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Gaussian Beams

• Applications

– Many Laser Beams

– Minimum–Uncertainty

– Simple Equations

– Good Approximation

– Extensible (e.g. Hermite–

Gaussian)

• Equations

– Solution of Helmholz

Equation

– Solution to Laser Cavity

– Kogelnik and Li, 1966

– Spherical Gaussian

Waves

– “Gaussians Are Forever”

• Imaginary Part of Field

– Gaussian Profile

– Spherical Wavefront

• Focusing and Propagation

– Simple Equations

– Relation to ABCD Matrix
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Derivation (1)

• Spherical Wave and Paraxial Approximation

Esphere =

√
Psphere

4π

ejk
√
x2+y2+z2√

x2 + y2 + z2
≈
√
Psphere

4πz
ejkzejk

x2+y2

2z

• Radius of Curvature = z: Substitute Complex q

E =

√
Psphere

4π

ejk
√
x2+y2+q2√

x2 + y2 + q2
≈
√
Psphere

4π

1

q
ejkqe

jkx
2+y2

2q

• Separate Real and Imaginary Parts of q in Exponents

E ≈
√
Psphere

4π

1

q
ejkqe

jk
(
x2+y2

)
< 1

2qe
−k
(
x2+y2

)
= 1

2q
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Derivation (2)

• Curvature and Gaussian Profile

e
jk
(
x2+y2

)
< 1

2q = e
jkx

2+y2

2ρ e
−k
(
x2+y2

)
= 1

2q = e
−kx

2+y2

2b′

• Definitions

q = z+ jb
1

q
=

1

ρ
−
j

b′

ρ =
z2 + b2

z
b′ =

z2 + b2

b
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Gaussian Beam Parameters

• Beam Radius, w

w2 =
2b′

k
b′ =

πw2

λ
=
πd2

4λ

e
−k
(
x2+y2

)
= 1

2q = e
−x2+y2

w2

• Curvature (Prev. Pg.)

e
jk
(
x2+y2

)
< 1

2q = e
jkx

2+y2

2ρ

• Gouy Phase

1

q
=

1

z+ jb
=

1√
z2 + b2

e−j arctan
z
b

=
λ

b

1√
πw2

e− arctan z
b = e−jψ

• Linear Phase

ejkq = ejk(z+jb) = ejkze−kb

• Normalized Complete Equation

E ≈
√

2P

πw2
e− arctan z

bejkze
jkx

2+y2

2ρ e
−x2+y2

w2
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Physical Meaning of Parameters

• Distance from Waist, z

z = <q

• Rayleigh Range, b → d0

b = =q b =
πw2

0

λ
=
πd20
4λ

E ≈
√

2P

πw2
ejkzejk

x2+y2

2ρ e−
x2+y2

w2 e−jψ

• Radius of Curvature, ρ

Dashed Black Line

1

ρ
= <

1

q

• Beam Diameter, d
Black Diamonds

1

b′
= −=

1

q
b′ =

πw2

λ
=
πd2

4λ
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Gouy Phase

• Phase Term

ψ = arctan
z

b

• See White Circle

• Plot is =E
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The Really Useful Equations

• Beam Diameter, d

d = d0

√
1+

z2

b2
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• Near Field dg ≈ d0
• Far Field dd ≈ 4

π
λ
d0
z

• Radius of Curvature, ρ

ρ = z+
b2

z
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• Near Field ρ ≈ b2/z → ∞
• Far Field ρ ≈ z → ∞
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Six Questions

• Four Parameters for q

– z, Distance from Waist

– b or d0, Waist Diameter

– ρ, Radius of Curvature

– b′ or d Local Diameter

(at z)

• Two Independent Numbers

for Complex q

• Pick Any Pair

• Solve for the Rest

• Practical Problems for

Each Pair

z and b known
ρ and b′

z and b′

ρ and b
z and ρ
b and b′
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Question 1: Known z and b

• Sample Application: Starting with a collimated (plane–wave)

Gaussian, what are d and ρ at distance, z?

• Example: Green Laser Pointer: λ = 532nm.

• Solution

b =
πd20
4λ

= 5.91m ρ = z+
b2

z
d = d0

√
1+

z2

b2

(
4
π
λ
d0
z
)

z = 3m: ρ = 14.6m d = 2.2mm (1mm)
z = 30m: ρ = 31.2m d = 10.4mm (10.2mm)
z = 376,000km: ρ = 376,000km d = 127km (127km)
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Question 2: Known ρ and b′

• Sample Application: What is the waist location for a focused
beam?

