Optics for Engineers Chapter 6

Charles A. DiMarzio Northeastern University

Feb. 2014

Overview of Polarized Light

- Fundamentals
- Devices (What They Do)
- Physics (How They Do It)
- Interfaces
- Jones Matrices (Bookkeeping)
- Coherency Matrices (Partial Polarization)
- Mueller Matrices (More Bookkeeping)

Transverse Waves

• From Ch. 1

$$\mathbf{k} \times \mathbf{E} = -\omega \mathbf{B}$$
 (1) $\mathbf{B} \perp \mathbf{k}$ (2) $\mathbf{B} \perp \mathbf{E}$

(1)
$$B \perp k$$

(2)
$$B \perp E$$

$$\mathbf{k} \times \mathbf{H} = \omega \mathbf{D}$$
 (1) $\mathbf{D} \perp \mathbf{k}$ (1) $\mathbf{D} \perp \mathbf{H}$

(1) D
$$\perp$$
 k

(1)
$$D \perp H$$

$$\mathbf{E} \times \mathbf{B} = \mathbf{S}$$

$$E \times B = S$$
 (2) $S \perp E$ (2) $S \perp B$

(2)
$$S \perp B$$

- Conclusions
 - H, D, k mutually perpendicular (from 1)
 - E, B S mutually perpendicular (from 2)
 - H || B at Optical Wavelengths
 - D || E, k || S Not Required
 - Only Two Numbers Specify Field for Known k

Linear Polarization

Vertical and Horizontal Basis

$$\mathbf{E} = \left[E_v \hat{v} + E_h \hat{h} \right] e^{j(\omega t - kz)}$$

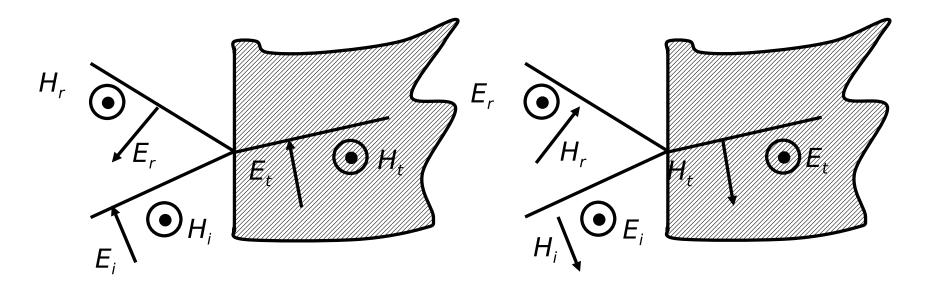
• x, y Basis

$$\mathbf{E} = [E_x \hat{x} + E_y \hat{y}] e^{j(\omega t - kz)}$$

$$\mathbf{H} = \left[-\frac{E_y}{Z} \hat{x} + \frac{E_x}{Z} \hat{y} \right] e^{j(\omega t - kz)}$$

S,P Basis at an Interface

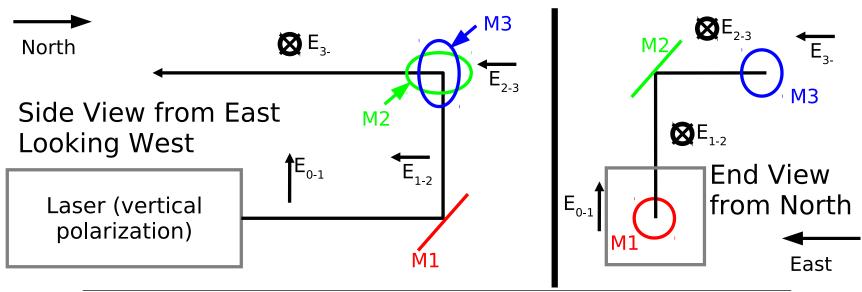
- P Means E Parallel to Plane of Incidence (More Later)
- S Means E Perpendicular (Senkrecht) to Plane of Incidence $\mathbf{E} = [E_s \hat{s} + E_p \hat{p}] \, e^{j(\omega t kz)}$



P Polarization (TM)

S Polarization (TE)

Polarization Labels



Location	k Direction	E Direction	Label
Before M1	North	Up	Vertical
At M1			P
After M1	Up	South	
At M2			S
After M2	West	South	Horizontal
At M3			P
After M3	South	East	Horizontal

Circular Polarization

Right-Hand Circular

$$\mathbf{E}_r = \frac{E_0}{\sqrt{2}} \left[\hat{x} + j\hat{y} \right] e^{j(\omega t - kz)}$$

$$(\mathbf{E})_{TD} = \frac{E_0}{\sqrt{2}} \Re \left[\hat{x} \left(e^{j(\omega t)} + e^{-j(\omega t)} \right) j \hat{y} \left(e^{j(\omega t)} + e^{j(\omega t)} \right) \right]$$
$$= \hat{x} E_0 \sqrt{2} \cos \omega t + \hat{y} E_0 \sqrt{2} \sin \omega t$$

- Viewed from Source, E Rotates Like Right-Hand Screw
- Left-Hand Circular

$$\mathbf{E}_{\ell} = [E_0 \hat{x} - j E_0 \hat{y}] e^{j(\omega t - kz)}.$$

Superposition

General Superposition

$$\mathbf{E} = A_r \frac{1}{\sqrt{2}} \hat{\mathbf{r}} + A_\ell \frac{1}{\sqrt{2}} \hat{\ell} \qquad \text{Circular Basis}$$

$$\mathbf{E} = A_P \frac{1}{\sqrt{2}} \hat{\mathbf{p}} + A_S \frac{1}{\sqrt{2}} \hat{\mathbf{s}} \qquad \text{P,S Basis}$$

• Example: X Polarization in Circular Basis

$$\frac{1}{\sqrt{2}}\hat{\mathbf{r}} + \frac{1}{\sqrt{2}}\hat{\ell} = E_x\hat{x}$$

• Q: What is $E_y \hat{y}$ in a Circular Basis?

Random Polarization

- Random or Unpolarized Light
 - Most Natural Light Is at Least Partially Random...
 - But it Is Harder to Describe

$$\langle E_x \rangle = \langle E_y \rangle = 0$$
 $\langle E_x E_x^* \rangle = \langle E_y E_y^* \rangle = \frac{S}{2} Z$ $\langle E_x E_y^* \rangle = 0$

More on this Later

Polarizing Devices

- Ideal Polarizers
 Pass or Block
- Others Transform
- Linear Polarizer
 - e.g. Pass x, Block y
 - Characterization
 - Direction(x,y, other)
 - * Insertion Loss(Pass Direction)
 - * Extinction(Block Direction)

- The Waveplate (Retarder)
 - Change Relative Phase
 - Characterization
 - * Axis Direction
 - * Phase Difference
 - * Insertion Loss
- The Rotator (Circular Retarder)
 - Rotate Linear Pol.
 - Phase Change E_r vs. E_ℓ
 - Characterization
 - * Rotation Angle or Phase Shift
 - * Insertion Loss

Linear Polarizer

• Input Polarization Example (θ Direction)

$$\mathbf{E}_{in} = E_x \hat{x} + E_y \hat{y} = E_o \left[\cos \left(\theta \right) \hat{x} + \sin \left(\theta \right) \hat{y} \right]$$

Perfect x Polarizer

$$\mathbf{E}_{out} = 1 \times E_x \hat{x} + 0 \times E_y \hat{y} = E_o \cos(\theta) \hat{x}$$

Irradiance

$$|\mathbf{E}_{in}|^2 = E_o^2 \qquad |\mathbf{E}_{out}|^2 = E_o^2 \cos^2 \theta$$

Transmission (Malus Law for This Case)

$$T = \frac{|\mathbf{E}_{out}|^2}{|\mathbf{E}_{in}|^2} \qquad T = \cos^2 \theta$$

Polarizers in "Real Life"

General Equation

$$\mathbf{E}_{out} = \tau_x \times E_x \hat{x} + \tau_y \times E_y \hat{y} \qquad \tau_x \approx 1 \qquad \tau_y \approx 0$$

Insertion Loss

$$1 - |\tau_x|^2$$
 or in dB, $10 \log_{10} |\tau_x|^2$

Extinction

$$|\tau_y|^2$$
 or in dB, $10\log_{10}|\tau_y|^2$

Extinction Ratio

$$|\tau_x|^2/|\tau_y|^2$$

- Good Extinction $\approx 10^{-5}$ or 45dB

Stopped Tue 16 Oct 2012

Eigenvalues and Eigenvectors

- Polarizing devices are "easy to explain" for two states of polarization.
- For each of those states (eigenvectors) the output is the product of the input and a scalar...

$$E_{x:out} = \tau_x E_x$$
 $E_{y:out} = \tau_x E_y$.

- The scalar is the eigenvalue.
- Polarization makes eigenvalues and eigenvectors more easily understandable!
- See section on Jones Matrices for more details.

The Wave Plate

• Input Polarization Example (θ Direction Again)

$$\mathbf{E}_{in} = E_x \hat{x} + E_y \hat{y} = E_o \left[\cos \left(\theta \right) \hat{x} + \sin \left(\theta \right) \hat{y} \right]$$

Half–Wave Plate Eigenvalues

$$au_x = 1$$
 $au_y = -1$

$$\mathbf{E}_{hwp} = E_o\left[\cos\left(\theta\right)\hat{x} - \sin\left(\theta\right)\hat{y}\right] \qquad \angle\mathbf{E}_{out} = -\theta$$

Quarter–Wave Plate Eigenvalues

$$\tau_x = 1$$
 $\tau_y = j$,

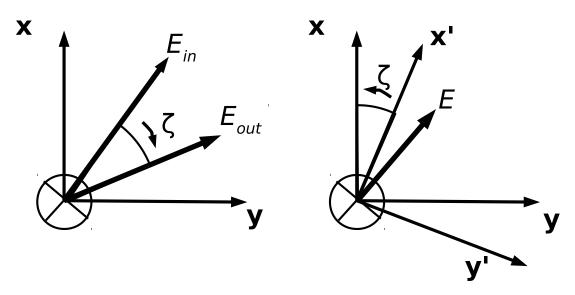
$$\mathbf{E}_{qwp} = E_o \left[\cos \left(\theta \right) \hat{x} + j \sin \left(\theta \right) \hat{y} \right]$$

- Circular Polarization at $\theta = 45^{\circ}$ (Q: Left or Right?)
- Other Waveplates Later

