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Chapter Overview

Thin Lens

Image

Object

1 _I_ / - f
ThICK Lens
What are s, s/, f7
Is this equation still valid?

Image

Object

Thin Lens (Ch. 2)

Thick or Compound Lens

Matrix Methods

Abbe Invariant

— mgm = n/n’

— Fundamental Limit

Principal Planes

Imaging Equation

— Thin Lens Equation for
Thick Lens

Exact Solution (Compound

Lens)

Approximation (Thick Lens)

— “Rule of Thirds”

Jan. 2014 ©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides3r3—1



Compound Lens and Ray
Definitions

Correct Ray

o, 2 | £
~——
=%
b= X,

X1

_L Z12

Translation (Matrix) Vertex Planes

T 7 & E T~
: \

_ , Matrix Optics Ray
Refraction (Matrix)
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Ray Definitions

e Ray Information ol
— Straight Line — 1
— Two Dimensions (or 3)
— Slope and Intercept Xl
e Mathematical Formulation
2

— Linear (Paraxial Approx.)
— 2-Element Col. Vector

— Intercept on Top

— Reference to Local z

e Arbitrary Operation
(ABCD Matrix)

— Angle on Bottom M — A B
V — (m) ~\c D
@
e Some Books Differ Vend = Maiart-endV start

e Subscript for Vertex Number
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Translation From One Surface

to the Next

e Move Away from Source
e 21 tO 2o

Vo =7T12V1
e Angle Stays Constant
a> = lag + Oxg
e Height Changes

xo = lx1 + 21001

e Matrix Form

()= %))
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Refraction at a Surface (1)

e Matrix Form
Vi=R1V1
e Height Does Not Change

z] = (1 x 1)+ (0 xay)

()= 7))

e Angle Changes (Ch. 2)

Jan. 2014
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0 =~v+a ' =~v—B=~+d
tana = b tan g = P
s+ 6 s’ — 9§
p
tany =
7 r—29
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Refraction at a Surface (2)

e Height Does Not Change
-0 )
0/1 77 Q] X3
e Angle (See Prev. Page) _L

nd = n'o’

n(y+a)=n'(v+a),

v

|
N
|_l
3|3 O
N—

T T
n= 4+ na=n'= 4+ n'd.
r r
; n 1 0
o = :B—I—?Oé. R_<_£ ﬁ)
n'  n/
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Cascading Matrices

V1 ="7T01Vo Vi=R1Vy Vo = T15V¢' etc.

Vend — MO:endVO MO:end — 7-end—1:end .o 7-127317‘01

Multiply from Right to Left as Light Moves from Left to Right.
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The Simple Lens (1)

e First Surface

Vi =R1V1 -
e [ranslation 1 ?
Vo = T2V

e Second Surface

V’QZRQVQ X,; .
e Result
V’Q = LV,
X3
L =TR>T12R1
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The Simple Lens (2)

e From Previous Page £L = "R>T1oR1

_ (1 0N\ (1 =z 10 o
=\ ™ P n2=mny
n/ n/ O 1 n/ n/
2 2 1 1

e Strange but Useful Grouping

1 0 212 _Pl ni
E=(_& ﬂ>+—,(P1P2 _p,m (P = P1+ P)
/

/ / n /
no no 1 no no

e Initial: n1 = n, Final: n’2 = n/, Lens: n’l = ny

_( 1 O>+z12<—P1 n )
_% 7 ny P}fQ — P

e ny implicit in P; and P,, and thus P

— User may not care about ny, r1, ro
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The Thin Lens (1)

e The Simple Lens (Previous Page)

1 O Z12 —Pl n
T/ ny oy — 4207

e Geometric Thickness, z12/ny, Multiples Second Term

o Set 210 — 0

) (Thin Lens)

3|3 ©

P=F=P+m

Correction Term Vanishes

Fabrication Details (ny, r1, 7o) Are Not Needed or Available

Jan. 2014
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The Thin Lens (2)

e [hin Lens in terms of Focal Lengths

1 @) 1 O 0
L=1_Pp o]=|_1 a]=|_n =
n/ n/ f/ n/ n/f n/

e Front Focal Length: f = FFL, Back: f' = BFL

o

e Special but Common Case: Thin Lens in Air

/Lz( 1 O>:< 1 C1)> (Thin Lens in Air)

1
f=f= - FFL = BFL Always True if ' =n
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Simple Lens Matrix Summary