• Example: Laser Radar, λ = 10.59µm, d = 30cm, b′ = 6.6km

• Solution

ρ = −f b′ = πd2/ (4λ)
1

q
=

1

ρ
−
j

b′

1

q
=

1

ρ
−
j

b′
q =

1
ρ

1
ρ2

+ 1
b′2

+
j
b′

1
ρ2

+ 1
b′2

z = <q = −
f

1+
(
4λf
πd2

)2 b = =q =
b′

b′

f2
+1

d20 =
d2

1+
(
πd2

4λf

)2
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Question 2 Results
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Question 2 Summary

• Maximum Distance to Waist: (−z)max = b/2 at f = b

• Two Ways to Make a Waist at any (−z) < b/2

• Near Field of d0; Strong Focusing:

– (−z) ≈ −ρ = f

– d0 = 4
π
λ
d

• Depth of Focus: Quadratic in f

zc = 2b1 =
8f2λ

πd2
1(

4λf
πd2

)2
+1

• Collimated Beam as f → ∞
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Geometric and Diffraction
Diameters

• Diameter at Any Distance

d2 = d2g + d2d

• Simple Calculation

• Intuitive

• Valid for Gaussians

• Geometric Optics

dg = d
|z − f |
f

• Diffraction Limit

dd =
4

π

λ

d
z

• Fraunhofer Zone

d0 ≈ dd =
4

π

λ

d
z
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Question 3: Known z and b′

• Sample Application: What lens to make a waist at −z for
Negative z? How big is the waist?

• Example: Endoscope: λ = 1.06µm, waist at −z = 1mm with
d never > 100µm

• Solution: b′ = πd2/(4λ)

b′ =
b2 + z2

b
Solve for b only if (z < b′/2)

b =
b′ ±

√
b′2 − 4z2

2
ρ = z+

b2

z

• Typically 2 Solutions
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Endoscope Focusing

• Fixed Diameter at Source d = 100µm, z = 1mm

b′ =
πd2

4λ
= 7.4mm z = −1mm

b =
b′ ±

√
b′2 − 4z2

2
b = 3.7047mm± 3.5672mm

• Options

b = 137µm d0 = 13.6µm or b = 7.27mm d0 = 99µm

• Probably Choose the First

– High Irradiance

– Small Depth of Field
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Question 4: Known ρ and b

• Sample Application: How long must the laser be to get a

given d0 with a mirror of curvature ρ?

• Example: Later

• Solution: Solve for z if d0 Small Enough

ρ =
z2 + b2

z
(2b < ρ)

z =
ρ±

√
ρ2 − 4b2

2

d = d0

√
1+

z2

b2
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Question 5: Known z and ρ

• Sample Application: How large is the beam from a laser

cavity?

• Example: Later

• Solution: Solve for b

ρ =
z2 + b2

z
(ρ > z)

b =
√
ρz − z2 b = z

√
ρ

z
− 1 or q = z+ jb

d0 =

√
4λb

π
d = d0

√
1+

z2

b2
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Question 6: Known b and b′

• Sample Application: How do we launch a beam of diameter,

d, into a fiber with diameter, d0?

• Example: Beam diameter, d = 15µm and desired diameter,

d0 = 5µm

• Solution: Solve for z

b′ =
z2 + b2

b
(b′ > b of course: d > d0)

z = ±
√
bb′ − b2 ρ = z+

b2

z
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Fiber Launch

• Equations

z = ±
√
bb′ − b2 ρ = z+

b2

z

• Inputs for d = 15µm and d0 = 5µm

b =
πd20
4λ

= 13µm b′ =
πd2

4λ
= 118µm

• Results

z = −
√
bb′ − b2 = −37µm ρ = z+

b2

z
= −41.7µm

• Lens: f = −ρ = 41.7µm, with Dlens > 15µm, (<f/3)

• Distance: −z = 37µm (A Little Shorter than f)
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Gaussian Beam Characteristics

• The complex radius of curvature can be manipulated to solve
problems of Gaussian beam propagation.

• The complex radius of curvature and its inverse contain four
terms, which are related in such a way that only two of them
are independent.

• Given two parameters it is possible to characterize the Gaus-
sian beam completely. Six examples have been discussed.

