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The Story So Far

• Small–Angle Approximation

sin θ = θ = tan θ and cos θ = 1

• Perfect Imaging

– Lens Equation (Image Location)

– Magnification (Image Size)

– Matrix Optics and Other Bookkeeping Tricks

– Point Images as Point, or . . .

– Image Position, X ′, Independent of Pupil Position, X1
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Using Snell’s Law Exactly

• Example: Single Convex Air–to–Glass Interface
• Paraxial Rays Follow Small–Angle Approximation
• Edge Rays May Focus Quite Differently
• Rays Do Not Intersect at a Single Point (or at all in 3D)
• Large “Shot Pattern” at “Paraxial” Focus
• “Best” Focus Translated and Depth of Focus Increased
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Looking Ahead: Diffraction

• Diffraction Theory (Ch. 8) Predicts a Minimum Spot Size

– Rooted in Fundamental Physics

– ≈ λ
Dpupil

z

• Ray Tracing Result Below this Limit is “Good Enough”

– Characterized as “Diffraction–Limited”

• Larger Ray–Tracing Result Indicates Degraded Imaging

– Can Characterize Roughly by “XDL”
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Ray Tracing: Overview

• Setup: Launch a Fan of Rays (eg. Fill FOV and Pupil)

• Loop On Rays

– Loop On Elements (Like Matrix But No Approximations)

∗ Translation (Straight–Line Propagation)

∗ Refraction or Reflection (Interfaces)

– Close (End the Ray Calculation)

• Report (eg. Spot Size vs. Field Position)
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Ray Tracing: Translation (1)

• Parametric Eq. for Ray

x = x0 + `v̂

x

y

z

 =

x0
y0
z0

+ `

 u

v

w



• Surface Eq. (Eg. Sphere, Centered on Axis)

(x− xc) · (x− xc) = r2 x2 + y2 + (z − zc)
2 = r2

• Combine to Find Intersection

v̂ · v̂`2 +2(x0 − xc) · v̂`+ (x0 − xc) · (x0 − xc)− r2 = 0

u2`2 + v2`2 + w2`2 +2x0u`+2y0v`+2(z0 − zc)w`+

x20 + y20 + (z0 − zc)
2 − r2 = 0
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Ray Tracing: Translation (2)

• Solution (Quadratic in `)

aq`
2 + bq`+ cq = 0,

aq = v̂ · v̂ = 1 bq = 2(x0 − xc) · v̂

cq = (x0 − xc) · (x0 − xc)− r2

• Zero to Two Real Solutions

` =
−bq ±

√
b2q − 4aqcq

2aq

• Pick the “Right” One and Find Intersection

xA = x0 + `v̂
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Ray Tracing: Refraction

• Find the Normal in Order to Apply Snell’s Law

n̂ =
x− xc√

(x− xc) · (x− xc)

• At the New Origin from Translation Calculation

xA

• Compute the New Direction (Snell’s Law in Vector Notation)

v̂′ =
n

n′
v̂+

√1−
(
n

n′

)2 [
1− (v̂ · n̂)2

]
−

n

n′
v̂ · n̂

 n̂
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Ray Tracing: Close

• After Iterating Translation and Refraction as Needed. . .

• Answer Some Question

– “Where is Intersection with Paraxial Focal Plane?” . . .

xB · ẑ = zclose

(xA + `v̂1) · ẑ = zclose

– or Any of a Collection of More Complicated Questions
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Ray Tracing: Report (and More)

• Spot–Diagram (eg. vs. Field Position or Depth)

• Through–Focus Spot–Diagrams

• RMS or Maximum Spot Size (eg. XDL)

• Optical Path Length (eg. vs. Field Position)

• Many More

• Advanced Ideas (Many Commercial Programs)

– Optimization (eg. Vary Radii of Curvature and Distances)

– Use Vendor’s Stock Lenses

– Use Vendor’s Existing Tools

• Commercial Optical Designers
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Ray Tracing

Take–Away Message

• Ray Tracing Gives Exact Answers (Except for Diffraction)

• Paraxial Rays Obey the Small–Angle Equations of Ch. 3.

• Diffraction–Limited System

– Spot Less than zλ/D

– Such a Design is “Good Enough.”