Rotator

General Equation

$$\begin{pmatrix} E_{x:out} \\ E_{y:out} \end{pmatrix} = \begin{pmatrix} \cos \zeta_r & -\sin \zeta_r \\ \sin \zeta_r & \cos \zeta_r \end{pmatrix} \begin{pmatrix} E_{x:in} \\ E_{y:in} \end{pmatrix}$$



Polarization Rotator

Rotation of Coordinates (Later)

Interaction with Materials

- Field $\mathbf{E} = E_0 \hat{x} e^{j\omega t}$
- Force $-e\mathbf{E}$
- Acceleration

$$\frac{d^2x}{dt^2} = -\mathbf{E}e/m - \kappa_x x$$

Differential Equation

$$\frac{d^2x}{dt^2} - \frac{m}{\kappa_x e}x = \mathbf{E}$$

Polarization

$$\mathbf{P}(t) = -n_v ex(t)\hat{x}$$

$$P = \epsilon_0 \chi E$$

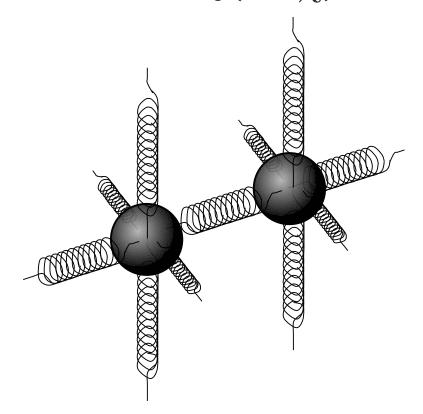
Displacement

$$D = \epsilon_0 E + P = \epsilon E = \epsilon_0 (1 + \chi) E$$

ullet Anisotropic "Springs" (Tensor χ)

$$D = \epsilon_0 E + P =$$

$$\varepsilon \mathbf{E} = \epsilon_0 (1 + \chi) \mathbf{E}$$



Dielectric Tensor

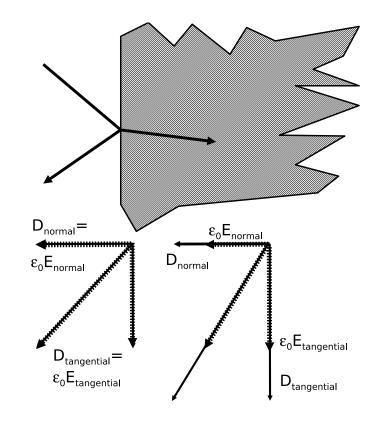
General and Diagonal (Related by Coordinate Transform)

$$\varepsilon = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{pmatrix} \qquad \varepsilon = \begin{pmatrix} \epsilon_{xx} & 0 & 0 \\ 0 & \epsilon_{yy} & 0 \\ 0 & 0 & \epsilon_{zz} \end{pmatrix}$$

- No Coupling Between Orthogonal States
 - In Isotropic Media, $D \parallel E$;
 - In Anisotropic Media for Polarization | Principal Axes
- Coupling Between Orthogonal States (All Other Cases)
 - Resolve Input into Two Components
 - Solve
 - Add Results

Light at an Interface: Boundary Conditions

- Boundary Conditions
 - See Chapter 1
 - Apply to S and P
- ullet Relate E and H
 - Incident
 - Reflected and Transmitted
 - Maxwell's Equations
 - Next Page



$$\nabla \cdot \mathbf{D} = \rho = 0 \qquad \rightarrow \quad \Delta D_{normal} = 0,$$
 (1)

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \rightarrow \Delta E_{tangential} = 0,$$
 (2)

$$\nabla \cdot \mathbf{B} = 0 \qquad \to \quad \Delta B_{normal} = 0 \tag{3}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} = \frac{\partial D}{\partial t} \rightarrow \Delta H_{tangential} = 0$$
 (4)

Feb. 2014

Light at an Interface: Field Relationships (S Pol)

$$\mathbf{E}_i = E_i \hat{x} e^{-jkn_1(\sin\theta_i y + \cos\theta_i z)}$$

Incident Wave

$$\mathbf{H}_i = \frac{E_i}{Z_0/n_1} \left(\sin \theta_i \hat{z} - \cos \theta_i \hat{y} \right) e^{-jkn_1(\sin \theta_i y + \cos \theta_i z)}$$

$$\mathbf{E}_r = E_r \hat{x} e^{-jkn_1(\sin\theta_r y - \cos\theta_r z)}$$

Reflected Wave

$$\mathbf{H}_r = \frac{E_r}{Z_0/n_1} \left(\sin \theta_r \hat{z} + \cos \theta_r \hat{y} \right) e^{-jkn_1(\sin \theta_r y - \cos \theta_r z)}$$

$$\mathbf{E}_t = E_t \hat{x} e^{-jkn_2(\sin\theta_t y + \cos\theta_t z)}$$

Transmitted Wave

$$\mathbf{H}_{i} = \frac{E_{t}}{Z_{0}/n_{2}} \left(\sin \theta_{t} \hat{z} - \cos \theta_{t} \hat{y} \right) e^{-jkn_{2}(\sin \theta_{t} y + \cos \theta_{t} z)}$$

Snell's Law Again: Where the Light Goes

- Boundary Conditions Must Apply at All y (Along Boundary)
- Pick Electric Fields (or Magnetic)
- ullet Exponents Cannot Vary with y (Sine terms equal on prev. page)

$$kn_1 \sin \theta_i = kn_1 \sin \theta_r = kn_2 \sin \theta_t$$

Reflection Angle

$$\theta_i = \theta_r$$

Transmission Angle (Snell's Law)

$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

Fresnel Coefficients: How Much Light Goes Each Way (1)

- Analogy to Transmission Lines
- Magnetic Field Boundary Condtions (S Polarization Only)

$$\frac{E_r}{Z_0/n_1}\cos\theta_i - \frac{E_i}{Z_0/n_1}\cos\theta_i = \frac{E_t}{Z_0/n_2}\cos\theta_t$$

- Eliminate θ_t (Other Approaches Possible)

$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_i \left(\frac{n_1}{n_2}\right)^2} \qquad E_i - E_r = E_t \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i}}{\cos \theta_i}$$

Electric Field Boundary Conditions (S Polarization Only)

$$E_i + E_r = E_t$$

Fresnel Coefficients: How Much Light Goes Each Way (2)

Boundary Condtions (Previous Page)

$$E_i - E_r = E_t \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i}}{\cos \theta_i} \qquad E_i + E_r = E_t$$

Difference Divided by Sum

$$\rho_s = \frac{E_r}{E_i} = \frac{\cos\theta_i - \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}} \qquad \tau_s = 1 + \rho_s$$

• Note that Fields are Not Conserved $(\tau + \rho \neq 1)$

Fresnel Coefficents Summarized

• S Polarization: E_y , H_x , H_z (Just Derived)

$$\rho_s = \frac{E_r}{E_i} = \frac{\cos\theta_i - \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}} \qquad \tau_s = 1 + \rho_s$$

• P Polarization: H_y , E_x , E_z (Trust Me)

$$\rho_p = \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i} - \left(\frac{n_2}{n_1}\right)^2 \cos \theta_i}{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i} - \left(\frac{n_2}{n_1}\right)^2 \cos \theta_i} \qquad \tau_p = (1 + \rho_p) \frac{n_1}{n_2}$$

Air To Glass

$$|\rho_p| = |\rho_s|$$

at
$$\theta = 0^{\circ}$$

Q: Why Abs?

$$|\rho_p| = |\rho_s| = 1$$

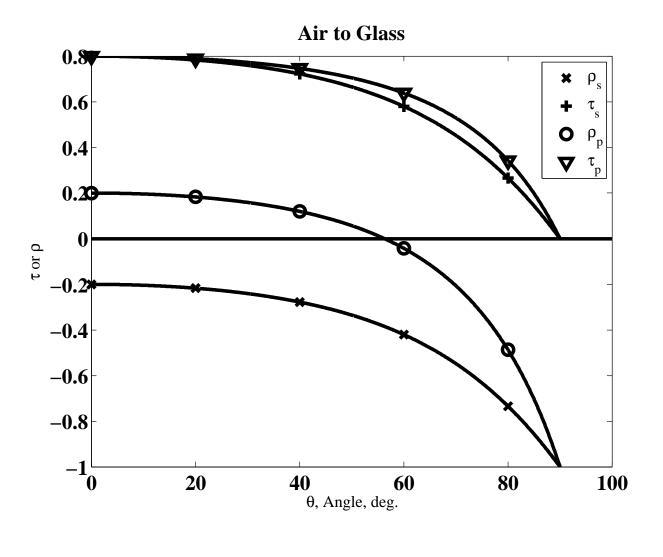
at
$$\theta = 90^{\circ}$$

and

$$\rho_p = 0$$

at
$$\theta \approx 56^{\circ}$$

(Brewster's Angle)

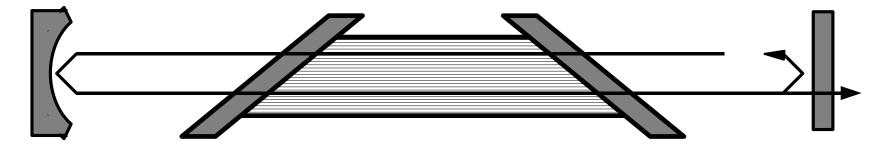


Brewster's Angle

- $\rho_p = 0$ Means No Reflection
- 100% Transmission (Different from $\tau_p = 1$ Q: Why?

$$\tan \theta_B = \frac{n_2}{n_1}$$

Application: Windows in Laser (Polarized Laser)



• Q: What is the Direction of Polarization?

