Optics for Engineers Chapter 4

Charles A. DiMarzio
Northeastern University

Jan. 2014

Stops

- Pupil Diameter, D, Limits Light Gathering Ability
- Usually Defined by f-number or Numerical Aperture
- Window Limits Field of View
- Usually Defined by Angle(s) or Linear Dimension(s)

Numerical Aperture

F-Number and NA (1)

$$
F=\frac{f}{D}
$$

$N A=n \sin \theta$

Differences
Summarized

	F	$N A$				
Angle Vertex	Focal Point	Object				
or Image			$	$	Trig.	tan
:---:	:---:					
Dep.						
"Fast" Lens	\downarrow					
Inv.	Lin.					
Aperture	Dia.					

F-Number and NA (2)

$$
\begin{gathered}
F=\frac{f}{D} \quad N A=n \sin \theta \\
\frac{1}{f}=\frac{-m}{s^{\prime}}+\frac{1}{s^{\prime}} \quad s^{\prime}=(1-m) f \\
N A_{\text {image }}=n^{\prime} \frac{1}{\sqrt{(|m-1| \times 2 F)^{2}+1}} \\
N A_{\text {object }}=n \frac{1}{\sqrt{\left(\left|\frac{1}{m}-1\right| \times 2 F\right)^{2}+1}}
\end{gathered}
$$

Small $N A$, Large F

$$
N A_{\text {image }}=
$$

$$
n^{\prime} \frac{1}{|m-1| \times 2 F}
$$

$$
\begin{aligned}
& \text { 1:1 Relay }(m=-1) \\
& \qquad N A=\frac{1}{\sqrt{4 F^{2}+1}}
\end{aligned}
$$

Light-Gathering Ability

$$
\begin{gathered}
d P_{\text {aperture }}=I \times d \Omega \\
N A_{\text {object }}=n \sin \theta=n \frac{D / 2}{\sqrt{s^{2}+(D / 2)^{2}}} . \\
\Omega=2 \pi\left(1-\sqrt{\left.1-\left(\frac{N A}{n}\right)^{2}\right)}\right. \\
\Omega=\frac{\pi}{4}\left(\frac{D}{s}\right)^{2} \quad \text { (Small NA) }
\end{gathered}
$$

For Constant I :

$$
P=I \Omega
$$

Example: Camera (1)

Object: $d I=L d A(\mathrm{~W} / \mathrm{sr})$ (Radiance, L in Ch. 12)

Change $x_{\text {pixel }}$ to $x_{\text {pixel }}^{\prime}$ in Text

Object Distance	s	1000 m
Camera Pixel	$x_{\text {pixel }}^{\prime}$	$7.4 \mu \mathrm{~m}$
Lens	f	9 mm
	D	$f / 2$

$$
\begin{aligned}
& x_{\text {pixel }}= x_{\text {pixel }}^{\prime} / m= \\
& \text { Intensity of Bright Scattered Sunlight } \\
&\left.\left(1 / 4 \times 10^{-6} \mathrm{~m}\right) /\left(9 \times 10^{-6}\right) \quad \text { in the Visible: Ch. } 12\right)
\end{aligned}
$$

$$
\frac{1000 \mathrm{~W} / \mathrm{m}^{2}}{\pi}
$$

Example: Camera (2)

Intensity of Scattered Sunlight: $50 \mathrm{~W} / \mathrm{sr}$

$$
\begin{gathered}
N A_{\text {Object }} \approx \frac{D}{2 s}=\frac{f}{2 F s}=\frac{0.009 \mathrm{~m}}{4 \times 1000 \mathrm{~m}}=2.25 \times 10^{-6} \\
\Omega \approx \pi N A^{2}=1.6 \times 10^{-11} \mathrm{sr} \\
d P_{\text {aperture }}=d I \Omega=50 \mathrm{~W} / \mathrm{sr} \times 1.6 \times 10^{-11} \mathrm{sr}=7.9 \times 10^{-10} \mathrm{~W}
\end{gathered}
$$

Example: Camera (3)

$d P_{\text {aperture }}=d I \Omega=50 \mathrm{~W} / \mathrm{sr} \times 1.6 \times 10^{-11} \mathrm{sr}=7.9 \times 10^{-10} \mathrm{~W}$
Photon Energy: $h \nu=h c / \lambda$
Photons (Lots of 'em!):

$$
N=\frac{d P_{\text {aperture }}}{h \nu} \eta t
$$

Wavelength (Green)	λ	500 nm
Quantum Efficiency	η	0.4
Frame Time	t	$1 / 30 \mathrm{sec}$
Electrons	N	2.7×10^{6}

Example: Camera (4) Voltage

- Oxide Capacitance / Area
- Typical MOS Wafer
- See Any Electronics Text

$$
C_{A}=10 \mathrm{nF} / \mathrm{cm}^{2}
$$

- Number of Electrons
- Previous Page
-2×10^{6}
- Voltage on Pixel: 79V
- Unreasonable!
- Typical Full Well
- 10^{4} electrons
- 0.3 V
- Decrease Aperture
- At least f/2 to f/20
- Typical for Bright Sun

```
>> C_A=10*1e-9/1e-4
C_A =
    1.0000e-04
    >> Area=(7.4e-6)~2
    Area =
    5.4760e-11
>> capacitance=C_A*Area
capacitance =
    5.4760e-15
>> constant;
>> charge=2.7e6*q_electron
charge =
    4.3259e-13
>> voltage=charge/capacitance
voltage =
    78.9970
```


