EECE4646— OPTICS FOR ENGINEERS— Spring 2024

Syllabus

INSTRUCTOR:	Charles A. DiMarzio, Associate Professor
	Electrical and Computer Engineering
	Lab: 352 Egan
	Office: 302 Stearns
	Mail: 409 Dana
	Northeastern University
	Boston, Massachusetts 02115
	Phone: 617–373–2034
	Electronic Mail: dimarzio@ece.neu.edu
	Course Website:
	http://www.ece.neu.edu/courses/eece4646/dimarzio/
	Faculty Website:
	http://www.ece.neu.edu/faculty/dimarzio/
	Research Lab Website:
	http://www.ece.neu.edu/groups/osl

OFFICE HOURS:	TBD
	Feel free to email questions as well.

TEXT:	Reference only:
	DiMarzio, Charles A., Optics for Engineers, CRC Press.
	2011.
	(http://www.crcpress.com/product/isbn/9781439807255)
	After trying for many years to find a suitable text for
	this course, I decided to write one. We are using it this
	semester for the first time. Please report any errors, any
	areas that you find difficult or confusing, and any other
	comments you may have.

	25 %	on homework (Equal weight on best $n-1$
		of n assignments)
CDADING.	20 %	on mid-term exam
GRADING:	25 %	on project
	20 %	on final exam.
	10 %	on participation

12515
syl:1 — 20 December 2023

EXAMS:	Two exams will be given, one at the middle and one	
	during finals week.	
PROJECTS:	A list of suggested projects will be distributed. Each	
	project must involve some research in the literature and	
	some independent work. Reviews of the literature alone	
	are not acceptable. If you have your own idea for a	
	project, I would be happy to consider it. I will suggest	
	other projects during class as they arise in the lectures.	
HOMEWORK:	Homework Assignments will be available on the course	
	website. Collaboration among students on homework is	
	acceptable and encouraged. Group submissions will be	
	accepted from groups of two students, and a single grade	
	assigned for both members of the group. Nevertheless,	
	it is the responsibility of each student to have a good	
	understanding of each problem.	
PARTICIPATION:	To earn a good grade for participation, attend class reg-	
	ularly, be well–prepared for the topic of the day, partici-	
	pate in discussions, speak up when you have a question,	
	discuss your project with me.	

Tentative Schedule

1	9,12 Jan	ADMINISTRIVIA. INTRODUCTION; — History, the spectrum, perception of color, specular and diffuse reflection, Maxwell's Equations, the wave equation, Fermat's Principle. GEOMETRIC OPTICS: Reflection and refraction. Total internal reflection (Snell's window and fibers). Retrore-
		flectors.

2	16,19 Jan	GEOMETRIC OPTICS: One lens. two lenses. Lens shapes and aberrations. Apertures (Aperture stops, f/number, NA, field stops). Ray tracing. Homework: TBD.
---	-----------	--

3	23,26 Jan	CAMERAS: Pixels, bit depth, speed, color, hyperspec- tral. Homework: TBD.
---	-----------	---

4 30 Jan,	, 2 Feb (PW) POLAR Malus L Term Pr Email a Homew	IZATION: Devices, Eigenvectors, Analysis. aw. roject: Select topic. Do a literature search. short paragraph. rork: TBD.
-----------	--	--

5	6, 9 Feb	POLARIZATION: Fresnel Reflection, Brewster's Angle. T/R Beamsplitter. LCD Display. Partial polarization, briefly.
---	----------	---

6 13, 16 Feb	INTERFERENCE: Coherent and Incoherent light. Mach–Zehnder interferometer. MIDTERM EXAM: In class 16 Feb. Term Project: Plan for implementation.
	Homework: TBD.

7 20,23 Feb	INTERFERENCE: Doppler lidar. The Fabry–Perot — laser cavities and frequency. Multi–layer coatings. Reading: 7.
-------------	--

8	27 Feb, 1 Mar	DIFFRACTION: Fourier optics. Slits and apertures, Gratings. Apertures, square, circular, Gaussian. Homework: TBD.
---	---------------	--

Monday 4 Mar to Friday 9 Mar — Spring Break

Laser cavities and beam size. Fiber communication Term Project: Interim report. Homework: TBD.	9
--	---

10	19, 21 Mar	RADIOMETRY: coherent and incoherent sources. Quantities and units. Photometry. Homework: TBD.

11 16, 29 Mar RADIOMETRY: The black body spectrum Cameras. Solar energy. Polar bears.	. Thermal
---	-----------

12 2,5 Apr	TBD: Homework: TBD.
-------------------	------------------------

13	9, 12 Apr	TBD:

1316 AprTBD: Oral Reports?

Project Due TBD

Final Exam: TBD

Grades Due to Registrar on Monday 29 April at 9:00AM.