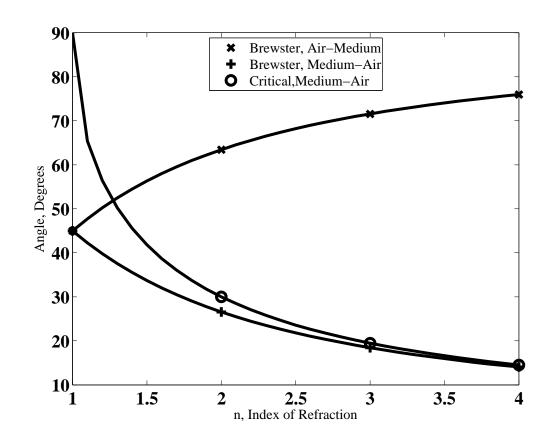
Critical Angle

• Critical Angle $(n_1 > n_2)$

$$\sin \theta_C = \frac{n_2}{n_1}$$

• Brewster's Angle

$$\tan \theta_B = \frac{n_2}{n_1}$$



Irradiance and Power

Irradiance

$$I = \frac{|\mathbf{E}|^2}{Z}, \qquad I = \frac{dP}{dA'} = \frac{dP}{\cos\theta dA}$$

Reflection

$$\frac{I_r}{I_i} = R = \rho \rho^*$$

Transsmision

$$\frac{I_t}{I_i} = T = \tau \tau^* \frac{Z_1 \cos \theta_t}{Z_2 \cos \theta_i} = \tau \tau^* \frac{n_2}{n_1} \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i}}{\cos \theta_i}$$

Conservation

$$T + R = 1$$

Transmission Calculations

In-Practice

- ullet It's easy to make a mistake in calculating au and T
 - Different materials for input and output
 - Different angles for input and output
 - Different relationship to ρ for S and P
- ullet It's easier to calculate R and then get T from conservation

$$T = 1 - R$$

• If you know the phase (or don't care), $|\tau| = \sqrt{T}$.

Fresnel Reflection at Normal Incidence

Reflection

$$R(0) = \left| \frac{(n_2/n_1) - 1}{(n_2/n_1) + 1} \right|^2$$

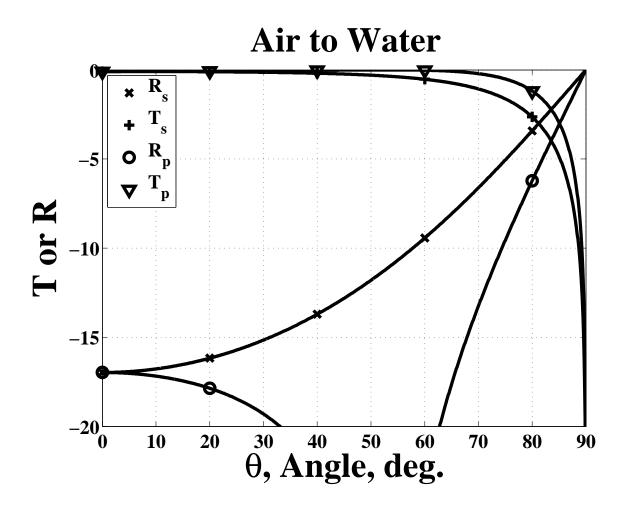
Special Case (Air to Medium)

$$R(0) = \left| \frac{n-1}{n+1} \right|^2$$

Examples

Air-Water: n = 1.33 R(0) = 0.02Air-Glass: n = 1.5 R(0) = 0.04Air-Germanium (IR): n = 4 R(0) = 0.36

Air to Water (dB)



 $R(\theta)$ for n to $n' = R(\theta')$ for n' to n

Air-Water:

$$R(0) = 0.02$$

Generally:

$$R_s(0) = R_p(0)$$

$$R\left(90^{\circ}\right)=1$$

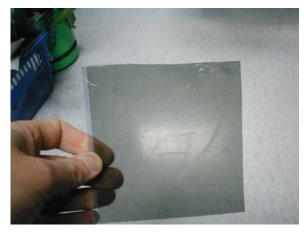
Elsewhere

$$R_s(0) > R_p(0)$$

$$R_p(\theta_b) = 0$$

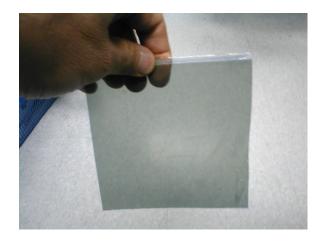
Polished-Floor Reflection

No Polarizer



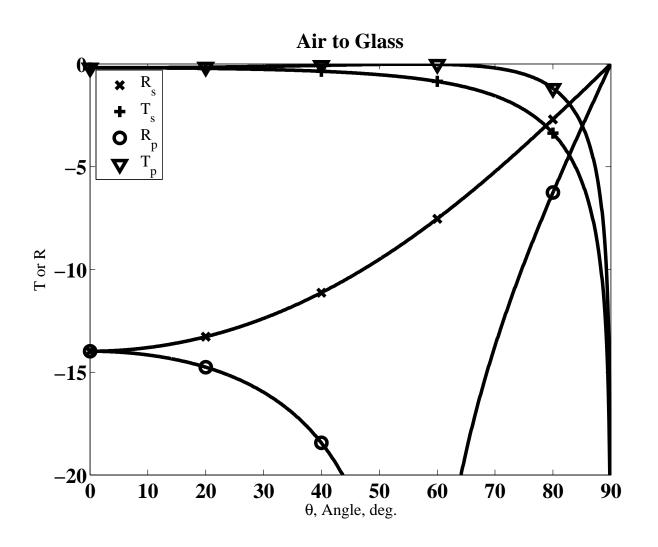
Horizontal Polarizer

Q: Which is Which?

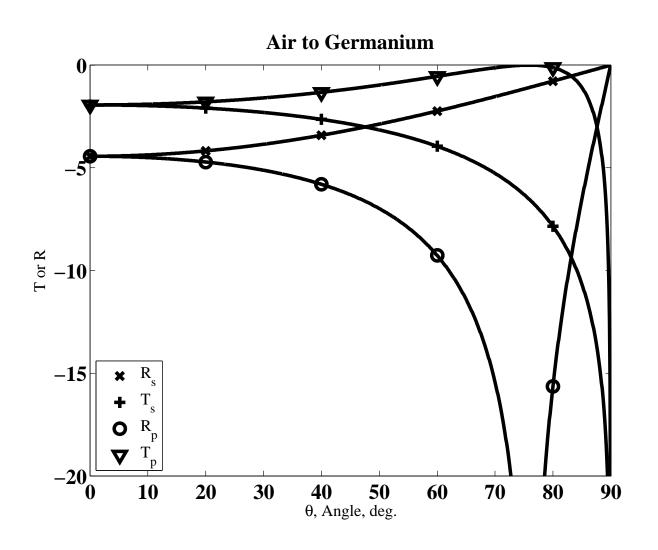


Vertical Polarizer

Air to Glass (dB)



Air to Germanium (dB)



Total Internal Reflection

Fresnel Equations

$$\rho_s = \frac{E_r}{E_i} = \frac{\cos\theta_i - \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}} \qquad \rho_p = \frac{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i} - \left(\frac{n_2}{n_1}\right)^2 \cos\theta_i}}{\sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i} - \left(\frac{n_2}{n_1}\right)^2 \cos\theta_i}}$$

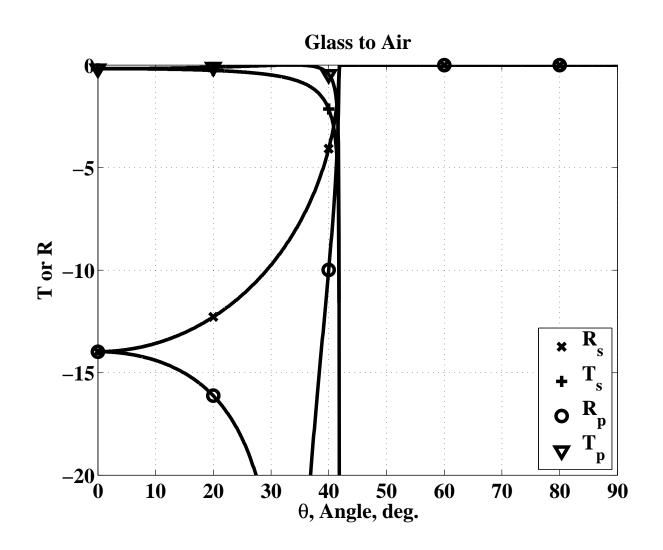
• Beyond the Critical Angle $(\sin \theta > \frac{n_2}{n_1} \to \arg \sqrt{\bullet} < 0)$

|Numerator| = |Denominator| (Both Polarizations)

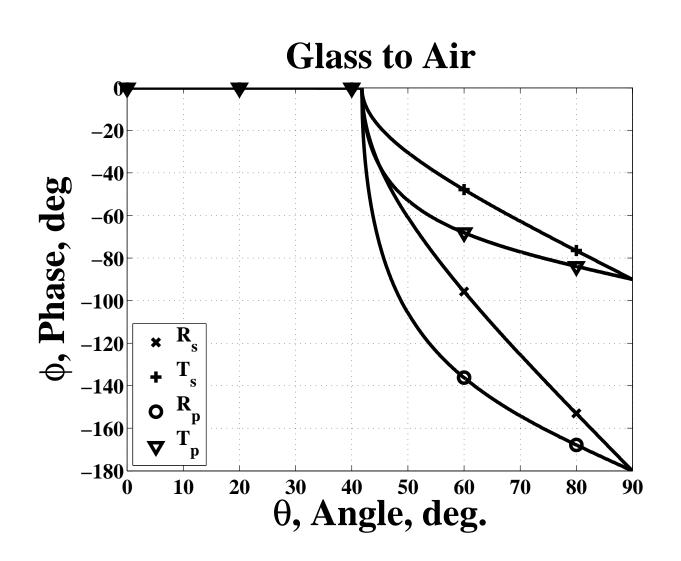
$$R=1 \qquad T=0 \qquad |\rho|=1 \qquad \rho=e^{j\phi}$$

$$\tan \phi_s = -2 \frac{\sqrt{\sin^2 \theta_i - \left(\frac{n_2}{n_1}\right)^2}}{\cos \theta_i} \qquad \tan \phi_p = 2 \frac{\left(\frac{n_2}{n_1}\right)^2 \cos \theta_i}{\sqrt{\sin^2 \theta_i - \left(\frac{n_2}{n_1}\right)^2}}$$

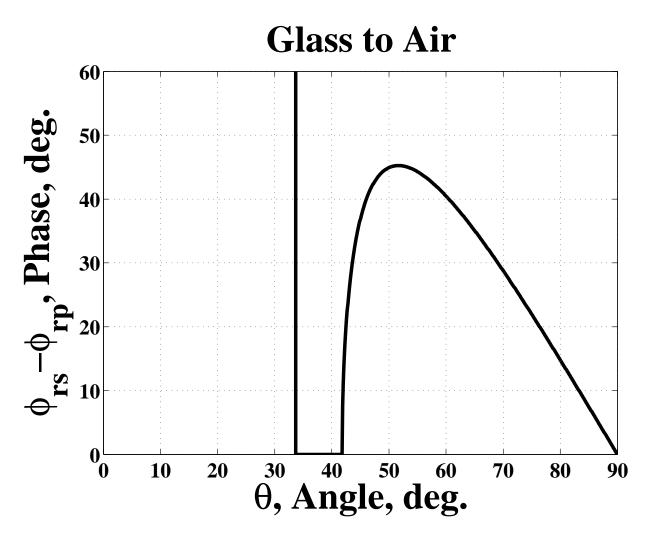
Glass to Air (dB)



Glass to Air (Phase)



Glass to Air (Phase Difference)



See Fresnel Rhomb Later in this Chapter for Application

"Reflections" on Fresnel Coefficients

Take-Away Message

Normal—incidence reflection goes up with index mismatch.

$$R_s(0) = R_p(0)$$

- Reflection increases with angle for S polarization.
- Reflection decreases to zero at Brewster's angle and then increases for P polarization.
- Reflection is always greater for S than P
- Grazing-angle reflection is $R_s(90^\circ) = R_p(90^\circ) = 1$.
- Conservation: $R_s + T_s = 1$ and $R_p + T_p = 1$
- $R(\theta)$ at $n_1 \to n_2$ interface equals $R(\theta')$ for propagation in opposite direction.

