Optics for Engineers Week 4

Charles A. DiMarzio EECE-4646 Northeastern University

Feb 2024

Week 4 Agenda

- Introduction and Some Definitions
- Linear Polarization
- Fresnel Coefficients
- Waveplates
- T/R Beamsplitter
- E/O Modulator
- Rotators

Overview of Polarized Light

- Fundamentals
- Devices
 (What They Do)
- Physics
 (How They Do It)
- Interfaces
- Jones Matrices (Bookkeeping)
- Coherency Matrices (Partial Polarization)
- Mueller Matrices (More Bookkeeping)

Linear Polarization

• Vertical and Horizontal Basis

$$\mathbf{E} = \left[E_v \hat{v} + E_h \hat{h} \right] e^{j(\omega t - kz)}$$

• x, y Basis

$$\mathbf{E} = [E_x \hat{x} + E_y \hat{y}] e^{j(\omega t - kz)}$$

$$\mathbf{H} = \left[-\frac{E_y}{Z} \hat{x} + \frac{E_x}{Z} \hat{y} \right] e^{j(\omega t - kz)}$$

Feb 2024

Polarizing Devices

- Ideal Polarizers
 Pass or Block
- Others Transform
- Linear Polarizer
 - e.g. Pass x, Block y
 - Characterization
 - * Direction
 - (x,y, other)
 - Insertion Loss(Pass Direction)
 - * Extinction(Block Direction)

- The Waveplate (Retarder)
 - Change Relative Phase
 - Characterization
 - * Axis Direction
 - * Phase Difference
 - * Insertion Loss
- The Rotator (Circular Retarder)
 - Rotate Linear Pol.
 - Phase Change E_r vs. E_ℓ
 - Characterization
 - * Rotation Angle
 - or Phase Shift
 - * Insertion Loss

Feb 2024 (e

Linear Polarizer

• Input Polarization Example (θ Direction)

$$\mathbf{E}_{in} = E_x \hat{x} + E_y \hat{y} = E_o \left[\cos \left(\theta \right) \hat{x} + \sin \left(\theta \right) \hat{y} \right]$$

• Perfect x Polarizer

$$\mathbf{E}_{out} = \mathbf{1} \times E_x \hat{x} + \mathbf{0} \times E_y \hat{y} = E_o \cos\left(\theta\right) \hat{x}$$

• Irradiance

$$|\mathbf{E}_{in}|^2 = E_o^2 \qquad |\mathbf{E}_{out}|^2 = E_o^2 \cos^2 \theta$$

• Transmission (Malus Law for This Case)

$$T = \frac{|\mathbf{E}_{out}|^2}{|\mathbf{E}_{in}|^2} \qquad T = \cos^2 \theta$$

Feb 2024

Polarizers in "Real Life"

• General Equation

$$\mathbf{E}_{out} = \tau_x \times E_x \hat{x} + \tau_y \times E_y \hat{y} \qquad \tau_x \approx 1 \qquad \tau_y \approx 0$$

• Insertion Loss

$$1 - |\tau_x|^2$$
 or in dB, $10 \log_{10} |\tau_x|^2$

• Extinction

$$|\tau_y|^2$$
 or in dB, $10 \log_{10} |\tau_y|^2$

• Extinction Ratio

 $|\tau_x|^2 / |\tau_y|^2$

– Good Extinction $\approx 10^5~\text{or}~45\text{dB}$

Linear Polarizer Analysis

Derive the Cosine–Squared Law

S,P Basis at an Interface

- \bullet P Means E Parallel to Plane of Incidence
- \bullet S Means E Perpendicular (Senkrecht) to Plane of Incidence

$$\mathbf{E} = [E_s \hat{s} + E_p \hat{p}] e^{j(\omega t - kz)}$$

P Polarization (TM)

S Polarization (TE)

Feb 2024

Fresnel Coefficents

• S Polarization

$$\rho_s = \frac{E_r}{E_i} = \frac{\cos\theta_i - \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}} \qquad \tau_s = 1 + \rho_s$$

• P Polarization ($|\rho_P| \le |\rho_S|$)

$$\rho_p = \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i} - \left(\frac{n_2}{n_1}\right)^2 \cos \theta_i}{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i} - \left(\frac{n_2}{n_1}\right)^2 \cos \theta_i} \qquad \tau_p = (1 + \rho_p) \frac{n_1}{n_2}$$

Feb 2024

Air To Glass

Feb 2024

Brewster's Angle

- $\rho_p = 0$ Means No Reflection
- 100% Transmission (Different from $\tau_p = 1$) Q: Why?

$$\tan \theta_B = \frac{n_2}{n_1}$$

• Application: Windows in Laser (Polarized Laser)

• Q: What is the Direction of Polarization?

