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Chapter Overview

Thin Lens

1
s + 1

s′ =
1
f

Thick Lens
What are s, s′, f?

Is this equation still valid?

• Thin Lens (Ch. 2)

• Thick or Compound Lens

• Matrix Methods

• Abbe Invariant

– mαm = n/n′

– Fundamental Limit

• Principal Planes

• Imaging Equation

– Thin Lens Equation for

Thick Lens

• Exact Solution (Compound

Lens)

• Approximation (Thick Lens)

– “Rule of Thirds”
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Compound Lens and Ray
Definitions

Ray Definition (Vector)

Translation (Matrix)

Refraction (Matrix)

Correct Ray

Vertex Planes

Matrix Optics Ray
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Ray Definitions

• Ray Information

– Straight Line

– Two Dimensions (or 3)

– Slope and Intercept

• Mathematical Formulation

– Linear (Paraxial Approx.)

– 2-Element Col. Vector

– Intercept on Top

– Reference to Local z

– Angle on Bottom

V =

(
x

α

)
• Some Books Differ

• Arbitrary Operation

(ABCD Matrix)

M =

(
A B

C D

)

Vend = Mstart:endVstart

• Subscript for Vertex Number
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Translation From One Surface
to the Next

• Move Away from Source

• z1 to z2

V2 = T12V1

• Angle Stays Constant

α2 = 1α1 +0x1

• Height Changes

x2 = 1x1 + z12α1

• Matrix Form(
x2
α2

)
=

(
1 z12
0 1

)(
x1
α1

) T12 =

(
1 z12
0 1

)
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Refraction at a Surface (1)

• Matrix Form

V′
1 = R1V1

• Height Does Not Change

x′1 = (1× x1) + (0× α1)

(
x′1
α′
1

)
=

(
1 0

? ?

)(
x1
α1

)
• Angle Changes (Ch. 2)

θ = γ+α θ′ = γ−β = γ+α′

tanα =
p

s+ δ
tanβ =

p

s′ − δ

tan γ =
p

r − δ
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Refraction at a Surface (2)

• Height Does Not Change(
x′1
α′
1

)
=

(
1 0

? ?

)(
x1
α1

)
• Angle (See Prev. Page)

nθ = n′θ′

n (γ + α) = n′
(
γ + α′

)
,

n
x

r
+ nα = n′

x

r
+ n′α′.

α′ =
n− n′

n′r
x+

n

n′
α.

R =

(
1 0

n−n′
n′r

n
n′

)

R =

(
1 0

−P
n′

n
n′

)
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Cascading Matrices

V1 = T01V0 V1
′ = R1V1 V2 = T12V1

′ etc.

Vend = M0:endV0 M0:end = Tend−1:end . . . T12R1T01

Multiply from Right to Left as Light Moves from Left to Right.
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The Simple Lens (1)

• First Surface

V′
1 = R1V1

• Translation

V2 = T12V′
1

• Second Surface

V′
2 = R2V2

• Result

V′
2 = LV1

L = R2T12R1
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The Simple Lens (2)

• From Previous Page L = R2T12R1

L =

(
1 0

−P2
n′2

n′1
n′2

)(
1 z12
0 1

)(
1 0

−P1
n′1

n1
n′1

) (
n2 = n′1

)
• Strange but Useful Grouping

L =

(
1 0

−Pt
n′2

n1
n′2

)
+

z12
n′1

(
−P1 n1
P1P2
n′2

−P2
n1
n′2

)
(Pt = P1 + P2)

• Initial: n1 = n, Final: n′2 = n′, Lens: n′1 = n`

L =

(
1 0

−Pt
n′

n
n′

)
+

z12
n`

(
−P1 n
P1P2
n′ −P2

n
n′

)

• n` implicit in P1 and P2, and thus Pt

– User may not care about n`, r1, r2
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The Thin Lens (1)

• The Simple Lens (Previous Page)

L =

(
1 0

−Pt
n′

n
n′

)
+

z12
n`

(
−P1 n
P1P2
n′ −P2

n
n′

)

• Geometric Thickness, z12/n`, Multiples Second Term

• Set z12 → 0

L =

(
1 0

−P
n′

n
n′

)
(Thin Lens)

P = Pt = P1 + P2 Correction Term Vanishes

Fabrication Details (n`, r1, r2) Are Not Needed or Available
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The Thin Lens (2)

• Thin Lens in terms of Focal Lengths

L =

(
1 0

−P
n′

n
n′

)
=

(
1 0

− 1
f ′

n
n′

)
=

(
1 0

− n
n′f

n
n′

)