Complex Index of Refraction

Plane Wave

$$Ee^{j(\omega t - n\mathbf{k}\cdot\mathbf{r})}$$

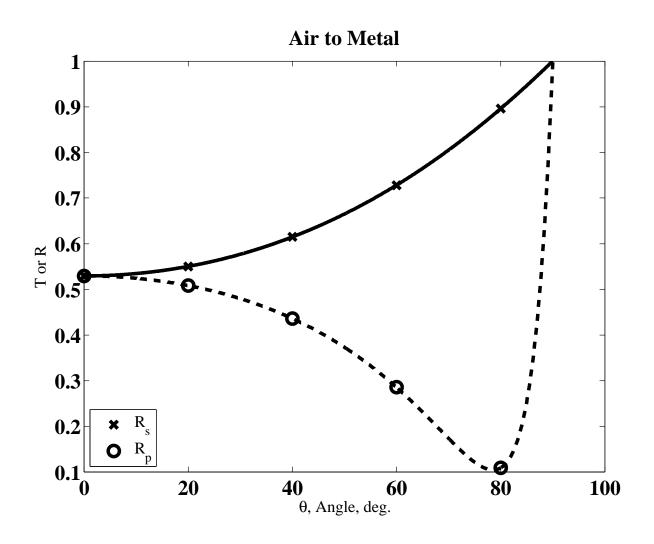
• Complex Index of Refraction, $n = n_r - jn_i$

$$Ee^{j(\omega t - n_r \mathbf{k} \cdot \mathbf{r} + j n_i \mathbf{k} \cdot \mathbf{r})} = Ee^{j(\omega t - n_r \mathbf{k} \cdot \mathbf{r})}e^{-n_i \mathbf{k} \cdot \mathbf{r}}$$

- Decaying Wave in the ${\bf k}$ direction
- Boundary Conditions at an Interface (Again)
 - Transverse k Conserved (Real and Imaginary)
 - Input $n_i k_{transverse} = 0$ Because $n_i = 0$
 - Output $\Im \mathbf{k}$ Must Be in \widehat{z} Direction

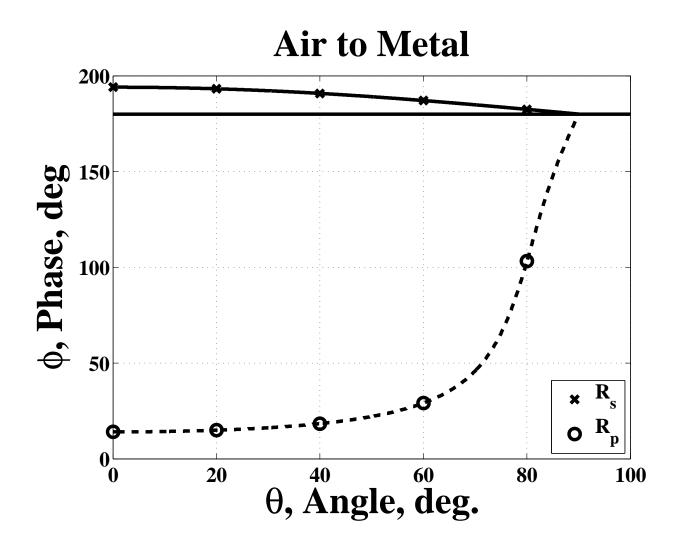
$$Ee^{j(\omega t - n_r \mathbf{k} \cdot \mathbf{r})} e^{-(n_i k)\hat{z} \cdot \mathbf{r}}$$

Air to Metal (Power on Linear Scale)



Note Pseudo-Brewster Angle (Vertical Axis Begins at 0.1)

Air to Metal (Phase)



Note Pseudo-Brewster Angle (Large Phase Change)

Devices for Polarization

- Polarizers Block One Polarization
 - Reflect it
 - Absorb it
- Waveplates Retard Phases of Linear Polarization
 - Birefringence
 - Total—Internal Reflection
- Rotators Retard Phases of Circular Polarization
 - Chiral Molecules (Reciprocal, to Be Defined Later)
 - Magneto-Optical Devices (Non-Reciprocal)

Brewster Plates

• At Brewster's Angle $T_p = 1$, $T_s < T_p$

$$\rho_{s} = \frac{\cos \theta_{i} - \left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}}{\cos \theta_{i} + \left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}} = \frac{1 - \left(\frac{n_{2}}{n_{1}}\right)^{2}}{1 + \left(\frac{n_{2}}{n_{1}}\right)^{2}} \quad R_{s} = \rho_{s} \rho_{s}^{*} = \left(\frac{1 - \left(\frac{n_{2}}{n_{1}}\right)^{2}}{1 + \left(\frac{n_{2}}{n_{1}}\right)^{2}}\right)^{2}$$

• Transmission: $T_{pbp}^2 = 1$ (Neglecting Absorption)

$$T_{sbp}^{2} = (1 - \rho_{s}\rho_{s}^{*})^{2} = \left[1 - \left(\frac{1 - \left(\frac{n_{2}}{n_{1}}\right)^{2}}{1 + \left(\frac{n_{2}}{n_{1}}\right)^{2}}\right)^{2}\right]^{2} = \frac{16\left(\frac{n_{2}}{n_{1}}\right)^{4}}{\left[1 + \left(\frac{n_{2}}{n_{1}}\right)^{2}\right]^{4}}$$

Brewster Plates and Stacks

Extinction Ratio (Absorption Cancels)

$$\frac{T_{pbp}}{T_{sbp}} = \frac{\left[1 + \left(\frac{n_2}{n_1}\right)^2\right]^4}{16\left(\frac{n_2}{n_1}\right)^4}$$

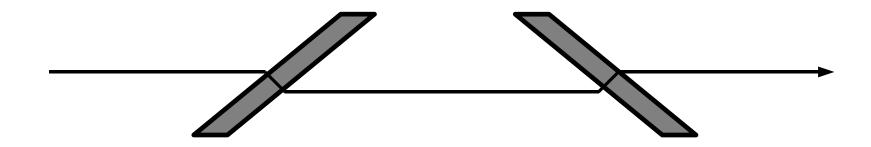
- Glass in Air $R_s \approx$ 0.15, Extinction \approx 1.38 (Terrible)
- Germanium In Air $R_s \approx 0.78$, Extinction ≈ 20.4
- Stack of m Plates

$$\left(T_{pbp}/T_{sbp}\right)^m$$

- 10 Plates: 24.5 for Glass. 2 Plates: 400 for Germanium.
- In Theory 10 Germanium plates gives 10^{13} .

Tent Polarizers

- Avoid Dogleg Problem
- Multiple Pairs: Tent-in-a-Tent
- Plate Size Proportional to $1/\tan\theta_B$ (Big?)



- Often Used for High Power
- More Practical for Infrared (Using Germanium)

Other Polarizers

- Wire Grid
 - Conductive Cylinders
 - − Pass ⊥ Axes
 - Diffraction Issues (Ch. 8)
 - Low Power
 - Extinction to 300
- Glan-Thompson
 - Prism Polarizer
 - Based on Birefringence
 - Extinction Ratio to 10⁵
 - Limited Power?(Adhesive)
- Beamspitting Cubes
 - Use Both Polarizations
 - Fair Performance
 - Moderate Power

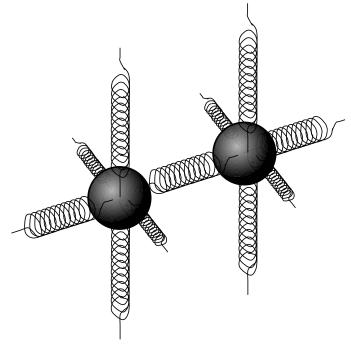
- Polaroid H–Sheets
 - Polyvinyl Alcohol/Iodine
 - Similiar to Wire Grid
 - Specification
 - * T% Total (unpol in)
 - * HN-50 is Perfect
 - * HN for "Neutral"
 - * HR for Infrared
 - * Good = e.g. HN-42
 - * Normally Uncoated
 - Limited Passband
 - Limted Power
 - Large Size
 - Low Cost

Birefringence

- Two Indices of Refraction
 - Different Ray Bending (Double Image)
 - Different Speeds
- Epsilon Tensor
 - 3-D Matrix
 - Can be Diagonalized
 - Two or Three Eigenvalues
 - * Uniaxial

$$arepsilon = \left(egin{array}{cccc} \epsilon_{xx} & 0 & 0 \ 0 & \epsilon_{yy} & 0 \ 0 & 0 & \epsilon_{yy} \end{array}
ight)$$

- · Ordinary Ray (y Polarized)
- \cdot Extraordinary Ray (x)
- * Biaxial (All 3 Different)



Wave in Birefringent Crystal

• Before the Crystal (z < 0)

$$\mathbf{E}_{in} = \left(E_{xi} \hat{x} + E_{yi} \hat{y} \right) e^{j(\omega t - kz)}$$

• In the Crystal $(0 < z < \ell)$

$$\mathbf{E} = \tau_1 \left(E_{xi} \hat{x} e^{j(\omega t - k n_{xx} z)} + E_{yi} \hat{y} e^{j(\omega t - k n_{yy} z)} \right)$$

