Homework 5

Deadline - 04/02/2024
March 28, 2024

1 Problem I

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m . Being in orbit, this telescope avoids the degrading effects of atmospheric distortion on its resolution.

1. What is the angle between two just-resolvable point light sources (perhaps two stars)? Assume an average light wavelength of 550 nm . ($\mathbf{1 0}$ Marks)
2. If these two stars are at the 2 million light year distance of the Andromeda galaxy, how close together can they be and still be resolved? (A light year, or ly, is the distance light travels in 1 year.) ($\mathbf{1 0}$ Marks)

2 Problem II

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send a beam of white light through it to a screen 2.00 m away. (See the figure below)

1. Find the angles for the first-order diffraction of the shortest and longest wavelengths of visible light (380 and 760 nm , respectively). (10 Marks)
2. What is the distance between the ends of the rainbow of visible light produced on the screen for first-order interference? (10 Marks)

Figure 1: The diffraction grating considered in this example produces a rainbow of colors on a screen a distance $\mathbf{x}=\mathbf{2 . 0 0} \mathbf{m}$ from the grating. The distances along the screen are measured perpendicular to the x-direction. In other words, the rainbow pattern extends out of the page. In a bird's-eye view, the rainbow pattern can be seen on a table where the equipment is placed.

3 Problem III

1. Monochromatic light from a He-Ne laser $(\lambda=632.8 \mathrm{~nm})$ is incident normally on a diffraction grating with 6,000 slits per cm . Find the angles of the first-, second- and third-order maxima. (15 Marks)
2. A mixture of red light $\left(\lambda_{R}=650 \mathrm{~nm}\right)$ and blue light $\left(\lambda_{B}=450 \mathrm{~nm}\right)$ is normally incident on a compact disk. If the distance between the ridges on the CD is $1.6 \mathrm{e}-6 \mathrm{~m}$, what are the angles for the first- and second-order maxima for both wavelengths? ($\mathbf{1 5}$ Marks)

4 Problem IV

Which telescope is capable of the greater resolution; the Keck telescope at Mauna Kea, Hawaii, or the radio telescope at Arecibo, Puerto Rico? Assume the following characteristics: (a) the Keck telescope has a diameter of 10 m
and is designed for visible light (wavelength of 600 nm), and (b) the Arecibo telescope has a diameter of 305 m and is designed to detect radio waves with a wavelength of 0.75 m . ($\mathbf{1 5}$ Marks)

5 Problem V

Impressionist painter Georges Seurat created paintings made up of a huge number of dots of different colors(See figure below) - each about 1.50 mm in diameter - a technique called divisionism or pointillism. Assuming the pupil in your eye has a diameter of 1.50 mm and the average wavelength is 500 nm , how far away would you have to stand so you would not be able to discern individual dots? (15 Marks)

The Circus - 1890-91

Figure 2: Painting by Georges Seurat