Camera Apertures

Abbe Invariant ($m_{\alpha}=1 / m$) Implies Constant Etendue (See Ch. 12)

$$
\begin{array}{ll}
A^{\prime}=m^{2} A & \Omega^{\prime}=\frac{1}{m^{2}} \Omega \\
A \Omega=A^{\prime} \Omega^{\prime} & L A \Omega=L A^{\prime} \Omega^{\prime}
\end{array}
$$

Aperture Stops: Each Stop Is a Factor of 2

F, Indicated f-number	1.4	2	2.8	4	5.6	8	11
Actual f-number	$\sqrt{2}^{1}$	$\sqrt{2}^{2}$	$\sqrt{2}^{3}$	$\sqrt{2}^{4}$	$\sqrt{2}^{5}$	$\sqrt{2}^{6}$	$\sqrt{2}^{7}$
NA	0.3536	0.2500	0.1768	0.1250	0.0884	0.0625	0.0442
Ω, sr	0.3927	0.1963	0.0982	0.0491	0.0245	0.0123	0.0061

The Field Stop

- Simple Example as Shown
- Window = Field Stop
- Called the Entrance Window
- Field of View
- Limits Size of Object (Diameter or Angle)...
- ... or Size of Image

Exit Window: Example

- Entrance Window Limits Size of Object
- Exit Window = Image of Field Stop
- Exit Window Limits Size of Image
- Location and Size from Imaging Equations
- Entrance and Exit Windows Real in this Example

800min 31 Jan 2014: Streaming video next week.

Finding the Exit Window

Use Imaging Equations: Location and Size

Camera FOV (1)

- Field of View Lmited in Image Rather than Object
- Camera Chip is the Limit
- 1/2.3in Compact Digital Camera
- Diagonal Dimension $=11 \mathrm{~mm}$.
- Image Field of View (Here Defined by Full Angle)

$$
\begin{gathered}
f=10 \mathrm{~mm} \quad(\text { Normal Lens }) \quad s \rightarrow \infty \\
F O V=2 \arctan \frac{11 \mathrm{~mm} / 2}{10 \mathrm{~mm}}=58^{\circ}
\end{gathered}
$$

Camera FOV (2)

Wide-Angle Lens, $f=5 \mathrm{~mm}$

Normal Lens, $f=10 \mathrm{~mm}$

Telephoto Lens, $f=20 \mathrm{~mm}$

Typical Camera Lenses

In-Practice

- Camera lens choices depend on exit window and application.
- Application determines field of view.
- Normal lens has 45 to 60 Degree FOV.

Application	35m Camera	2/3-in Camera
Telephoto	$>100 \mathrm{~mm}$	$>20 \mathrm{~mm}$
Normal Lens	50 mm	10 mm
Wide-Angle	$<30 \mathrm{~mm}$	$<5 \mathrm{~mm}$

- These numbers are very rough guidelines

Another Example: Virtual Exit Window

Summary In Image Space

- Pupil Limits Light-Gathering Ability
- Cone of Rays From Image is Limited
- Solid Angle Determines Amount of Light Collected

- Window Limits Field of View
- Cone of Rays from Pupil is Limited
- FOV Defined by Angle or Linear Dimension

Where Are the Stops?

- Compound Lens
- Object to Left at Infinity
- Image as Shown
- Where Are the Stops Now?
- Aperture Stop?
- Field Stop?
- Important Concepts
- Sequential Optics
- Object and Image Space
- Other Spaces (e.g. Infinity)

Object Space, Image Space, and Stop Definitions

Mapping from Object Space to Image Space through the Compound Lens

$$
\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s} \quad x^{\prime}=-\frac{s^{\prime}}{s} x
$$

Pick one space and work in that.

Object Space	Physical Component	Image Space
Entrance Pupil:	Aperture Stop:	Exit Pupil: Image of
Image of Aperture	Limits Cone of Rays	Aperture Stop in Image
Stop in Object Space.	from Object which Can	Space. Limits Cone of
Limits Cone of Rays	Pass Through the	
Rays from Image.		
from Object	System.	
Entrance Window:	Field Stop: Limits	Exit Window: Image
Image of Field Stop in	Locations of Points in	of Field Stop in Image
Object Space. Limits	Object which Can Pass	Space. Limits Cone of
Cone of Rays From	Through System	Rays From Exit Pupil.
Entrance Pupil.		