At the End

$$\mathbf{E} = \tau_1 \left(E_{xi} \hat{x} e^{j(\omega t - k n_{xx} \ell)} + E_{yi} \hat{y} e^{j(\omega t - k n_{yy} \ell)} \right)$$

• Beyond the Crystal $(\ell < z)$

$$\mathbf{E} = \tau_1 \tau_2 \left(E_{xi} \hat{x} e^{j[\omega t - k n_{xx} \ell - k(z - \ell)]} + E_{yi} \hat{y} e^{j[\omega t - k n_{yy} \ell - k(z - \ell)]} \right)$$

After the Birefringent Crystal

• From Previous Page

$$\mathbf{E} = \tau_1 \tau_2 \left(E_{xi} \hat{x} e^{j[\omega t - k n_{xx} \ell - k(z - \ell)]} + E_{yi} \hat{y} e^{j[\omega t - k n_{yy} \ell - k(z - \ell)]} \right)$$

Regroup

$$\mathbf{E} = \tau_1 \tau_2 \left(E_{xi} e^{-jk(n_{xx}-1)\ell} \hat{x} + E_{yi} e^{-jk(n_{yy}-1)\ell} \hat{x} \right) e^{j(\omega t - kz)} \qquad (\ell < z)$$

Simply

$$\mathbf{E}_{out} = (E_{xo}\hat{x} + E_{yo}\hat{y}) e^{j(\omega t - kz)} \qquad (\ell < z),$$

with

$$E_{xo} = \tau_1 \tau_2 E_{xi} e^{-jk(n_{xx}-1)\ell}$$
 $E_{yo} = \tau_1 \tau_2 E_{yi} e^{-jk(n_{yy}-1)\ell}$

ullet Phase Difference between E_{xo} and E_{yo}

Phases at Output of Birefringent Crystal

Previous Equation

$$E_{xo} = \tau_1 \tau_2 E_{xi} e^{-jk(n_{xx}-1)\ell}$$

$$E_{yo} = \tau_1 \tau_2 E_{yi} e^{-jk(n_{yy}-1)\ell}$$

Phase Difference

$$\delta \phi = k\ell \left(n_{yy} - n_{xx} \right)$$

Half–Wave Plate

$$\delta\phi_{hwp} = \pi = k\ell \left(n_{yy} - n_{xx} \right)$$

$$OPD = n_{yy}\ell - n_{xx}\ell = \frac{\lambda}{2}$$

Reflects Polarization

Quarter–Wave Plate

$$\delta\phi_{qwp} = \frac{\pi}{2} = k\ell \left(n_{yy} - n_{xx} \right)$$

$$n_{yy}\ell - n_{xx}\ell = \frac{\lambda}{4}.$$

- Quartz at 589.3nm,

$$n_{yy} - n_{xx} = 1.5534 - 1.5443$$

- Thickness $16.24 \mu m$
- 5/4-Wave Plate

$$\frac{d\delta\phi_{qwp}}{dT} = k\ell \frac{d\left(n_{yy} - n_{xx}\right)}{dT}$$

$$\frac{d\delta\phi_{5qwp}}{dT} = 5k\ell \frac{d\left(n_{yy} - n_{xx}\right)}{dT}$$

Watch Out for Dispersion

Retardation Dispersion

• Wavelength vs. OPL

$$\frac{d\delta\phi_{qwp}}{d\lambda} = \frac{2\pi}{\lambda^2}\ell\left(n_{yy} - n_{xx}\right) \qquad \frac{d\delta\phi_{5qwp}}{d\lambda} = 5\frac{2\pi}{\lambda^2}\ell\left(n_{yy} - n_{xx}\right)$$

- Example:
 - * Bandwidth of $\delta\lambda = 100nm$ at $\lambda = 800nm$
 - * Phase Dispersion 6° for Zero Order 1/4–Wave Plate
 - * 30° for 5/4-Wave Plate
- Birefringence Dispersion

$$\delta\phi(\lambda) = \frac{2\pi}{\lambda}\ell(n_{yy}(\lambda) - n_{xx}(\lambda))$$

Use One Against the Other to Make a Wide-Band QWP

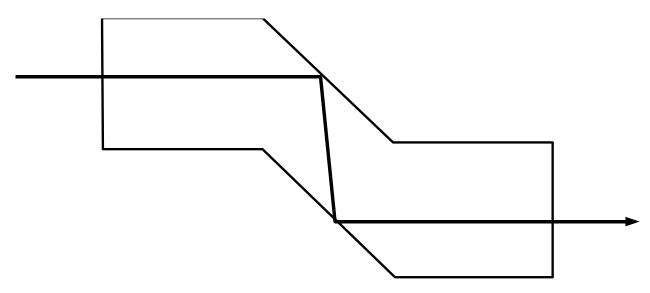
Electrically—Induced Birefringence

- Electric Field Alters Symmetry
- Birefringence Proportional to DC Voltage

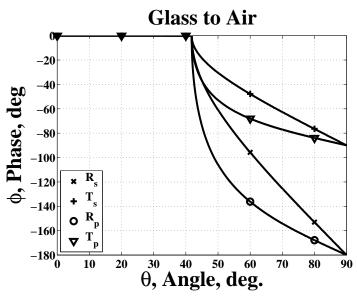
$$\delta\phi = \pi \frac{V}{V_{\pi}}$$

- Applications
 - Phase Modulation (Field Paralel to One Axis)
 - Frequency Modulation
 (Phase Modulation in Laser Cavity, Ch. 7)
 - Amplitude Modulation
 (Field at 45° with Crossed Polarizer at Output)

Fresnel Rhomb



- Phase Difference in TIR
 - See Fresnel Equations
 - Top Two Curves \rightarrow
 - Two Reflections for 90°
- Less Dispersion in Birefringence
- Difficult Alignment (?)



Polarization Rotator

Reciprocal Rotator
 (e.g. Sugar in Water)

$$\delta \zeta = \kappa C \ell$$

- $-\kappa = Specific$ Rotary Power
- -C = Concentration
- $-\ell = Length$
- Rotation in Either Direction
 - Left (Levulose) $\kappa > 0$
 - Right (Dextrose) $\kappa < 0$
- Same Sign for Reverse Propagation (e.g. Reflection)
 - Round–Trip RestoresOriginal Polarization

- Non-Reciprocal Rotator (e.g. Faraday Rotator)
 - Underlying Physics(DC Magnetic Field)

$$\mathbf{a} = -\frac{e}{m}\mathbf{v} \times \mathbf{B}$$

- Result (v= Verdet Constant)

$$\delta \zeta = v \mathbf{B} \cdot \hat{\mathbf{z}} \ell$$

Reverse Propagation

$$\delta \zeta = v \mathbf{B} \cdot (-\hat{z}) \ell$$

- Round—Trip DoublesRotation
- Application:

©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides6r1–53

Jones Vectors and Matrices

- Jones Vectors, E
 - -x and y Components for \hat{z} Propagation
 - Alternative Basis Sets
- ullet Jones Matrices, ${\mathcal J}$
 - Devices that Change Polarization
 - Transformations that Change Coordinates

$$E_1 = \mathcal{J}E_0$$

Cascading Matrices (Right to Left)

$$\mathbf{E}_m = \mathcal{J}_m \mathcal{J}_{m-1} \dots \mathcal{J}_2 \mathcal{J}_1 \mathbf{E}_0$$

Irradiance and Power

Basic Equations

$$P = IA = \frac{\mathbf{E}^{\dagger}\mathbf{E}}{Z}\mathbf{A}$$

- E^{\dagger} is Hermitian Adjoint
- Conjugate Transposed

$$\mathbf{E} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}$$

$$\mathbf{E}^{\dagger} = (E_x^* \quad E_y^*)$$

Power

$$P = IA = \frac{E_x^* E_x + E_y^* E_y}{Z} A$$

- Common Approach
 - Assumes $Z_{out} = Z_{in}$
 - Input

$$\mathrm{E}_0^\dagger \mathrm{E}_0 = 1$$

Transmission

$$T = \mathbf{E}_{out}^{\dagger} \mathbf{E}_{out}$$

Output

$$I_{out} = TI_{in}$$

$$P_{out} = TP_{in}$$

Field Amplitudes Lost

Some Basic Jones Matrices: Polarizers

- Diagonal Matrices
 - Input

$$\mathbf{E}_0 = \begin{pmatrix} E_{x0} \\ E_{y0} \end{pmatrix}$$

- Output

$$\mathbf{E}_1 = \begin{pmatrix} j_{11} & 0 \\ 0 & j_{22} \end{pmatrix} \begin{pmatrix} E_{x0} \\ E_{y0} \end{pmatrix}$$

$$E_{x1} = j_{11}E_{x0}$$

$$E_{y1} = j_{22}E_{y0}$$

- No Cross—Coupling
- $-E_x \& E_y$ are Eigenvectors

• Perfect \hat{x} Polarizer

$$\mathcal{P}_x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Perfect \hat{y} Polarizer

$$\mathcal{P}_y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- Later: Arbitrary Polarizer
- Realistic \hat{x} Polarizer

$$\mathcal{P}_x = \begin{pmatrix} \tau_x & 0 \\ 0 & \tau_y \end{pmatrix}$$

Realistic Polarizer Example (1)

 Insertion Loss (Fresnel Reflections $\approx 4\%$ per Surface)

$$\tau_x = \sqrt{1 - 0.08}$$

Extinction Ratio = 10,000

$$\tau_y = \tau_x / \sqrt{10,000}$$

• Input Polarization at Angle ζ

$$\mathbf{E}_0 = \begin{pmatrix} \cos \zeta \\ \sin \zeta \end{pmatrix} \qquad |\mathbf{E}_0|^2 = 1$$

Output Field

$$\mathbf{E}_{1} = \mathcal{P}_{x} \mathbf{E}_{0} = \begin{pmatrix} \tau_{x} & 0 \\ 0 & \tau_{y} \end{pmatrix} \begin{pmatrix} \cos \zeta \\ \sin \zeta \end{pmatrix} \qquad \mathbf{E}_{1}^{\dagger} \mathbf{E}_{1} = \mathbf{E}_{0}^{\dagger} \mathcal{P}_{x}^{\dagger} \mathcal{P}_{x} \mathbf{E}_{0}$$

Output Field

$$\mathbf{E}_1 = \begin{pmatrix} \tau_x \cos \zeta \\ \tau_y \sin \zeta \end{pmatrix}$$