• Commercial Programs Exist
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Ellipsoidal Mirror (1)

• Path:

– S to Surface to S′

• Fermat’s Principle:

– Minimal Time

• Imaging:

– All Paths Minimal 0 10 20 30
−10

0

10

z
x

SS’

b (s+s’)/2

|s−s’|/2

√
(z − s)2 + x2 + y2 +

√(
z − s′

)2
+ x2 + y2 = s+ s′
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Ellipsoidal Mirror (2)

• Vertex at Origin(
z − a

a

)2
+
(
x

b

)2
+
(
y

b

)2
= 1

a =
s+ s′

2

b2 =

(
s+ s′

2

)2
−
(
s− s′

2

)2
= ss′

1

f
=

1

s
+

1

s′
=

s′ + s

s′s
=

2a

b2

f =
b2

2a

• Spherical Mirror (s = s′)

z2 + x2 + y2 = r2

r = s = 2f

• Parabolic Mirror

z =
x2

4s′
+

y2

4s′
(s → ∞)

z =
x2

4f
+

y2

4f

Feb. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides5r1–12



Ellipsoidal Mirror (3)

• Ellipse(
z − a

a

)2
+
(
x

b

)2
+
(
y

b

)2
= 1

f =
b2

2a
• Best–Fit Sphere

r = 2f

• Best–Fit Parabola

z =
x2

4f
+

y2

4f

• Ellipse Perfect for

One Point Object

• Sphere or Parabola

May be Best Overall
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Mirror Aberrations: Definitions

• Match Second Derivatives at Origin (or See Previous Slide)

• Perfect Ellipsoid Defined by z, and ∆ Represents OPL Error

zsphere = z +∆sphere/2 zpara = z +∆para/2

(z − a)2 = a2 −
(
a

b

)2 (
x2 + y2

)
(Ellipsoid)(

z +
∆sphere

2
− r

)2
= r2 − x2 − y2 (Sphere, r = 2f)

z +
∆para

2
=

x

4f
(Paraboloid)

• Solve for ∆ for Sphere or Parabola
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Mirror Aberrations: OPL Errors

• Sphere or Parabola ok if ∆ � λ
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Summary of Mirror Aberrations

• An ellipsoidal mirror is ideal to image one point to another.

• For any other pair of points, aberrations will exist.

• A paraboloidal mirror is ideal to image a point at its focus

to infinity.

• Spherical and paraboloidal mirrors may be good approxima-

tions to ellipsoidal ones for certain situations and the aber-

rations can be computed as surface errors.

• Aberrations are fundamental to optical systems. Although

it is possible to correct them perfectly for one object point,

in an image with non–zero pupil and field of view, there will

always be some aberration.

• Aberrations generally increase with increasing field of view

and increasing numerical aperture.
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Seidel Aberrations and OPL

• Small–Angle Approximation

sin θ ≈ θ

• Next–Best Approximation (Third Order)

sin θ ≈ θ +
θ3

3!

• Wavefront Aberrations: ∆ = Error in OPL (eg. Tilt)

d∆tilt

dx1
= a1 ≈ δθ

• Approach: ∆ vs. Field Position and Pupil Position
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General Expression for Error

• Pupil Definitions, ρ, φ

x1 = ρdp/2cosφ

y1 = ρdp/2 sinφ

• Field Point: (x,0)

– Defines Coordinates

• Expand ∆ in ρ, φ, x

– Even Orders to 4th

∆ = a0 +
b0x

2 + b1ρ
2 + b2ρx cosφ +

c0x
4 + c1ρ

4 + c2x
2ρ2 cos2 φ +

c3x
2ρ2 + c4x

3ρ cosφ +
c5xρ

3 cos3 φ + . . .
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The Easy Terms

• Constant Term (The Very Easy One)

– “Piston” (Just a Phase Change)

a0

• Tilt (Linear Terms Displace the Image)

• Quadratic Term

– Defocus

b1ρ
2

∗ Can be Corrected

∗ Does not Affect Image Quality

• That’s the End of the Easy Ones
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Spherical Aberration

• Previously Analyzed for Mirrors

• First Quartic Term

∆sa = c1ρ
4 (Spherical Aberration)

• Analysis

– ρ2 is Focus

– c1ρ
2ρ2 Means Focus Varies With ρ2

– Different Focus for Different Parts of Pupil: Blur

– Blur Occurs Even for x = 0

1200min 14 Feb 2014
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Distortion

• Quartic Terms

∆d = c4x
3ρ cosφ (Distortion)

• Analysis

– ρ cosφ Is Wavefront Tilt

– c4x
3ρ cosφ Means Tilt Varies with x3

– Tilt Increases (c4 > 0) or Decreases (c4 < 0) as x3

– No Error at x = 0

Object Barrel Pincushion

Feb. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides5r1–21



Coma

• Quartic Terms

∆c = c5xρ
3 cos3 φ (Coma)

Image Rel. to

Field Point (x)

Pupil

• Analysis

– ρ cosφ Is Wavefront

Tilt

– c5xρ
2 cos2 φρ cosφ

Means Tilt Varies

∗ Linearly with x

(No Error at x = 0)

∗ Quadratically with

ρ cosφ (Symmetric

in Pupil)

– Comet–Like Image of

a Point
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Field Curvature and
Astigmatism

• Quartic Terms

∆fca = c2x
2ρ2 cos2 φ+ c3x

2ρ2

(Field Curvature and Astigma-

tism)

• Analysis

– ρ2 is Focus

– c3x
2ρ2 Means Focus

Varies with c3x
2

(Field Curvature)

– c2x
2 cos2 φρ2 Means

Focus Varies with

c2x
2 cos2 φ

(Astigmatism in cos2 φ)

– No Effect at x = 0

– Astigmatism Increases

with x2
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Astigmatism Examples (Ray
Tracing)
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“Deliberate Astigmatism”

• Setup

– Cylindrical Lens

– (With Spherical?)