Feb 2024

Irradiance and Power

• Irradiance

$$I = \frac{|\mathbf{E}|^2}{Z}, \qquad I = \frac{dP}{dA'} = \frac{dP}{\cos\theta dA}$$

• Reflection

$$\frac{I_r}{I_i} = R = \rho \rho^*$$

• Transmission

$$\frac{I_t}{I_i} = T = \tau \tau^* \frac{Z_1}{Z_2} \frac{\cos \theta_t}{\cos \theta_i} = \tau \tau^* \frac{n_2}{n_1} \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i}}{\cos \theta_i}$$

• Conservation

T + R = 1

Feb 2024

Fresnel Reflection at Normal Incidence

• Reflection

$$R(0) = \left| \frac{(n_2/n_1) - 1}{(n_2/n_1) + 1} \right|^2$$

• Special Case (Air to Medium)

$$R(0) = \left|\frac{n-1}{n+1}\right|^2$$

• Examples

Air-Water:n = 1.33R(0) = 0.02Air-Glass:n = 1.5R(0) = 0.04Air-Germanium (IR):n = 4R(0) = 0.36

Air to Water (dB)

Feb 2024

Polished–Floor Reflection

No Polarizer

Horizontal Polarizer

Vertical Polarizer

Q: Which is Which?

Air to Glass (dB)

Feb 2024

Glass to Air (dB)

Feb 2024

Maltese Cross

Birefringence

- Two Indices of Refraction
 - Different Ray Bending (Double Image)
 - Different Speeds
- Epsilon Tensor
 - 3–D Matrix
 - Can be Diagonalized
 - Two or Three Eigenvalues
 - * Uniaxial

$$\varepsilon = \begin{pmatrix} \epsilon_{xx} & 0 & 0 \\ 0 & \epsilon_{yy} & 0 \\ 0 & 0 & \epsilon_{yy} \end{pmatrix}$$

- \cdot Ordinary Ray (y Polarized)
- · Extraordinary Ray (x)
- * Biaxial (All 3 Different)

Feb 2024

The Wave Plate

• Input Polarization Example (θ Direction Again)

$$\mathbf{E}_{in} = E_x \hat{x} + E_y \hat{y} = E_o \left[\cos \left(\theta \right) \hat{x} + \sin \left(\theta \right) \hat{y} \right]$$

• Half–Wave Plate

$$au_x = 1 \qquad au_y = -1$$

$$\mathbf{E}_{hwp} = E_o \left[\cos \left(\theta \right) \hat{x} - \sin \left(\theta \right) \hat{y} \right] \qquad \angle \mathbf{E}_{out} = -\theta$$

• Quarter–Wave Plate

$$\tau_x = 1 \qquad \tau_y = j,$$

 $\mathbf{E}_{qwp} = E_o \left[\cos\left(\theta\right) \hat{x} + j \sin\left(\theta\right) \hat{y} \right]$

- Circular Polarization at $\theta = 45^{\circ}$ (Q: Left or Right?)
- Other Waveplates Sometimes Used

Waveplate Analysis

Variable Attenuator

Not Linear

T/R Switch (Optical Circulator)

- Common Aperture
 - -T + R = 1
 - Round-Trip

 $(1-R) F_{target}R$

– Optimize (Not Great)

$$d\left[\left(1-R\right)R\right]/dR=0$$

$$R = \frac{1}{2}$$
 $R(1-R) = \frac{1}{4}$

Polarization Analysis

- *p*-Polarized Source:
 High Transmission
- QWP Makes Circular Pol.
- Target Keeps Polarization (RHC to LHC)
- QWP Makes \hat{s} Polarization: High Reflection

•
$$T_P + R_S \neq 1$$

Feb 2024

Electrically–Induced Birefringence

- Eletric Field Alters Symmetry
- Birefringence Proportional to DC Voltage

$$\delta\phi = \pi \frac{V}{V\pi}$$

- Applications
 - Phase Modulation (Field Paralel to One Axis)
 - Frequency Modulation
 (Phase Modulation in Laser Cavity)
 - Amplitude Modulation (Field at 45° with Crossed Polarizer at Output)

E/O Modulator

• Voltage Controlled Waveplate

$$\delta\phi = \pi \frac{V}{V\pi}$$

- T = 1 at $V = V_{\pi}$ and T = 0 at V = 0,
- Linear Transmission Near Quarter–Wave $V \approx V_{\pi}/2$

Modulator with Bias

Quarter–Wave Phase Difference at V = 0

Rotator

• General Equation

$$\begin{pmatrix} E_{x:out} \\ E_{y:out} \end{pmatrix} = \begin{pmatrix} \cos \zeta_r & -\sin \zeta_r \\ \sin \zeta_r & \cos \zeta_r \end{pmatrix} \begin{pmatrix} E_{x:in} \\ E_{y:in} \end{pmatrix}$$

Feb 2024

Polarization Rotator

 Reciprocal Rotator (*e.g.* Sugar in Water)

 $\delta \zeta = \kappa C \ell$

- $-\kappa =$ Specific Rotary Power
- -C = Concentration
- $-\ell = Length$
- Rotation in Either Direction
 - Left (Levulose) C > 0
 - Right (Dextrose) C < 0
- Same Sign for Reverse Propagation
 - (e.g. Reflection)
 - Round–Trip Restores
 Original Polarization

Feb 2024

©C. DiMarzio (Based on *Optics for Engineers*, CRC Press) 12515..slides4–29

$$\mathbf{a} = -\frac{e}{m}\mathbf{v} \times \mathbf{B}$$

- Result: (v = Verdet Constant)

 $\delta \zeta = v \mathbf{B} \cdot \hat{\mathbf{z}} \ell$

• Reverse Propagation

 $\delta \zeta = v \mathbf{B} \cdot (-\hat{z}) \ell$

- Round–Trip Doubles
 Rotation
- Application: