Optics for Engineers Week 2

Charles A. DiMarzio EECE-4646 Northeastern University

Jan 2024

Week 2 Agenda

- One Lens (Simple Lens)
- Curved Mirrors Briefly
- Camera Lens, Magnifier, 1:1 Relay
- Two Lenses
- Microscope, Telescope

"High-School Optics"

"High-School Optics Rules"

- Find front and back focal points, F and F', located f in front of, and in back of, the lens.
- Trace the ray from the object arrow parallel to the axis, refracting out through the back focal point.
- Trace the ray from the object arrow through the front focal point, out parallel to the axis.
- They intersect at the image.
- Check by tracing the ray through the center of the lens which does not refract.

Thin Lens in Air

• Making The Lens (We Still Have Some Choices)

$$\frac{1}{f} = \frac{1}{f'} = P_1 + P_2 = (n_\ell - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

• Using the Lens

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \qquad \qquad m = -\frac{s'}{s}$$

"The AP Version"

Share the Bending

Take-Away Message

- Share the Bending for Best Aberration
- Watch Principal Planes
 - IR Detector Lens Example

Reducing Aberrations

In Practice

- Close Object (Large Magnification): Plano–Convex with Plano Side toward Object
- Distant Object (Small Magnification): Plano–Convex with Convex Side toward Object
- Object and Image Distances Equal ($|m| \approx 1$): Biconvex

Some Lens Applications

- Camera Lens
- Magnifier
- Simple Microscope
- 1:1 Relay

Camera Lens

In Class: x' = 35mm, x = 500m, s = 1km, f = ?

Telescope

5x (angular) 1inch optics. $f_1 =, f_2 =, \text{ image of lens } 1$?

Magnifier

- Goal is upright image, magnified.
- Where is object? Image?
- Write the equation for s, s', f

Large Reflective Optics

"Every Material that Transmits $10\mu m$ Light is Expensive." Not Completely True, but Close.

Using Snell's Law Exactly

- Example: Single Convex Air-to-Glass Interface
- Paraxial Rays Follow Small–Angle Approximation
- Edge Rays May Focus Quite Differently
- Rays Do Not Intersect at a Single Point (or at all in 3D)
- Large "Shot Pattern" at "Paraxial" Focus
- "Best" Focus Translated and Depth of Focus Increased

Jan 2024

Looking Ahead: Diffraction

- Diffraction Theory (Ch. 8) Predicts a Minimum Spot Size
 - Rooted in Fundamental Physics

 $- pprox rac{\lambda}{D_{pupil}} z$

- Ray Tracing Result Below this Limit is "Good Enough"
 - Characterized as "Diffraction-Limited"
- Larger Ray–Tracing Result Indicates Degraded Imaging
 - Can Characterize Roughly by "XDL"

Diffraction Limit of 1 inch lens with f = 20 cm?

Ray Tracing: Overview

- Setup: Launch a Fan of Rays (eg. Fill FOV and Pupil)
- Loop On Rays
 - Loop On Elements (Like Matrix But No Approximations)
 - * Translation (Straight–Line Propagation)
 - * Refraction or Reflection (Interfaces)
 - Close (End the Ray Calculation)
- Report (eg. Spot Size vs. Field Position)
- Homework: Try it (OSLO.edu).

Two Simple Lenses

- Separation: $f_1 + f_2$
- Microscope: $s = f_1$, $s' = f_2$ as shown Magnification $m = -\frac{f_2}{f_1}$
- Telescope: $s \to \infty$, $s' \to -\infty$ Angular Magnification: $m_{\alpha} = 1/m$ Which way do the plano-convex lenses go?

Infinity-Corrected Microscope

Infinity-Corrected Microscope

Stops, Pupils and Windows

- Aperture Stop Limits Light Collection
- Aperture Stop Determines Diffraction Limit
- Field Stop Limits Field of View

Numerical Aperture (NA)

 $NA = n\sin\theta$ $NA' = n'\sin\theta'$

Specifically, In Air...

$$NA = \sin \theta$$
 $NA' = \sin \theta'$

n is the index of refraction of the medium, not the lens.

Brightfield Microscopy

Infinity-Corrected Microscope

f/# and NA