Finding the Stops in Object Space

- Find Each Lens as Seen in Object Space
- Lens L_{1}
- Lens L_{2} as Seen Through $L_{1}\left(=L_{2}^{\prime}\right)$
- Lens L_{3} as Seen Through L_{2} and $L_{1}\left(=L_{3}^{\prime}\right)$
- Lens L_{4} as Seen Through L_{3}, L_{2} and $L_{1}\left(=L_{4}^{\prime}\right)$

Finding the Entrance Pupil

- Start at the Object (To the Left at Infinity Here)
- Find the Aperture that Limits Cone of Rays from Object
- Entrance Pupil is L_{4}^{\prime}, Aperture Stop is L_{4} (Smallest Angle)

Finding the Entrance Window

- Start at the Entrance Pupil
- Find the Aperture that Limits Field of View from Pupil
- Entrance Window is L_{3}^{\prime}, Field Stop is L_{3}
- Remember Entrance Pupil is L_{4}^{\prime}, Aperture Stop is L_{4}
- The Remaining Apertures Don't Matter

Fix figure in text (4-5-apexample.odg)

Object Space and Image Space: Entrance and Exit Pupils

Object Space and Image Space: Entrance and Exit Windows

The Telescope

The Telescope: Object and Image Space

Eye Relief: Matching Pupils

Eye Too Far Away:
Telescope Exit Pupil
Becomes Field Stop and Is Visible.

Pupils Matched: Actual Pupil is the Smaller of the Two.

Eye Too Close. Telescope Exit Pupil Becomes Field Stop but is Blurred
(Distance is Negative).

Scanning and Pupils: Laser-Radar Example

Post-Expander Scanning

Place the Scanning Mirrors in a Pupil Plane (or Close)
Small Mirrors Can Move Faster. . .
...but Remember the Angular Magnification
1000min 7 Feb 2014 by JH. Streaming video for 4 Feb.

The Simple Magnifier

- The Simple Magnifier Has Practical Limitations

$$
\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}
$$

- Large s^{\prime} for Large $m ; s \approx f$

$$
s^{\prime}=-\frac{f s}{f-s} \approx-\frac{f^{2}}{f-s} .
$$

- s Slightly Smaller than f for Positive m and negative s^{\prime}

$$
m=\frac{-s^{\prime}}{s}>0
$$

- No Limit on m...
- But x^{\prime} / s^{\prime} is What Matters
- Define $M=m$ at $s^{\prime}=20 \mathrm{~cm}$

$$
M=\frac{20 \mathrm{~cm}}{f}
$$

- Hard to Make f / d Small
- $d \ll d_{\text {eye }}$ Costs Light
- Hard to Make $f \ll 1 \mathrm{~cm}$ (but Leeuwenhoek did it)
- Better Solution: Compound Microscope

Compound Microscope

- The Solution: Use Two (or More) Lenses
- Now We Really Need to Understand Pupils and Windows
- Two-Lens Microscope
- Objective (First Lens) Provides High Magnification and Real Image
- Eyepiece Acts as a Simple Magnifier
- Both Are Usually Compound Lenses (See Ch. 5)

Compound Microscope: Object Space

- Objective Provides Magnification and Aperture Stop
- Short Focal Length for High Magnification
- High NA (Hopefully)
- Tube Length Provides Large Real Intermediate Image

$$
m_{\text {objective }}=-\frac{s_{\text {objective }}^{\prime}}{f_{\text {objective }}} \approx-\frac{\ell_{\text {tube }}}{f_{\text {objective }}}
$$

- Standard Tube Length 160 mm
- Many Variations
- Tube Length Makes Entrance Window Near Object

Compound Microscope: Image Space

- Eyepiece Acts as a Simple Magnifier and Field Stop
- Moderate Focal Length for Moderate Magnification
- Exact Magnification Not Critical (x^{\prime} / s^{\prime} Matters)
- Image Near Infinity (Virtual, Inverted)
- Tube Length Places Exit Pupil at Back Focus of Eyepiece
- Eye Relief for Pupil Matching

Infinity-Corrected Microscope

- Added Lens, Telecentric Configuration

$$
m_{\text {objective }}=-\frac{f_{\text {tube }}}{f_{\text {objective }}}
$$

- Improved Image Quality
- Infinity Space Between Objective and Tube Lens
- Allows for Filters and Other Optics (Flat without Aberration: See Ch. 5)
- Provides Real Pupil
- Camera Often Placed at Intermediate Image

Infinity-Corrected Microscope

Illumination Should Match or Exceed FOV (\& No Diffuser)

Aperture is Well-Defined (In the Objective)

Microscope Apertures

- Aperture Stop (<10 to $>20 \mathrm{~mm}$)
- In Back Focal Plane of Objective
- Determines NA
- Exit Pupil at Back Focal Plane of Eyepiece.
- Field Stop (> 20mm)
- At Intermediate Image
- Often Used for Camera or Detector * Camera Then Acts as Field Stop (Smaller FOV)
- Entrance Pupil at Object (Front Focal Plane of Objective
- All in Focal Planes

Köhler Illumination

- Light Source in a Pupil Plane
- Not Imaged (See Ch. 11 and Homework Problem There)
- Condenser Lens Determines FOV of Light Source In-Practice

Köhler Illumination is normally used in a microscope.

1100min 11 Feb 2014