• Front Focal Length: f = FFL, Back: f ′ = BFL

• Special but Common Case: Thin Lens in Air

L =

(
1 0

−P 1

)
=

(
1 0

−1
f 1

)
(Thin Lens in Air)

f = f ′ =
1

P
FFL = BFL Always True if n′ = n
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Simple Lens Matrix Summary

Take–Away Messsge

• Matrix methods are valid in paraxial approximation

• A simple lens matrix is refraction, translation, refraction

• Result is thin lens plus a correction term

• Result reduces to the thin lens as thickness approaches zero
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General Problems and the
ABCD Matrix

• General Equation

Vend = Mstart:endVstart

(
xend
αend

)
=

(
m11 m12

m21 m22

)(
xstart
αstart

)

• Determinant Condition (Not Completely Obvious)

detM =
n

n′
(detM = m11m22 −m12m21)

• Abbe Sine Invariant (or Helmholz or Lagrange Invariant)

n′x′dα′ = nxdα
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Abbe Sine Invariant

• Equation

n′x′dα′ = nxdα

• Alternative Derivations

– Geometric Optics

– Energy Conservation (C. 12)

• Lens Example

– Height Decreases by s′/s
– Angle Increases by s/s′

• Example: IR Detector

– Diameter

D′ = 100µm

– Collection Cone

FOV ′
1/2 = 30◦

• Telescope Front Lens

– Diameter

D = 20cm

– Max. Field of View

FOV1/2 =

100× 10−6m× 30◦

20× 10−2m
=

0.0150◦
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Principal Planes Concept (1)

• Thin Lens

L =

(
1 0

−P
n′

n
n′

)
• Simple Equation

• Easy Visualization

(“High–School Optics”)

• Good “First Try”

• Arbitrary Lens

• Vertex to Vertex

MV V ′ =

(
m11 m12

m21 m22

)
• Possible Simplification

MHH ′ = TV ′H ′MV V ′THV

MHH ′ = L

• Will It Work?
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Principal Planes Concept (2)

Convert a Hard Problem to a Simple one

MHH ′ = TV ′H ′MV V ′THV MHH ′ = L

Useful if a Solution Can Be Found
Very Useful if h and h′ Are Not Too Large
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Finding the Principal Planes

L = MHH ′ = TV ′H ′MV V ′THV(
1 0

−P
n′

n
n′

)
=

(
1 h′

0 1

)(
m11 m12

m21 m22

)(
1 h

0 1

)
(

1 0

−P
n′

n
n′

)
=

(
m11 +m21h

′ m11h+m12 +m21hh
′ +m22h

′

m21 m21h+m22

)

m11 +m21h
′ = 1 m11h+m12 +m21hh

′ +m22h
′ = 0

m21 = −P
n′ m21h+m22 = n

n′

Three Unknowns: Solution if Determinant Condition Satisfied

h′ = 1−m11
m21

Determinant Condition? Yes!

P = −m21n
′ h =

n
n′−m22

m21

No Assumptions Were Made About M: This Always Works.
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Principal Planes

• Principal Planes are Conjugates of Each Other (m12 = 0)(
xH ′

αH ′

)
=

(
1 0

−P
n′

n
n′

)(
xH
αH

)

• Unit Magnification Between Them

xH ′ = xH

Note: Principal Planes May Not Be Accessible

Jan. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides3r3–18



Arbitrary Compound Lens

Take–Away Messsge

• No matter how many elements, we can find a lens matrix

from the front principal plane to the back one . . .

MHH ′ =

(
1 0

−P
n′

n
n′

)(
xH
αH

)

• . . . and we can find the principal planes and optical power

h′ = 1−m11
m21

P = −m21n
′ h =

n
n′−m22

m21
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Imaging (We Know The Answer)

• Matrix from Object to Image

MSS′ = MH ′S′MHH ′MSH = Ts′MHH ′Ts

• Conjugate Planes

x′ = (?× x) + (0× α) MSS′ =

(
m11 0

m21 m22

)
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Imaging Equation for Compound
Lens

MSS′ =

(
1 s′

0 1

)(
1 0

−P
n′

n
n′

)(
1 s

0 1

)
=

(
1− s′P

n′ s− ss′P
n′ + s′n

n′

−P
n′ −sP

n′ +
n
n′

)

• Conjugate Plane Rule: m12 = 0

s−
ss′P

n′
+

s′n

n′
= 0

n

s
+

n′

s′
= P

• Measure s and s′ from H and H ′ respectively.
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Compound Lens Matrix Results

Magnifications (mmα = n′/n )

m = 1−
s′P

n′
= 1−

s′

n′

(
n

s
+

n′

s′

)
= −

ns′

n′s

mα = −
s

n′
(
n

s
+

n′

s′
) +

n

n′
= −

s

s′

Imaging Matrix

MSS′ =

(
m 0

−P
n′

n′
n

1
m

)
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Compound Lens

In–Practice

• For a compound lens, the thin lens equation still is valid

– Measure f and f ′ from H and H ′ respectively.

