Optics for Engineers
 Week 2

Charles A. DiMarzio
EECE-4646
Northeastern University

Jan 2024

Week 2 Agenda

- One Lens (Simple Lens)
- Curved Mirrors Briefly
- Camera Lens, Magnifier, 1:1 Relay
- Two Lenses
- Microscope, Telescope

"High-School Optics"

"High-School Optics Rules"

- Find front and back focal points, F and F^{\prime}, located f in front of, and in back of, the lens.
- Trace the ray from the object arrow parallel to the axis, refracting out through the back focal point.
- Trace the ray from the object arrow through the front focal point, out parallel to the axis.
- They intersect at the image.
- Check by tracing the ray through the center of the lens which does not refract.

Thin Lens in Air

- Making The Lens (We Still Have Some Choices)

$$
\frac{1}{f}=\frac{1}{f^{\prime}}=P_{1}+P_{2}=\left(n_{\ell}-1\right)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

- Using the Lens

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad m=-\frac{s^{\prime}}{s}
$$

"The AP Version"

Share the Bending

Take-Away Message

- Share the Bending for Best Aberration
- Watch Principal Planes
- IR Detector Lens Example

z, Axial Position
A. Correct Orientation

z, Axial Position
B. Reversed

Reducing Aberrations

In Practice

- Close Object (Large Magnification): Plano-Convex with Plano Side toward Object
- Distant Object (Small Magnification): Plano-Convex with Convex Side toward Object
- Object and Image Distances Equal ($|m| \approx 1$): Biconvex

Some Lens Applications

- Camera Lens
- Magnifier
- Simple Microscope
- 1:1 Relay

Camera Lens

In Class: $x^{\prime}=35 \mathrm{~mm}, x=500 \mathrm{~m}, s=1 \mathrm{~km}, f=$?

Telescope

$5 x$ (angular) 1inch optics. $f_{1}=, f_{2}=$, image of lens 1 ?

Magnifier

- Goal is upright image, magnified.
- Where is object? Image?
- Write the equation for s, s^{\prime}, f

Large Reflective Optics

"Every Material that Transmits $10 \mu \mathrm{~m}$ Light is Expensive." Not Completely True, but Close.

Using Snell's Law Exactly

- Example: Single Convex Air-to-Glass Interface
- Paraxial Rays Follow Small-Angle Approximation
- Edge Rays May Focus Quite Differently
- Rays Do Not Intersect at a Single Point (or at all in 3D)
- Large "Shot Pattern" at "Paraxial" Focus
- "Best" Focus Translated and Depth of Focus Increased

Complete Ray Trace

z, Axial Position
Expanded View Near Image

Looking Ahead: Diffraction

- Diffraction Theory (Ch. 8) Predicts a Minimum Spot Size
- Rooted in Fundamental Physics
$-\approx \frac{\lambda}{D_{\text {pupil }}} z$
- Ray Tracing Result Below this Limit is "Good Enough"
- Characterized as "Diffraction-Limited"
- Larger Ray-Tracing Result Indicates Degraded Imaging
- Can Characterize Roughly by "XDL"

Diffraction Limit of 1 inch lens with $f=20 \mathrm{~cm}$?

Ray Tracing: Overview

- Setup: Launch a Fan of Rays (eg. Fill FOV and Pupil)
- Loop On Rays
- Loop On Elements (Like Matrix But No Approximations)
* Translation (Straight-Line Propagation)
* Refraction or Reflection (Interfaces)
- Close (End the Ray Calculation)
- Report (eg. Spot Size vs. Field Position)
- Homework: Try it (OSLO.edu).

Two Simple Lenses

- Separation: $f_{1}+f_{2}$
- Microscope: $s=f_{1}, s^{\prime}=f_{2}$ as shown Magnification $m=-\frac{f_{2}}{f_{1}}$
- Telescope: $s \rightarrow \infty, s^{\prime} \rightarrow-\infty$

Angular Magnification: $m_{\alpha}=1 / m$ Which way do the plano-convex lenses go?

Infinity-Corrected Microscope

Camera at field stop: Chip $=1 \mathrm{~cm}$, Tube lens $f_{\text {tube }}=200 \mathrm{~mm}$, $m=10 . f_{1}=$?, $F O V=$?. Pixel on object?

Infinity-Corrected Microscope

Camera at field stop: Chip $=1 \mathrm{~cm}$, Tube lens $f_{\text {tube }}=200 \mathrm{~mm}$, $m=10 . f_{1}=20, F O V=1 \mathrm{~cm} / 10$. Pixel on object. $F O V / 1000=1 \mu \mathrm{~m}$

Stops, Pupils and Windows

- Aperture Stop Limits Light Collection
- Aperture Stop Determines Diffraction Limit
- Field Stop Limits Field of View

Numerical Aperture (NA)

$$
N A=n \sin \theta \quad N A^{\prime}=n^{\prime} \sin \theta^{\prime}
$$

Specifically, In Air...

$$
N A=\sin \theta \quad N A^{\prime}=\sin \theta^{\prime}
$$

n is the index of refraction of the medium, not the lens.

Brightfield Microscopy

Infinity-Corrected Microscope

Camera at field stop: Chip $=1 \mathrm{~cm}$, Tube lens $f_{\text {tube }}=200 \mathrm{~mm}$, $m=10 . f_{1}=20, F O V=1 \mathrm{~cm} / 10$. Pixel on object. $F O V / 1000=1 \mu m$ $N A=0.75$. Aperture Stop? Exit Pupil?

f/\# and NA