– Ellipsoidal Lens

• Result

– Astigmatism On Axis

– Different Paraxial Foci

• Some Applications

– Eyes and Eyeglasses

– CD Player Focusing

∗ Quadrant Detector
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Seidel Aberrations Summary

x0 x1 x2 x3

ρ1 Tilt Distortion
ρ2 Focus F. C. & Astig.
ρ3 Coma
ρ4 Spherical

Expressions for aberrations. Aberrations are characterized

according to their dependence on x and ρ.

On Axis the Only Aberration is Spherical
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Aberrations

Take–Away Message

• Seidel Aberrations Cause Distortion and Blurring

• Only Spherical for On–Axis Object

• Aberrations Increase With Field of View and NA

Feb. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides5r1–27



Spherical Aberration in a Thin
Lens: Coddington Factors

• Given s and s′ What is the Best Thin Lens?

1

f
=

1

s
+

1

s′
1

f
= (n− 1)

(
1

r1
−

1

r2

)

• Two Unknowns, r1 and r2

• Definition: Coddington Position Factor (f , p: Lens Use)

p =
s′ − s

s′ + s
=

1+m

1−m

• Coddington Shape Factor (f , q: Lens Manufacture)

q =
r2 − r1
r2 + r1
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Spherical Aberration in a Thin
Lens: Computing Aberration

• Equations for Surface Radii

1

f
= (n− 1)

(
1

r1
−

1

r2

)

r1 = 2f
q

q +1
(n− 1) r2 = −2f

q

q − 1
(n− 1)

• Longitudinal Aberration a Function of Height in Pupil

Diopters Ls =
1

s′(x1)
−

1

s′(0)
=

x2
1

8f3

1

n (n− 1)

(
n+2

n− 1
q2 +4(n+1) pq + (3n+2) (n− 1) p2 +

n3

n− 1

)
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Spherical Aberration in a Thin
Lens: Aberration Distances

• Focal Change in Diopters

1

s′(x1)
−

1

s′(0)
=

s′(0)− s′(x1)

s′(x1)s′(0)
≈

s′(0)− s′(x1)

s′(0)2

• Displacement of Focal Position

∆s′ (x1) ≈
[
s′ (0)

]2
Ls (x1)

• Transverse Displacement

∆x′ (x1) = x1
∆s′ (x1)
s′(0)
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Spherical Aberration in a Thin
Lens: Minimizing Aberration

• Set Derivative to Zero
dLs

dq
= 0

• Solve for Best q

qopt = −
2
(
n2 − 1

)
p

n+2

• Transverse Aberration: Varies with NA3

∆x (x1) =
x31s

′ (0)

8f3

[
−np2

n+2
+
(

n

n− 1

)]
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Spherical Aberration Examples
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Spherical Aberration in a Thin
Lens: Designing the Lens

+ signs show Plano–Convex, Biconvex, Convex–Plano
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Guideline: Share the Bending

Take–Away Message
• Share the Bending for Best Aberration

• Watch Principal Planes

– IR Detector Lens Example
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IR Detector Lens Problem

• Small Detector

• Inside Dewar

• Germanium Lens

• Meniscus

• Short Focal Length

• High NA (Small Spot)

• Principal Planes

– Outside Lens

– Badly Positioned

• Bad Solution

– Reverse the Lens

– Focal Point on Detector

– Bad Aberrations
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Chromatic Aberration

• Focal Length Depends on Index of Refraction

• Index of Refraction Depends on Wavelength

– See Glass Map in Ch. 1

• Different Colors Have Different Focal Lengths

– Important for White Light Spectrum or a Portion of It

– Important for Multi–Wavelength Systems

(eg. Fluorescence, λexcitation 6= λemission)

– Important for Short Pulses (δf = 1/δt): Remember

δλ

λ
=

δf

f
=

1

fδt
=

1

Cycles per Pulse

• Correction is Possible

• Reflective Optics Eliminate Chromatic Aberration
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Lens Design Ideas

When One Doesn’t Work . . .

Use Two (or more)

and Share the Bending

(The More the Better)

or “Let George Do It”

(Use Commercial Lenses)

or Try an Aspheric

1300min 18 Feb 2014
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