Transmission

$$T = \mathbf{E}_1^{\dagger} \mathbf{E}_1$$

Adjoint of Product

$$(\mathcal{A}\mathcal{B})^{\dagger} = \mathcal{B}^{\dagger}\mathcal{A}^{\dagger}.$$

Output Power

$$\mathbf{E}_{1}^{\dagger}\mathbf{E}_{1}=\mathbf{E}_{0}^{\dagger}\mathcal{P}_{x}^{\dagger}\mathcal{P}_{x}\mathbf{E}_{0}$$

Realistic Polarizer Example (2)

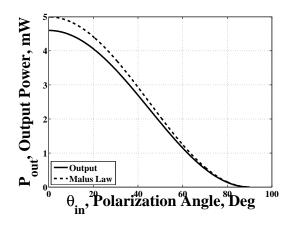
• Transmission (Remember ζ is Angle of Input Polarization)

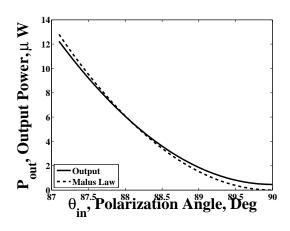
$$T = (\cos \zeta \quad \sin \zeta) \begin{pmatrix} \tau_x^* & 0 \\ 0 & \tau_y^* \end{pmatrix} \begin{pmatrix} \tau_x & 0 \\ 0 & \tau_y \end{pmatrix} \begin{pmatrix} \cos \zeta \\ \sin \zeta \end{pmatrix}$$

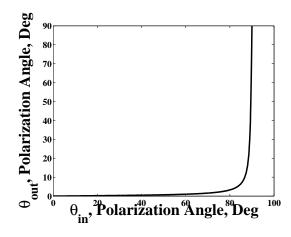
$$T = T_x \cos^2 \zeta + T_y \sin^2 \zeta$$

Angle of Output Polarization

$$\tan \zeta_{out} = \frac{E_{yout}}{E_{xout}} = \frac{\tau_x \cos \zeta}{\tau_y \sin \zeta}$$







Jones Matrix for a Waveplate

• Phase Difference, ϕ

$$\mathcal{W} = \begin{pmatrix} e^{j\phi/2} & 0\\ 0 & e^{-j\phi/2} \end{pmatrix}$$

An Alternate Notation

$$\mathcal{W} = \begin{pmatrix} e^{j\phi} & 0 \\ 0 & 1 \end{pmatrix}$$

- Others Possible
 - Overall Phase Shift
 - Normally Present
 - Normally Not Important

Quarter–Wave Plate

$$Q = \begin{pmatrix} e^{-j\pi/4} & 0\\ 0 & e^{j\pi/4} \end{pmatrix}$$

• or...

$$Q = \begin{pmatrix} 1 & 0 \\ 0 & j \end{pmatrix}$$

Half-Wave Plate

$$\mathcal{H} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Coordinate Transforms

- So far, all matrices have been diagonal.
 - They are written in a way that they act on eigenvectors.
 - The diagonal elements are the eigenvalues.
- Otherwise...
 - we can resolve the input vector into components along the eigenvalues,
 - solve each problem independently,
 - and recombine to get the result.
- Equivalently...
 - we can use a transform matrix to find the eigenvector components of the input,
 - Multiply by the diagonal matrix,
 - and use the inverse transform back to original coordinates.

Rotator and Coordinate Rotation

• Rotator (Angle ζ)

$$\mathcal{R}(\zeta) = \begin{pmatrix} \cos \zeta & -\sin \zeta \\ \sin \zeta & \cos \zeta \end{pmatrix}$$

- $-\zeta > 0$ Rotates Right
- $-\hat{x}$ to \hat{y}
- $-\hat{y}$ to $-\hat{x}$
- Represents a Device
 - Actual Rotation of Polarization
 - e.g. Sugar/Water or Faraday Rotator

- Coordinate Rotation
 - for Devices atArbitrary Angles
 - to Change Coordinatesby Choice
- Old Coordinates \hat{x}, \hat{y}
- New Coordinates \hat{x}', \hat{y}' Rotated by $+\zeta$
- ullet Mathematically Same as Rotating Vector by $-\zeta$

$$\mathcal{R}(-\zeta) \, \mathbf{E}_1 = \mathcal{R}^{\dagger}(\zeta) \, \mathbf{E}_1$$

Rotated Device Jones Matrix

- Rotate Coordinates of Input Vector to Eigenvectors of Device
 - Original Coordinates \hat{x}, \hat{y}
 - New Coordinates \hat{x}', \hat{y}'

$$\mathbf{E}_{1}' = \mathcal{R}(-\zeta) \,\mathbf{E}_{1} = \mathcal{R}^{\dagger}(\zeta) \,\mathbf{E}_{1}$$

• Operate with the Device in its Own Coordinates \hat{x}', \hat{y}'

$$\mathbf{E}_2' = \mathcal{J}' \mathcal{R}^{\dagger} \left(\zeta \right) \mathbf{E}_1$$

Rotate Back to Original Coordinates

$$\mathbf{E}_{2} = \mathcal{R}(\zeta) \mathbf{E}_{2}' = \mathcal{R}(\zeta) \mathcal{J}' \mathcal{R}^{\dagger}(\zeta) \mathbf{E}_{1}$$

 \bullet Do it All at Once. . . $\mathrm{E}_2 = \mathcal{J}\mathrm{E}_1$. . . where

$$\mathcal{J} = \mathcal{R}(\zeta) \, \mathcal{J}' \mathcal{R}^{\dagger}(\zeta)$$

Coordinate Transform Example (Page 1)

Input Field

$$\mathbf{E}_{in} = \begin{pmatrix} E_x \\ E_y \end{pmatrix},$$

• Polarizer (\hat{x} Polarizer Rotated through ζ)

$$\mathcal{P}_{\zeta} = \mathcal{R}(\zeta)\mathcal{P}_{x}\mathcal{R}^{\dagger}(\zeta)$$

Output Field

$$\mathbf{E}_{out} = \mathcal{P}_{\zeta} \mathbf{E}_{in} = \mathcal{R} (\zeta) \mathcal{P}_{x} \mathcal{R}^{\dagger} (\zeta) \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix}$$

Option 1: Matrix-by-Matrix Multiplication

Coordinate Transform Example (Page 2)

Option 2: New Matrix for Device

$$\mathcal{P}_{\zeta} = \begin{pmatrix} \cos \zeta & -\sin \zeta \\ \sin \zeta & \cos \zeta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \zeta & \sin \zeta \\ -\sin \zeta & \cos \zeta \end{pmatrix}$$

• Polarizer Matrix in \hat{x}, \hat{y} Coordinates

$$\mathcal{P}_{\zeta} = \begin{pmatrix} \cos^2 \zeta & -\cos \zeta \sin \zeta \\ -\cos \zeta \sin \zeta & \sin^2 \zeta \end{pmatrix}$$

Output (No Matter How We Do the Multiplication)

$$\begin{pmatrix} \cos^2 \zeta & -\cos \zeta \sin \zeta \\ -\cos \zeta \sin \zeta & \sin^2 \zeta \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x \cos^2 \zeta - E_y \cos \zeta \sin \zeta \\ -E_x \cos \zeta \sin \zeta + E_y \sin^2 \zeta \end{pmatrix}$$

Q: Compare to Malus' Law, Rotating Input or Rotating Device.

Coordinate Transform Example (Page 3)

Output (Previous Page)

$$\begin{pmatrix} \cos^2 \zeta & -\cos \zeta \sin \zeta \\ -\cos \zeta \sin \zeta & \sin^2 \zeta \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x \cos^2 \zeta - E_y \cos \zeta \sin \zeta \\ -E_x \cos \zeta \sin \zeta + E_y \sin^2 \zeta \end{pmatrix}$$

- Input: $E_x = \cos \zeta_1$, $E_y = \sin \zeta_1$
- Use Trigonometric Identities
- Output Angle (Always ζ for Perfect Polarizer):

$$\tan \zeta_{out} = \frac{-E_x \cos \zeta \sin \zeta + E_y \sin^2 \zeta}{E_x \cos^2 \zeta - E_y \cos \zeta \sin \zeta} = \frac{\sin \zeta}{\cos \zeta} \times \frac{-E_x \cos \zeta + E_y \sin \zeta}{E_x \cos \zeta - E_y \sin \zeta} = \frac{\sin \zeta}{\cos \zeta}$$

Rotated Device Couples Polarizations

• Polarizer Matrix in \hat{x}', \hat{y}' Coordinates

$$\mathcal{P}_{x'} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathcal{P}_{x'} \mathbf{E}_{y'} = 0$$

• Polarizer Matrix in \hat{x}, \hat{y} Coordinates

$$\mathcal{P}_{\zeta} = \begin{pmatrix} \cos^2 \zeta & -\cos \zeta \sin \zeta \\ -\cos \zeta \sin \zeta & \sin^2 \zeta \end{pmatrix}$$

Any Device Matrix is Diagonal in its Eigenvector Coordinates

$$\mathcal{P}_{x'} = \begin{pmatrix} \tau_{x'} & 0 \\ 0 & \tau_{y'} \end{pmatrix}$$

Q: What is \mathcal{P}_x for this $\mathcal{P}_{x'}$?