• Solutions are at worst quadratic, producing zero, one, or two
solutions.

• Other, more complicated problems can also be posed and
solved using this formulation.
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Gaussian Beam Propagation

• Propagation through Free Space (q = z+ jb)

q (z2) = q (z1) + z2 − z1

• Propagation through a Lens (1q = 1
ρ − j

b′)

1

s
+

1

s′
=

1

f

1

ρ
+

1

−ρ′
=

1

f

1

ρ′
=

1

ρ
−

1

f

1

q′
=

1

q
−

1

f
or

1

q′
=

1

q
− P
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Matrix Optics Again

• General

qout =
Aqin+B

Cqin+D

• Translation

q2 =
q1 + z12
0+ 1

= q1 + z12

• Lens

q′ =
q+0

−P
n′q+

n
n′

1

q′
=

n

qn′
−
P

n′

– In Air
1

q′
=

1

q
− P =

1

q
−

1

f
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Refraction at a Surface

• General

q′ =
q+0

n−n′
n′R q+

n
n′

1

q′
=
n− n′

n′R
+

n

qn′

• Planar Surface

q′ = q
n′

n

• Rayleigh Range in a Medium

b =
πd20
4λ/n
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Propagation Example with a
Lens: F to F ′

• Waist at Front Focal Plane, F

q0 = jb0 b0 =
πd20
4λ

• Three Steps

q1 = q0 + f1
1

q′1
=

1

q1
−

1

f1
q2 = q′1 + f1

• Result: <z2 = 0 (Waist)

q1 = jb0 + f1 q′1 = −f1 + j
f21
b0

q2 =
jf21
b0

d2 =
4

π

λ

d0
f1 (Fourier Transform)
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Propagation Example
Continued: A Second Lens (f3)

• Relay Telescope

d4 =
4

π

λ

d2
f3 =

f3
f1
d0

• Matrix Optics: First Lens

M02 = T12L1T01 =

(
1 f1
0 1

)(
1 0

− 1
f1

1

)(
1 f1
0 1

)
=

(
0 f1

− 1
f1

0

)

q2 =
Aq0 +B

Cq0 + q0
=

0+ f

−1
f q0 +0

= −
f2

q0
d2 =

4

π

λ

d0
f1

• Both Lenses (f3 = f1): Inverting 1:1 Telecentric System

M04 = M24M02 =

(
0 f3

− 1
f3

0

)(
0 f1

− 1
f1

0

)
=

(
−1 0

0 −1

)

q4 =
Aq0 +B

Cq0 +D
=

−q0 +0

0− 1
= q0
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Two 1:1 Relays

• Telecentric (Previous Page)

M04 = M24M02 =(
0 f3

− 1
f3

0

)(
0 f1

− 1
f1

0

)
=

(
−1 0

0 −1

)

• Afocal

q4 = q0 = jb0

– Plane Wave

– No Field Curvature

– ρ→ ∞

• Single Lens

(4–f Configuration)

Mac = TbcLbTab =

(
1 2f

0 1

)(
1 0

−1
f 1

)(
1 2f

0 1

)
=

(
−1 0

−1
f −1

)

qc =
Aqa+B

Cqa+D
=

−1qa+0

−1
f qa − 1

=
1

1
f + 1

qa

– ρ = f
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Summary of Gaussian Beam
Propagation

• Once two parameters of a Gaussian beam are known, then

it’s propagation can be analyzed using simple equations for

translation, refraction, and focusing.

• Translation changes the beam size and curvature. It is rep-

resented by adding the distance to q.

• Refraction through a lens changes the curvature, but keeps

the beam diameter constant. It is represented by subtracting

the optical power of the lens from the inverse of q.

• Refraction through a dielectric interface changes the curva-

ture and scale factor of q.

