Optics for Engineers Week 3

Charles A. DiMarzio EECE-4646 Northeastern University

Jan 2024

Week 3 Agenda

- Camera Optics
- Film and Digital
- Photon Detectors Briefly
- Pixels
- Bit Depth
- Noise
- Color Cameras
- Hyperspectral

Cameras

Camera FOV (1)

- Field of View Limited in Image Rather than Object
 - Camera Chip is the Limit
 - 1/2.3in Compact Digital Camera
 - Diagonal Dimension = 11mm.
 - Image Field of View (Here Defined by Half Angle)

$$f = 10$$
cm (Normal Lens) $s \to \infty$
 $FOV = 2 \arctan \frac{11$ mm/2}{10} = 58^{\circ}

Camera FOV (2)

Telephoto Lens, f = 20mm

 $2 \arctan \frac{11 \text{mm}/2}{f}$

FOV =

• Photographer Moved Away with

Increasing f

- Same Linear FOV on the Building in Each Image
- Differences in Foreground Images

Jan 2024

Camera FOV (3)

Case 1: 35 mm Film Case 2: 11 mm chip

What focal length for

• Telephoto

• Normal

• Wide Angle

Optical Detectors

Thermal Detector

Photon Detector

Digital Imaging

- Photon Absorbed: Electron Excited to Conduction Band
- Electron Used in Circuit or Stored
- Massive Arrays are possible using MOS Technology

Camera for Imaging

Jan 2024

Typical RGB Camera

Bayer Matrix Camera Typical Image Format Green Appears Twice in Each 2X2; Average 2D Original, $N_x \times N_y$ to 3D, $(N_x/2) \times (N_y/2) \times 3$

Color Image

Jan 2024

Digitization

Jan 2024

Saturation

In Practice

- Too Much Light Clipping Whites
- Too Little Light Clipping Blacks
- Noise
- Beware the Auto-Scale

Bit Depth

Jan 2024

Pixel Size

Jan 2024

Fill Factor

Jan 2024

Hyperspectral Imaging

Right \approx North, Down = [400 to 2400 nm] (not Linear) South Bay of California; 101 curves down on the left.

Hardware

- Tunable Filter (Lyot Filter, Pronounced "Leo")
 - -x, y on camera
 - λ with time
- Grating spectrometer with Pinhole
 - $-\lambda$ on Camera
 - -x, y with time (whiskbroom: Slow)
 - * Slit, Grating and 2D Camera
 - $\cdot y, \lambda$ on camera
 - $\cdot x$ with time (pushbroom)
- Snapshot Hyperspectral

Lyot Filter

Hardware

- Tunable Filter (Lyot Filter, Pronounced "Leo")
 - -x, y on camera
 - λ with time
- Grating spectrometer with Pinhole
 - λ on Camera
 - -x, y with time (whiskbroom: Slow)
 - * Slit, Grating and 2D Camera
 - $\cdot y, \lambda$ on camera
 - $\cdot x$ with time (pushbroom)
- Snapshot Hyperspectral

Whiskbroom

Pushbroom

Hardware

- Tunable Filter (Lyot Filter, Pronounced "Leo")
 - -x, y on camera
 - $-\lambda$ with time
- Grating spectrometer with Pinhole
 - $-\lambda$ on Camera
 - -x, y with time (whiskbroom: Slow)
 - * Slit, Grating and 2D Camera
 - $\cdot y, \lambda$ on camera
 - $\cdot x$ with time (pushbroom)
- Snapshot Hyperspectral

Snapshot Hyperspectral

Applications

- Military (Where's the Tank in the Trees?)
- Law Enforcement (Which crop is illegal?)
- Agriculture (*e.g.* Crop Health)
- Environmental (e.g. Oil Spill, Invasive Plants
- Commercial (*e.g.*Food Qualty)
- Biomedical
 - Fluorescence Spectroscopy (Multiple, Overlapping Fluorophores)
 - Hemoglobin Spectroscopy