Three—Polarizer Thought Experiment

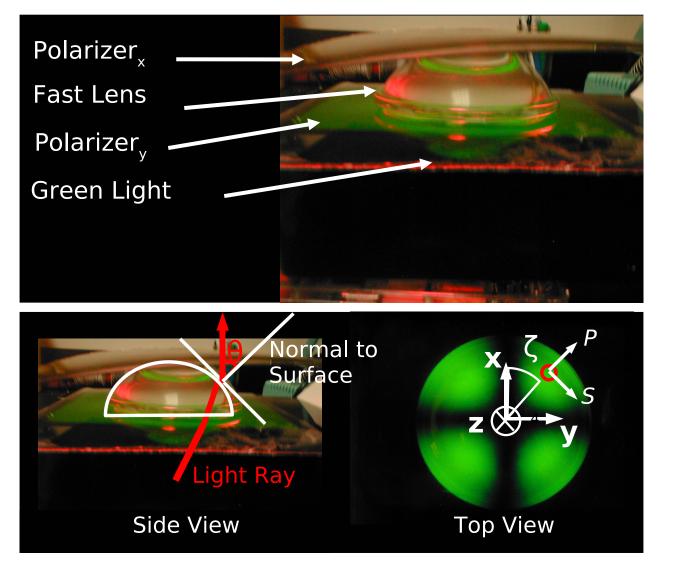
Combined Matrix

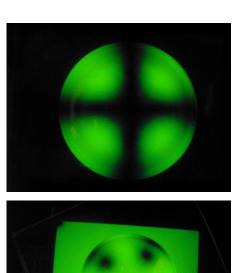
$$\mathcal{P}_{x}\mathcal{P}_{\zeta}\mathcal{P}_{y} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \cos^{2}\zeta & -\cos\zeta\sin\zeta \\ -\cos\zeta\sin\zeta & \sin^{2}\zeta \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\cos\zeta\sin\zeta \\ 0 & 0 \end{pmatrix}$$

- At Zero Degrees, T=0
- At 90 Degrees, T = 0
- At 45 Degrees, ...
 - * T = 0.25 for \hat{y} Input
 - * T = 0.125 for Random Input (later)

Coordinate Transforms Gone Wild: Maltese Cross





Maltese Cross Analysis (1)

- Solution With Fresnel Reflection & Coordinate Transforms
- Curved Lens Surface as a Polarizer
 - Fresnel Reflection with Varying Plane of Incidence
 - Natural Coordinate System (Eigenvectors): P,S

Fresnel Coef. Matrix
$$\mathcal{F}'(\theta,0) = \begin{pmatrix} \tau_p(\theta) & 0 \\ 0 & \tau_s(\theta) \end{pmatrix}$$

• Working Coordinate System: \hat{x}, \hat{y} ($\zeta = 0$ when P is in \hat{x} Direction)

$$\mathcal{F}(\theta,\zeta) = \mathcal{R}(\zeta) \mathcal{F}'(\theta,0) \mathcal{R}^{\dagger}(\zeta)$$

Maltese Cross Analysis (2)

- Assume Polarizers Are Perfect (Avoids dealing with partial polarization)
- Assume \hat{x} Polarization out of First Polarizer

$$\mathbf{E}_{out} = \mathcal{P}_{y} \mathcal{R} (\zeta) \mathcal{F}' (\theta, 0) \mathcal{R}^{\dagger} (\zeta) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• Final Output

$$\mathbf{E}_{out} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tau_p(\theta) \cos^2 \zeta - \tau_s(\theta) \sin^2 \zeta \\ \tau_p(\theta) \cos \zeta \sin \zeta - \tau_s(\theta) \cos \zeta \sin \zeta \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \tau_p(\theta) \cos \zeta \sin \zeta - \tau_s(\theta) \cos \zeta \sin \zeta \end{pmatrix}$$

Maltese Cross Analysis (3)

Output Field (Previous Page)

$$\mathbf{E}_{out} = \begin{pmatrix} 0 \\ \tau_p(\theta) \cos \zeta \sin \zeta - \tau_s(\theta) \cos \zeta \sin \zeta \end{pmatrix}$$

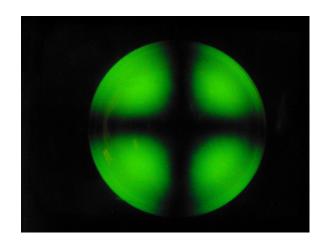
- For $\zeta = 0$ P Matches \hat{x} ($\sin \zeta = 0$)
 - Input to Lens is P, Output is P (Eigenvector)
 - Output of Lens is Blocked by Final Polarizer; $\mathbf{E}_{out} = \mathbf{0}$
- For $\zeta = 90^{\circ}$ S Matches \hat{x} ($\cos \zeta = 0$)
 - Input to Lens is S, Output is S (Eigenvector)
 - Output of Lens is Blocked by Final Polarizer; $\mathbf{E}_{out} = \mathbf{0}$
- Otherwise
 - Input to Lens is Superposition of P and S
 - P is Transmitted More than S
 - Output is Different Superpostion of P and S
 - Different Angle from Input; Not Completely Blocked

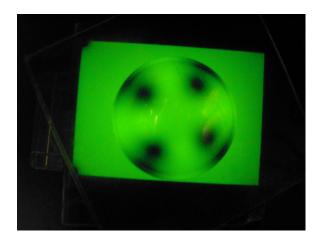
Maltese Cross Analysis (4)

• Output Field (Bottom of Page 2)

$$\mathbf{E}_{out} = \begin{pmatrix} 0 \\ \tau_p(\theta) \cos \zeta \sin \zeta - \tau_s(\theta) \cos \zeta \sin \zeta \end{pmatrix}$$

- At the Center (Normal Incidence)
 - Degenerate Eigenvalues; $\tau_p = \tau_s$
 - Zero Output





Q: What are the equations if polarizers are parallel (Right Picture)?

Another Transformation: Linear Basis to Circular

• QWP at 45°

$$\mathcal{Q}_{45} = \mathcal{R}_{45} \mathcal{Q} \mathcal{R}_{45}^{\dagger}$$

- Simple Result

$$\mathcal{Q}_{45} = \mathcal{R}_{45} \mathcal{Q} \mathcal{R}_{45}^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & j \\ j & 1 \end{pmatrix}$$

- Converts
 - $-\hat{x}$ to RHC
 - $-\hat{y}$ to LHC
- Matrix for a Device: Physical Change of Polarization
- Coordinate Transform:
 Field Doesn't Change,
 Numbers Do

Coordinate Transform

$$E = \mathcal{Q}_{45}^{\dagger} E'$$

$$\mathcal{J} = \mathcal{Q}_{45} \mathcal{J}' \mathcal{Q}_{45}^{\dagger}$$

• Example in \hat{x}, \hat{y}

$$\mathbf{E}_x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• in RHC/LHC

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & j \\ j & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ j \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ j \end{pmatrix} = \frac{1}{\sqrt{2}} \hat{E}_r + \frac{j}{\sqrt{2}} \hat{E}_\ell$$

Can Minimize Ambiguities

in x, y or P,S

Matrix Properties: Unitary Matrices

Transform Matrices Must not Change Power

$$\mathbf{E}_{out}^{\dagger}\mathbf{E}_{out} = \mathbf{E}_{in}^{\dagger}\mathcal{J}^{\dagger}\mathcal{J}\mathbf{E}_{in} = \mathbf{E}_{in}^{\dagger}\mathbf{E}_{in}$$
 for all \mathbf{E}_{in}

$$\mathcal{J}^{\dagger}\mathcal{J} = \mathcal{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- Lossless Device (e.g. Perfect Waveplate or Rotator)
- Realistic Waveplate or Rotator
 - Unitary Matrix Multiplied by Scalar
 - Potential Simplification of Complicated Equations
 - Also Useful for "Single-Mode" Fiber

Matrix Properties: Eigenvectors

• Eigenvectors Are Natural Polarizations of the Device

$$\mathbf{E}_{out} = \mathsf{Eigenvalue} \times \mathbf{E}_{in}$$

- Matrix is Diagonal in Coordinates Based on Eigenvectors
- Example: X Polarizer

$$\mathcal{P}_x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 Ideal

$$\mathcal{P}_x = \begin{pmatrix} \tau_x & 0 \\ 0 & \tau_y \end{pmatrix}$$
 Realistic

Rotator Eigenvectors

Matrix and Eigenvectors

$$\mathcal{R}(\zeta) = \begin{pmatrix} \cos \zeta & -\sin \zeta \\ \sin \zeta & \cos \zeta \end{pmatrix} \qquad \mathbf{E}_{RHC} = \begin{pmatrix} 1 \\ j \end{pmatrix} \qquad \mathbf{E}_{LHC} = \begin{pmatrix} 1 \\ -j \end{pmatrix}$$

RHC Eigenvalue Solution

$$\mathcal{R}\left(\zeta\right)\mathbf{E}_{RHC} = \tau_{RHC}\mathbf{E}_{RHC}$$

$$\begin{pmatrix} \cos \zeta & -\sin \zeta \\ \sin \zeta & \cos \zeta \end{pmatrix} \begin{pmatrix} 1 \\ j \end{pmatrix} = \begin{pmatrix} \cos \zeta - j \sin \zeta \\ \sin \zeta + j \cos \zeta \end{pmatrix} = \begin{pmatrix} e^{-j\zeta} \\ je^{-j\zeta} \end{pmatrix} = e^{j\zeta} \begin{pmatrix} 1 \\ j \end{pmatrix}$$

Eigenvalues

$$\tau_{rhc} = e^{j\zeta}$$
 $\tau_{lhc} = e^{-j\zeta}$

Circular Polarizer

- Configuration: QWP, Linear Polarizer at 45 Degrees, QWP
- Jones Matrix

$$\mathcal{J} = \mathcal{Q}_{90}\mathcal{P}_{45}\mathcal{Q} = \begin{pmatrix} j & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & j \end{pmatrix} = \frac{1}{2} \begin{pmatrix} j & 1 \\ -1 & j \end{pmatrix}$$

Eigenvectors

$$\mathbf{E}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = \mathbf{E}_{RHC}$$
 $\mathbf{E}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \mathbf{E}_{LHC}$

Eigenvalues

$$\tau_1 = 1$$
 $\tau_2 = 0$

Non-Orthogonal Eigenvectors

Polarizers at Zero and 10 Degrees

$$\mathcal{M} = \mathcal{R}_{10} \mathcal{P} \mathcal{R}_{10}^{\dagger} \mathcal{P} = \begin{pmatrix} \cos^2 \zeta & 0 \\ \cos \zeta \sin \zeta & 0 \end{pmatrix}$$

Eigenvectors

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} \cos 10^{\circ} \\ \sin 10^{\circ} \end{pmatrix}$

Eigenvalues

0 and
$$\cos 10^{\circ}$$

- \hat{y} Polarization Blocked by First Polarizer
- \hat{x} Polarization Passed by First Polarizer and $\cos 10^{\circ}$ Component Transmitted by Second
- Output always at 10°

Jones Matrix Application: Amplitude Modulator

- ullet Input \widehat{x} Polarized
- Electro-Optical Modulator

$$\mathbf{E}_{out} = \mathcal{P}_y \mathcal{R}_{45} \mathcal{M} (V) \, \mathcal{R}_{45}^{\dagger} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Electrically—Induced
 Birefringence

$$\mathcal{M}(V) = \begin{pmatrix} e^{j\pi V/(2V_{\pi})} & 0 \\ 0 & e^{-j\pi V/(2V_{\pi})} \end{pmatrix}$$

Output

$$\mathbf{E}_{out} = \mathcal{P}_{y} \mathcal{R}_{45} \mathcal{M} (V) \mathcal{R}_{45}^{\dagger} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• At V = 0, T = 0:

$$\mathbf{E}_{out} = \mathcal{P}_y \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• At $V = V_{\pi}$, T = 1:

$$\mathbf{E}_{out} = \mathcal{P}_y \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- At $V = V_{\pi}/2$, T = 0.5- $\Delta V \rightarrow$ Modulation
- Bias: $\mathcal{P}_{y}\mathcal{R}_{45}\mathcal{QM}\left(V\right)\mathcal{R}_{45}^{\dagger}$

$$QM(V) = \begin{pmatrix} e^{j\frac{\delta\phi}{2}} & 0\\ 0 & e^{-j\pi\frac{\delta\phi}{2}} \end{pmatrix}$$

$$\delta\phi = \pi V/\left(2V_{\pi}\right) + \pi/4$$

T/R Switch (Optical Circulator)

- Common Aperture
 - -T + R = 1
 - Round-Trip

$$(1-R) F_{target}R$$

Optimize (Not Great)

$$d\left[\left(1-R\right)R\right]/dR=0$$

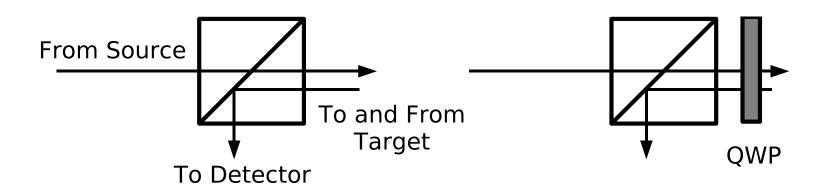
$$R = \frac{1}{2}$$
 $R(1 - R) = \frac{1}{4}$

Polarization Analysis

$$\mathcal{J}_{tr} = \mathcal{R}_{pbs} \mathcal{Q}_{45} \mathcal{F}_{target} \mathcal{Q}_{45} \mathcal{T}_{pbs}$$

- \hat{p} -Polarized Source
- $\mathcal{F}_{target} = f$ (scalar) (Target Keeps Polarization)

$$\mathcal{J}_{tr}\hat{\mathbf{x}} = f\mathcal{R}_{pbs}\mathcal{Q}_{45}\mathcal{Q}_{45}\mathcal{T}_{pbs}\hat{p}$$
$$= f\mathcal{R}_{pbs}\mathcal{H}_{45}\mathcal{T}_{pbs}\hat{p}$$



T/R Switch Efficiency

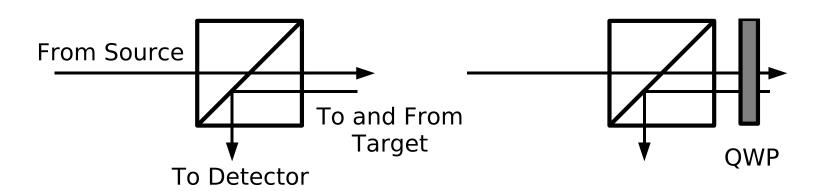
• Round Trip

$$\mathcal{J}_{tr} = \mathcal{R}_{pbs} \mathcal{Q}_{45} \mathcal{F}_{target} \mathcal{Q}_{45} \mathcal{T}_{pbs}$$
$$f \mathcal{R}_{pbs} \mathcal{H}_{45} \mathcal{T}_{pbs}$$

- Assumptions
 - 2% Insertion Loss (AR–Coated)
 - 5% Leakage of Wrong
 Polarization

$$\mathcal{J}_{tr}\widehat{p} = f \begin{pmatrix} \sqrt{0.05} & 0 \\ 0 & \sqrt{0.98} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{0.98} & 0 \\ 0 & \sqrt{0.05} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= f \begin{pmatrix} 0 \\ 0.98 \end{pmatrix} \qquad \text{(Leakage Only Matters if } \mathcal{F}_{target} \neq f\text{)}$$



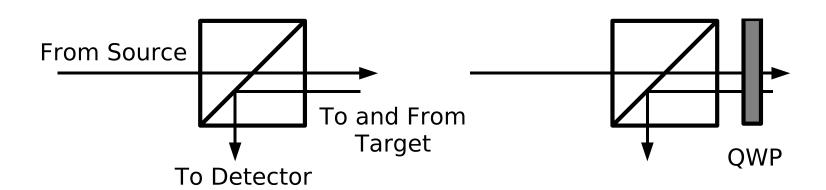
T/R Switch Narcissus Rejection

Round Trip (Source to Source)

$$\mathcal{J}_{tt} = \mathcal{T}_{pbs} \mathcal{Q}_{45} \mathcal{F}_{target} \mathcal{Q}_{45} \mathcal{T}_{pbs} = f \mathcal{T}_{pbs} \mathcal{H}_{45} \mathcal{T}_{pbs}$$

$$\mathcal{J}_{tt}\widehat{p} = f\begin{pmatrix} \sqrt{0.98} & 0 \\ 0 & \sqrt{0.05} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{0.98} & 0 \\ 0 & \sqrt{0.05} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= f\begin{pmatrix} 0.05 \\ 0 \end{pmatrix} \qquad \text{(Assumes } \mathcal{F}_{target} = f)$$



Coherency Matrices

Remember the Inner Product

$$\mathbf{E}^{\dagger}\mathbf{E} = (E_x^* \quad E_y^*) \begin{pmatrix} E_x \\ E_y \end{pmatrix} = |E_x|^2 + |E_y|^2$$

Consider the Outer Product

$$\mathbf{E}\mathbf{E}^{\dagger} = \begin{pmatrix} E_x \\ E_y \end{pmatrix} (E_x^* \quad E_y^*) = \begin{pmatrix} E_x E_x^* & E_x E_y^* \\ E_y E_x^* & E_y E_y^* \end{pmatrix}$$

• Expectation Value (Matrix Describes Field Statistics)

$$C = \langle \mathbf{E}\mathbf{E}^{\dagger} \rangle = \begin{pmatrix} \langle E_x E_x^* \rangle & \langle E_x E_y^* \rangle \\ \langle E_y E_x^* \rangle & \langle E_y E_y^* \rangle \end{pmatrix} = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$$

Real Powers:
$$a = \langle E_x E_x^* \rangle$$
 $c = \langle E_y E_y^* \rangle$ Correlation: $b = \langle E_x E_y^* \rangle$

Coherency Matrix Examples

• \hat{x} Polarization

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad a = 1, \ b = c = 0$$

45-Degree Polarization

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \qquad a = b = c = 1/2$$

Right–Circular Polarization

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ j \end{pmatrix} \qquad a = c = 1/2 \text{ and } b = j/2$$

Unpolarized (Randomly Polarized) Light

$$a = c = 1/2$$
 $b = 0$

Devices and Coherency Matrices

Jones Matrix Acting on Field

$$E_{out} = \mathcal{J}E_{in}$$

Adjoint Equation (Same Information)

$$\mathbf{E}_{out}^{\dagger} = \mathbf{E}_{in}^{\dagger} \mathcal{J}^{\dagger}$$

Combination

$$\left\langle \mathbf{E}_{out} \mathbf{E}_{out}^{\dagger} \right\rangle = \left\langle \mathcal{J} \mathbf{E}_{in} \mathbf{E}_{in}^{\dagger} \mathcal{J}^{\dagger} \right\rangle$$

• If \mathcal{J} is Constant (Big If)

$$C_{out} = \mathcal{J}C\mathcal{J}^{\dagger}$$

Coherency Matrix Application

Sunlight (Nearly Unpolarized) on Water

$$C_{out} = \begin{pmatrix} \rho_p & 0 \\ 0 & \rho_s \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} \rho_p^* & 0 \\ 0 & \rho_s^* \end{pmatrix} = \frac{1}{2} \begin{pmatrix} R_p & 0 \\ 0 & R_s \end{pmatrix}$$

 $R_s > R_p$

Stokes Vectors

Equation (Different Notations in Different Texts)

$$\begin{pmatrix} I \\ M \\ C \\ S \end{pmatrix} = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} a+c \\ a-c \\ b+b^* \\ (b-b^*)/j \end{pmatrix}$$

- Meanings (Four Real Numbers)
 - I is Total Power (Always Positive)
 - M is Preference for \hat{x} over \hat{y} (-I to +I)
 - C is Preference for 45—Degree over -45—Degree
 - S is Preference for RHC over LHC

Example Stokes Vectors

$$\mathbf{E}_{x} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \qquad \mathbf{E}_{y} = \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix} \qquad \mathbf{E}_{45} = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$$

$$\mathbf{E}_{-45} = \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \qquad \mathbf{E}_{RHC} = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \qquad \mathbf{E}_{LHC} = \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}$$

$$\mathbf{E}_{unpolarized} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad \mathbf{E}_{sun-reflected-from-water} = \begin{pmatrix} 1\\R_{s}-R_{p}\\0\\0 \end{pmatrix}$$

Degree of Polarization

Definition

$$V = \frac{\sqrt{M^2 + C^2 + S^2}}{I} \le 1$$

- Meaning
 - -V=1 Means Complete Polarization
 - -V=0 Means Random Polarization

Q: What is V in terms of a, b, c?

Mueller (or Müller) Matrices

- 16 Real Numbers
 - 7 Independent (Phase lost)
- Compare Jones Matrices
 - 4 Complex Numbers
- \hat{x} Polarizer

• \hat{y} Polarizer

Polarization Randomizer

Recall

$$\left\langle \mathbf{E}_{out}\mathbf{E}_{out}^{\dagger}\right\rangle = \left\langle \mathcal{J}\mathbf{E}_{in}\mathbf{E}_{in}^{\dagger}\mathcal{J}^{\dagger}\right\rangle$$

$$\mathcal{C}_{out} = \left\langle \mathcal{J} \mathbf{E}_{in} \mathbf{E}_{in}^{\dagger} \mathcal{J}^{\dagger} \right\rangle$$

ullet Vary ${\mathcal J}$ to Make

$$C_{out} = \mathcal{I}$$

How?

Poncaré Sphere

NormalizedStokesParameters

$$\frac{1}{I} \begin{pmatrix} M \\ S \\ C \end{pmatrix}$$

- ullet Radius V
 - CompletePolarizationon Surface
 - Random atCenter