– Measure s and s′ from H and H ′ respectively.

• The imaging matrix from s to s′ gives the magnification, but

the old equations are still right.

m = −
s′

s
mα = −

n′

n
×

1

m
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Example of Matrix Application:
Thick Lens

• Thick–Lens Equation (Vertex–to–Vertex)

L =

(
1 0

−Pt
n′

n
n′

)
+

z12
n`

(
−P1 n
P1P2
n′ −P2

n
n′

)

• Power: P = −m21n
′

P = P1 + P2 −
z12
n`

P1P2 f =
n

P
f ′ =

n′

P

• Principal Planes

h = −
n′

n`

P2

P
z12 h′ = −

n

n`

P1

P
z12
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Thick Lens in Air: The Thirds
Rule for Principal Planes

• Principal Planes and Focal Length

f = f ′ =
1

P
h = −

1

n`

P2

P
z12 h′ = −

1

n`

P1

P
z12

• Principal–Plane Spacing

zHH ′ = z12 + h+ h′ = z12

(
1−

P2 + P1

n`P

)

P ≈ P1 + P2 zHH ′ = z12 + h+ h′ ≈ z12

(
1−

1

n`

)

Glass n` ≈ 1.5 zHH ′ =
z12
3
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Special Cases

Convex–Plano Biconvex Plano–Convex

h = −
n′

n`

P2

P
z12 h′ = −

n

n`

P1

P
z12

h,h′ Negative if P ,P1,P2 Have Same Signs (Often True)

h = 0 if P2 = 0 Convex–Plano or Concave–Plano

h′ = 0 if P1 = 0 Plano–Convex or Plano–Concave

h′ = h if P2 = P1 Biconvex or Biconcave in Air
and n′ = n
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Example: Biconvex Lens in Air

P1 + P2 = 10diopters, or f = 10cm (Biconvex: P1 = P2)
Solid=Vertices, Dashed=Principal Planes, Dash–Dot=Focal Planes

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

Locations

z 12
, L

en
s 

T
hi

ck
ne

ss
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“Bending” the Lens (Including
the Weird Cases)

P1 + P2 = 10diopters, or f = 10cm

Solid=Vertices, Dashed=Principal Planes, Dash–Dot=Focal Planes

Note “Meniscus” Lenses in Germanium

−20 0 20
−2.5

  −5

 Inf

   5

 2.5

Locations

r 1, R
ad

iu
s 

of
 C

ur
va

tu
re

−20 0 20
−10

−20

Inf

 20

 10

Locations

r 1, R
ad

iu
s 

of
 C

ur
va

tu
re

A. Glass (n = 1.5) B. Germanium (n = 4)
P : ±20Diopters P : ±30Diopters
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Example: Compound Lens
Matrix (Two Thin Lenses)

• General Case

MV1,V
′
2
= LV2,V

′
2
TV ′

1,V2
LV1,V

′
1

• Both Lenses Thin

MV1,V
′
2
=

(
1 0

− 1
f2

1

)(
1 z12
0 1

)(
1 0

− 1
f1

1

)

MV1,V
′
2
=

(
1− z12

f1
z12

− 1
f2

+ z12
f1f2

− 1
f1

1− z12
f2

)
600min 24 Jan 2014
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Compound Lens Results

• Focal Length (Powers add for small separation)

1

f
=

1

f2
+

1

f1
−

z12
f1f2

• Principal Planes

h =

z12
f2

− 1
f2

+ z12
f1f2

− 1
f1

=
z12f1

z12 − f1 − f2

h′ =
z12
f1

− 1
f2

+ z12
f1f2

− 1
f1

=
z12f2

z12 − f1 − f2

h → 0 and h′ → 0 if z12 → 0
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Matrices and Principal Planes

In–Practice

• For a simple glass lens

– The principal planes are separated by 1/3 the thickness.

– For a lens with one plane surface, one principal plane is
at the other vertex.

– For a biconvex lens the principal planes are symmetrically
located.