• These equations can be generalized using the ABCD matrices

developed for geometric optics.
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The Collins Chart

Lines of Constant z (vertical) and Constant b (horizontal)

Curves of Constant b′ (circles) and Constant ρ (semicircles)

Now Mostly a Visualization Aid

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

z, Axial Distance

C
on

fo
ca

l P
ar

am
et

er

• Translation (Horizontal)

• z Changes, b Doesn’t

• Focusing (Along Circles)

• ρ Changes, d & b′ Don’t
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Two 1:1 Relays on Collins Chart
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A. Afocal Telescope B. Single Lens
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Minimum Beam Diameter for
Distance z12

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

z, Axial Distance

C
on

fo
ca

l P
ar

am
et

er

Mar. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides9r1–30



Waist at −z for diameter, d

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

z, Axial Distance

b,
 C

on
fo

ca
l P

ar
am

et
er

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

z, Axial Distance

C
on

fo
ca

l P
ar

am
et

er

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

z, Axial Distance

C
on

fo
ca

l P
ar

am
et

er

B. No Solution C. One Solution D. Two Solutions
|z| > b′/2 |z| = b′/2 |z| < b′/2

• Question 3

b′ =
b2 + z2

b
Solve for b only if (z < b′/2)

b =
b′ ±

√
b′2 − 4z2

2
ρ = z+

b2

z
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Stable Laser Cavity Design

A. Flat Output Coupler

B. Flat Rear Mirror

C. Confocal Resonator
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Steady State in Laser Cavity

• The amplitude after a round trip is unchanged. This means

that any loss (including power released as output) must be

offset by corresponding gain. (Gain Saturation)

• The phase after a round trip must be unchanged. We dis-

cussed, in our study of interference, how this requirement on

the axial phase change, ejkz, affects the laser frequency.

• The beam shape must be unchanged, so that the phase and

amplitude is the same for all x and y. This is the subject to

be considered in this section.
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Design Problem

• Carbon Dioxide Laser: P(20), λ = 10.59µm

• Beam Output: Collimated, 5mm Diameter

• Cavity Length: 1m (Probably because of Gain)

• Solution

– Collimated Output: Flat Output Coupler

– Rear Mirror to Match Curvature at z = −1m

b = 1.85m ρ = −4.44m d = 5.7mm

– Rear Mirror Concave, ρ = −4.44m

– Diameter Larger than d = 5.7mm (Typically 1.5X)
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Stable Cavity Examples

Output toward Bottom

A. Flat Output Coupler B. Flat Rear Mirror

C. Confocal Resonator D. Focusing Cavity
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Laser Cavity on the Collins
Chart

Given ρ1 ρ2 and z12

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

z, Axial Distance

b,
 C

on
fo

ca
l P

ar
am

et
er

Mar. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides9r1–36



More Complicated Cavities

• Ring Laser with Focusing Lens

• Intracavity Lens (Potential Loss)

• Many Other Configurations
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Matrix Optics for Stable Cavities

• Round–Trip Equation

qout = qin

• Need to Solve This:

q =
Aq+B

Cq+D
Cq2 + (D −A)q −B = 0

• Result (Need Imaginary Solutions)

q =
A−D ±

√
(A−D)2 +4CB

2C

(A−D)2 +4CB < 0
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Stability Condition

• Argument of Square Root Must be Negative

(A−D)2 +4CB < 0

• Determinant Condition (n = n′ on Round Trip)

AD − CB = 1

• Result

(D −A)2 +4DA < 4 (D+A)2 < 4
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Summary of Stable Cavity
Design

• Stable cavities or stable optical resonators have mirrors and

possibly other optical elements that cause a Gaussian beam

to replicate itself upon one round trip.

• Resonator design can be accomplished using Gaussian beam

propagation equations.

• Most cavities will support only one Gaussian beam, and the

beam parameters are determined by the curvature of the

mirrors and their spacing along with the behavior of any in-

tervening optics.

• Matrix optics can be used to determine the round–trip matrix,

which can be used to find the Gaussian beam parameters.

• The Collins chart can help to evaluate the stability of a laser

cavity.
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Hermite–Gaussian Modes

• Mode Definitions (Solutions of Helmholz Equation)

hmn (x, y, z) = hm (x, z)hn (y, z)

• One–Dimensional Functions with Hermite Polynomials, H

hm (x, z) =
(
2

π

)1/4√ 1

2mm!w
Hm

(
x

w

)
e
x2

w2e
jkx2

2ρ ejψm

• Hermite Polynomials

H1 (x) = 1 H2 (x) = 2x

Hm+1 (x) = 2xHm (x)− 2 (m− 1)Hm−1 (x)

• Gouy Phase for Hermite–Gaussian Modes

ψm =
(
1

2
+m

)
arctan

z

b
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Some Hermite–Gaussian Modes

0:0 0:1

1:0

(0:1) + i (1:0) = Donut

1:1 1:3 2:0 2:1

2:3 5:0 5:1 5:3
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Expansion in Hermite–Gaussian
Modes

• Expand Field in Hermite–Gaussian Modes

• Ortho–Normal Basis Set

E (x, y, z) =
∞∑

m=0

∞∑
n=0

Cmnhmn (x, y, z)

• May Take a Lot of Terms (but choose w wisely)

• Power in Each Mode (and Phase)

Pmn = CmnC
∗
mn φ = 6 Cmn
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Finding the Coefficients, C
for Given E(x, y, z)

∫ ∞

−∞

∫ ∞

−∞
E (x, y, z)h∗m′n′ (x, y, z) dx dy =

∫ ∞

−∞

∫ ∞

−∞

∞∑
m=0

∞∑
n=0

Cmnhmn (x, y, z)h
∗
m′n′ (x, y, z) dx dy

∫ ∞

−∞

∫ ∞

−∞
E (x, y, z)h∗ (x, y, z) dx dy =

∞∑
m=0

∞∑
n=0

Cmn

∫ ∞

−∞

∫ ∞

−∞
hmn (x, y, z)h

∗
m′n′ (x, y, z) dx dy

∫ ∞

−∞

∫ ∞

−∞
hmn (x, y, z)h

∗
m′n′ (x, y, z) dx dy = δm,m′δn,n′ Ortho–Normality

Cm′n′ =
∫
−∞

∫
∞
E (x, y, z)h∗m′n′ (x, y, z) dx dy.
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Picking the Best Waist Size

• H–G Expansion Works for Any w

• But it Might Not Converge Nicely

• Pick the Best w to Maximize Power in TEM00 Term

C00 = min [C00 (w)]

C00 (w) =
∫
−∞

∫
∞
E (x, y, z)h∗00 (x, y, z) dx dy
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Expanding Uniform Circular
Wave in H–G Modes
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Coupling Equations and Mode
Losses for Finite Apertures

• Integration over Finite Aperture

Kmnm′n′ =
∫ ∫

aperture
hmn (x, y, z)h

∗
m′n′ (x, y, z) dx dy = δm,m′δn,n′


C′
00

C′
01

C′
10
...

 =


K0000 K0001 K0010 . . .

K0100 K0101 K0110 . . .

K1000 K1001 K1010 . . .
... ... ... . . .



C00

C01

C10
...
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Transverse Mode Beating:
Mode Frequencies

• Round Trip (Additional Phase Shift beyond Chapter 7)

2k`+2(1+m+ n)
(
arctan

z2
b

− arctan
z1
b

)
= 2πN

2
f (m,n,N)

c
`+

1

π
(1 +m+ n)

(
arctan

z2
b

− arctan
z1
b

)
= N

f (m,n,N) = N
c

2`
−

c

2`
(1 +m+ n)

arctan z2
b − arctan z1

b

π
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Transverse Mode Beating:
Mode Control

• Transverse Mode Beat Frequency

f (1, n,N)− f (0, n,N) =
c

2`

arctan z2
b − arctan z1

b

π

• Carbon Dioxide Laser b = 1.85m, z = 1m

f (1, n,N)−f (0, n,N) =
c

2m

(
arctan 1m

1.85m − arctan 0m
1.85m

)
π

= 24MHz

• Solution: Include Appropriate Aperture

– Suppress Higher Order Transverse Modes

– K0000gρ1ρ2 > 1

– Kmnmngρ1ρ2 < 1 for m 6= 0, n 6= 0
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Summary of H–G Modes

• Hermite–Gaussian modes (Equation ) form an orthogonal basis set of
functions which can be used to describe arbitrary beams.

• The beam can be expanded in a series.

• Coefficients of the expansion can be calculated.

• Each mode maintains its own profile with a size w and radius of curvature,
ρ given by the usual Gaussian–beam equations.

• The choice of w in Equation is arbitrary, but a value chosen badly can
lead to poor convergence of the series expansion.

• Higher order modes have increased Gouy phase shifts as shown in Equa-
tion .

• Beam propagation problems can be solved by manipulating the coeffi-
cients with appropriate Gouy phase shifts.

• Apertures can be treated using coupling coefficients which can be com-
puted.

• Higher–order transverse modes in a laser can mix with each other to
produce unwanted mixing, or beat, signals.

• The higher–order modes can be eliminated by placing an appropriate
aperture inside the laser cavity.
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