered}
$$

- Quarter-Wave Plate

$$
\begin{gathered}
\tau_{x}=1 \quad \tau_{y}=j, \\
\mathbf{E}_{q w p}=E_{o}[\cos (\theta) \widehat{x}+j \sin (\theta) \hat{y}]
\end{gathered}
$$

- Circular Polarization at $\theta=45^{\circ}$ (Q: Left or Right?)
- Other Waveplates Sometimes Used

Waveplate Analysis

$E_{V} \times 1$
$E_{H} \times(-1)$
HWP Flips Polarization

Variable Attenuator

4 Peaks, 4 Nulls
Not Linear

T / R Switch (Optical Circulator)

- Common Aperture
$-T+R=1$
- Round-Trip

$$
(1-R) F_{\text {target }} R
$$

- Optimize (Not Great)

$$
\begin{gathered}
d[(1-R) R] / d R=0 \\
R=\frac{1}{2} \quad R(1-R)=\frac{1}{4}
\end{gathered}
$$

- \hat{p}-Polarized Source:

High Transmission

- QWP Makes Circular Pol.
- Target Keeps Polarization (RHC to LHC)
- QWP Makes \hat{s} Polarization: High Reflection
- $T_{P}+R_{S} \neq 1$

To Detector
oc.

Electrically-Induced Birefringence

- Eletric Field Alters Symmetry
- Birefringence Proportional to DC Voltage

$$
\delta \phi=\pi \frac{V}{V_{\pi}}
$$

- Applications
- Phase Modulation (Field Paralel to One Axis)
- Frequency Modulation (Phase Modulation in Laser Cavity)
- Amplitude Modulation (Field at 45° with Crossed Polarizer at Output)

E/O Modulator

- Voltage Controlled Waveplate

$$
\delta \phi=\pi \frac{V}{V_{\pi}}
$$

- $T=1$ at $V=V_{\pi}$ and $T=0$ at $V=0$,
- Linear Transmission Near Quarter-Wave $V \approx V_{\pi} / 2$

Modulator with Bias

Quarter-Wave Phase Difference at $V=0$

Rotator

- General Equation

$$
\binom{E_{x: \text { out }}}{E_{y: \text { out }}}=\left(\begin{array}{cc}
\cos \zeta_{r} & -\sin \zeta_{r} \\
\sin \zeta_{r} & \cos \zeta_{r}
\end{array}\right)\binom{E_{x: \text { in }}}{E_{y: \text { in }}}
$$

Polarization Rotator
Rotation of Coordi- nates

Polarization Rotator

- Reciprocal Rotator (e.g. Sugar in Water)

$$
\delta \zeta=\kappa C \ell
$$

$-\kappa=$ Specific Rotary Power
$-C=$ Concentration
$-\ell=$ Length

- Rotation in Either Direction
- Left (Levulose) $C>0$
- Right (Dextrose) $C<0$
- Same Sign for Reverse Propagation (e.g. Reflection)
- Round-Trip Restores Original Polarization
- Non-Reciprocal Rotator (e.g. Fraday Rotator)
- Underlying Physics (DC Magnetic Field)

$$
\mathbf{a}=-\frac{e}{m} \mathbf{v} \times \mathbf{B}
$$

- Result:
($v=$ Verdet Constant)

$$
\delta \zeta=v \mathbf{B} \cdot \bar{z} \ell
$$

- Reverse Propagation

$$
\delta \zeta=v \mathbf{B} \cdot(-\widehat{z}) \ell
$$

- Round-Trip Doubles Rotation
- Application:

Faraday Isolator ${ }_{\text {Fincers }}$.