• For a compound lens the matrix calculation is needed

• In some cases, the principal planes can be in unusual (and
inconvenient) places.
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Example: 2X Magnifier (1)

• We Know How to Do This

– Object at Front Focus of First Lens

– Intermediate Image at Infinity

– Final Image at Back Focus of Second Lens

• But Let’s Use Matrix Optics for the Exercise
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Example: 2X Magnifier (2)

Lens Vendor Data: Glass=BK7 (n = 1.515 at λ = 633nm

Parameter Label Value

First Lens Focal Length f1 100 mm
First Lens Front Radius (LA1509 Reversed) r1 Infinite
First Lens Thickness zv1,v1′ 3.6 mm
First Lens Back Radius r′1 51.5 mm
First Lens “Back” Focal Length f1 + h1 97.6 mm

Lens Spacing zv1′,v2 20 mm

Second Lens Focal Length f2 200 mm
Second Lens Front Radius (LA1708) r2 103.0 mm
Second Lens Thickness zv2,v2′ 2.8 mm
Second Lens Back Radius r′2 Infinite
Second Lens Back Focal Length f ′

2 + h′
2 198.2 mm

Jan. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides3r3–33



Example: 2X Magnifier
(Thin–Lens Approximation)

1

f
=

1

100mm
+

1

200mm
−

20mm

100mm× 200mm
f = 71.43mm

h =
20mm× 100mm

20mm− 100mm− 200mm
= −7.14mm

h′ =
20mm× 200mm

20mm− 100mm− 200mm
= −14.28mm

m−−
s′

s
= −2 s′ = 2s, and

1

f
=

1

s
+

1

s′
=

1

s
+

1

2s

s = 3f/2 = 107.1mm s′ = 3f = 214.3mm
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Lens Thickness Effects

• Start with Equations for Thin Lenses

• Use Principal Planes in Place of Vertices

MH1,H
′
2
= LH2,H

′
2
TH ′

1,H2
LH1,H

′
1

• Same Equation as Thin Lens but Different Meaning

MH1,H
′
2
=

(
1 0

− 1
f2

1

)(
1 z12
0 1

)(
1 0

− 1
f1

1

)

– f1 from H1 and f ′1 from H ′
1

– f2 from H2 and f ′2 from H ′
2

– z12 from H ′
1 to H2
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2X Magnifier, Revisited (1)

• Principal Planes

h =
20mm× 100mm

20mm− 100mm− 200mm
= −7.14mm H1 to H

h′ =
20mm× 200mm

20mm− 100mm− 200mm
= −14.28mm H ′

2 to H ′

• Spacing (See Next Page)

0.713mm

• Object and Image Distances

s =
3f

2
= 107.1mm s′ = 3f = 214.3mm

Jan. 2014 c©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides3r3–36



2X Magnifier, Revisited (2)
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2X Magnifier Revisited (3)

In–Practice

• Assuming thin lenses in a compound lens is usually a good

start.

• Locations of principal planes for the compound lens can be

adjusted.

• Lens distances may change (although not in this example)

Q: How would you change the drawing if both lenses were re-

versed? Specifically, what would be the vertex–vertex distance

between the lenses?
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A Suggestion: Global
Coordinates

• Notation: zH1

– First Letter: z

– The Remaining Characters: Plane Name (eg. H1)

• Need to Set One Plane as z = 0

• Example from the Magnifier

– z = 0 at First Vertex

– zH1 = −h1

– zH = zH1− h = −h1 − h

– (Text Error: Not zH = zH1− h = h1 − h)

– etc.
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Special Case: Afocal

z12 = f1 + f2

1

f
=

f1
f1f2

+
f2

f1f2
−

z12
f1f2

= 0.

m21 = 0,
1

f
= 0, or f → ∞ (Afocal)

h → ∞ h′ → ∞

Principal Planes are not Very Useful Here.
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Telescopes (1)

• Afocal Condition

1

f
=

1

f2
+

1

f1
−

z12
f1f2

= 0 if z12 = f1 + f2

• Vertex Matrix

MV1,V
′
2
=

(
1− f1+f2

f1
f1 + f2

− 1
f2

+ f1+f2
f1f2

− 1
f1

1− f1+f2
f2

)
=

(
−f2

f1
f1 + f2

0 −f1
f2

)

• Imaging Matrix

MSS′ =

(
1 s′

0 1

)(
−f2

f1
f1 + f2

0 −f1
f2

)(
1 s

0 1

)
=

(
? 0

? ?

)
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Telescopes (2)

MSS′ =

(
−f2

f1
−sf2f1

+ f1 + f2 − s′f1f2
0 −f1

f2

)
=

(
? 0

? ?

)

−s
f2
f1

+ f1 + f2 − s′
f1
f2

= 0

m = −f2/f1, (Afocal)

ms+ f1 + f2 + s′/m = 0

s′ = −m2s− f1m (1 +m)

MSS′ =

(
m 0

0 1
m

)

s′ ≈ −m2s s → ∞
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Astronomical Telescope

• Magnification: Image is smaller (� 1) m = f2
f1

• But a Lot Closer: (mz = −m2)

• Angular Magnification is Large (mα = 1/m)

700min 28 Jan 2014
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