Take—Away Messsge
e Matrix methods are valid in paraxial approximation
e A simple lens matrix is refraction, translation, refraction
e Result is thin lens plus a correction term

e Result reduces to the thin lens as thickness approaches zero
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General Problems and the
ABCD Matrix

e General Equation

_ Lend \ _ [ ™M11 M12 Tstart
Vend — Mstart:endvsta?“t ( ) — ( ) ( )

Xend m21  MmMm22 A start

e Determinant Condition (Not Completely Obvious)

det M = "

Y (det M = mqi1mop — miomo1)

e Abbe Sine Invariant (or Helmholz or Lagrange Invariant)
n'z'do = nxda
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Abbe Sine Invariant

e Equation e Example: IR Detector
n'z'do’ = nxdo — Diameter
D' = 100um
e Alternative Derivations — Collection Cone
— Geometric Optics Fovl’/2 — 30°
— Energy Conservation (C. 12) e Telescope Front Lens
e Lens Example — Diameter
— Height Decreases by s'/s D = 20cm
— Angle Increases by s/s’ — Max. Field of View
FOV1/2 —

Image
100 x 10~°m x 30°

20 x 10—2m

Object
0.0150°
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Principal Planes Concept (1)

e Arbitrary Lens

e Thin Lens e Vertex to Vertex
B 1 0 M /:<m11 m12>
£—<_5/ g’> vV mo1 M2
e Simple Equation e Possible Simplification

e Easy Visualization
(“High—School Optics™)
e Good “First Try" Mg =L

MHH’ — TlelevlTHV

e Will It Work??

X % Front Back Image
:Principal Principal g
Plane Front Back Plane
Vertex Vertex

XI

h - | h' —— 5' ——

H
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Principal Planes Concept (2)

Front Back Image
Principal Principal g
I Plane Front Back Plane
Vertex Vertex
S
Object X'
[o— 5 —>F h—=| } h' —e— ' >
H vV V! H'

Convert a Hard Problem to a Simple one

My = Ty Myyi Tav My = £

Image

Object

Useful if a Solution Can Be Found
Very Useful if h and h/ Are Not Too Large
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Finding the Principal Planes

L= MHH’ = TV’H’MVV’THV

(1 o>_<1 h’><m11 m12><1 h)
—5 i O 1 mo1 Moo 0O 1

( 1 o) _ (mll + mo1 b/ m11h+m12+m21hh’+m22h’>
. mo1 mo1h 4+ moo

N

/

:\

n

mi11 + mo1h =1 | mi1h +mio + moihh' + mosh/ =0
moy = —%; mo1h +moo = 5

n

Three Unknowns: Solution if Determinant Condition Satisfied

h = 1;%—7:“111 Determinant Condition? Yes!

P = —mo1n/ h—%_m22
— 21 —  moq

No Assumptions Were Made About M: This Always Works.
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Principal Planes

e Principal Planes are Conjugates of Each Other (mi1o> = 0)

() = (e 2) (o)
gy —5 % oy

e Unit Magnification Between Them

a:H/ — g

X Front Back Image

Principal Principal g

Plane Front Back Plane
Vertex Vertex
S

XI

h >| |< h' —— s’ -~

H vV V! H'

Note: Principal Planes May Not Be Accessible
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Arbitrary Compound Lens

Take—Away Messsge

e NO matter how many elements, we can find a lens matrix
from the front principal plane to the back one ...

1 0 L
=) (00)
W/ \%H

e ...and we can find the principal planes and optical power

B = 1-mq1
m21

/ 71— mo2
P=—moin | h
moj
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Imaging (We Know The Answer)

e Matrix from Object to Image

Mgsr = MpgrgMpgpMsag = Ty My Ts

e Conjugate Planes

= (? xz) 4 (0 X a) MSS/=<m11 O)
m21 m22

Front Back Image
Principal Principal g
I Plane Front Back Plane
Vertex Vertex
S
Object X'
[fo—s5 —F h -l | h' —— s -
H v V H'
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Imaging Equation for Compound
Lens

Mo — [ s 1 0\ (1 s\ _ 1] —sP 3—88?;}3+57;—7}
>0 1)\-5 n)lo 1 -5 -4z

n n n n

e Conjugate Plane Rule: m1o =20

ss’P_I_s’_n:O

/

e Measure s and s’ from H and H’ respectively.
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Compound Lens Matrix Results

Magnifications (mmq = n'/n )

s'P s’ (n n’ ns’
n/ n' \s s/ n's
/
s n o n n S
ma=-— -+ )+ 5 =—1
n' s S n S

Imaging Matrix
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Compound Lens

In—Practice

e For a compound lens, the thin lens equation still is valid
— Measure f and f’ from H and H'’ respectively.
— Measure s and s’ from H and H’ respectively.

e The imaging matrix from s to s’ gives the magnification, but
the old equations are still right.
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Example of Matrix Application:
Thick Lens

e Thick—Lens Equation (Vertex—to—Vertex)

1 O 219 (—Pl n )
L= + 22
(_& n) P&f’g _P2n

,n/

e Power: P = —mgln/
/
Z12 n / n
P=P P, — —=—=PP - —
1+ P> SRR f 2 J 2
e Principal Planes
'P P
h=——"221, Wo=——"La,
ny P ny P
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Thick Lens in Air: The Thirds
Rule for Principal Planes

e Principal Planes and Focal Length
1 1 P> , 1 Py

J = f/ — E h = _n_nglz h' = —n—E?ZlQ

e Principal—Plane Spacing

P P
ZHH/=212+h+h’=le<1— 2T 1)

ny P

1
P%Pl—I-PQ ZHH/:le—Fh—I—h/%ZlQ(l——)

Ty

<
Glass ng~ 1.5 R = %
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Special Cases

Convex—Plano Biconvex Plano—Convex

'P P
h=——"221, Wo=—""La0,
ny P ny P

h,h' Negative if P,P;,P>, Have Same Signs (Often True)

h=20 it P> =0 Convex—Plano or Concave—Plano
=0 if P1 =0 Plano—Convex or Plano—Concave

M=h if Po=P Biconvex or Biconcave in Air
and n'=n
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Example: Biconvex Lens in Alr

P; 4+ P>, = 10diopters, or f = 10cm (Biconvex: Py = P5)
Solid=Vertices, Dashed=Principal Planes, Dash—Dot=Focal Planes

' Ve '
; o 5
'; ;o :
47 1 | B | .
z 11 -
' 1 !
1 11 1
1 [ 1
gy i :
9 1 1 '
< i 11 ]
2 i_ i :
~2 ' 5
N 1 1 !
1 1 !
1 " 1
1 " 1
1r ' :: '
1 1
' !
Loy _
-15 -10 -5 0 5 10 15
Locations
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“Bending” the Lens (Including
the Weird Cases)

P1 + P, = 10diopters, or f = 10cm
Solid=Vertices, Dashed=Principal Planes, Dash—Dot=Focal Planes
Note “Meniscus’ Lenses in Germanium

o - L
E Z.J . E 10 ‘,‘ "
S \ 1 ST !
5 5 4 Ky . T - s 20 (q", ***** .'
O 0 ' ' O 00‘, '
5 md POy N 5 it bs B .
5 ’ 'l \ ‘,~/~ 5 )’ " ‘,‘/
I LA 1 VO g 20y & |
nd nd ’\' ~
= -25 ' =10

-20 0) 20 -20 _ 20

Locations Locations
A. Glass (n = 1.5) B. Germanium (n = 4)
P : £20Diopters P : £30Diopters
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Example: Compound Lens
Matrix (Two Thin Lenses)

d
\

Muy vy = Ly v Tvi v Ly vy
e Both Lenses Thin

. 1 0 1 z1o 1 0
-y 06 T

1 — Z12 215
MV V/ — < ‘fl )
1) z12 1 212
2 _I_ fife 1 1 - o

<=

e General Case

600min 24 Jan 2014
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Compound Lens Results

e Focal Length (Powers add for small separation)

1_ 212
/ f2+f1 J1J2

e Principal Planes

212
p /2 _ z12/1

—I—fllé %_le—fl—fz

<12

B — /1 _ z12)2
+]511]?2 % z12 — f1— f2
h—0 and ' — 0 if 210 — 0
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Matrices and Principal Planes

In—Practice

e FOor a simple glass lens
— The principal planes are separated by 1/3 the thickness.

— For a lens with one plane surface, one principal plane is
at the other vertex.

— For a biconvex lens the principal planes are symmetrically
located.

e For a compound lens the matrix calculation is needed

e In some cases, the principal planes can be in unusual (and
inconvenient) places.
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Example: 2X Magnifier (1)

f=100mm f=200mm

T A (

-+ 100 > = ZO—N—ZOO—J

e We Know How to Do This
— ODbject at Front Focus of First Lens
— Intermediate Image at Infinity

— Final Image at Back Focus of Second Lens

e But Let's Use Matrix Optics for the Exercise
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Example: 2X Magnifier (2)

f=100mm f=200mm

T A (

VoA

< 100 » €4 20 —mp<€¢— 200

Lens Vendor Data: Glass=BK7 (n = 1.515 at A = 633nm

Parameter Label Value

First Lens Focal Length f1 100 mm
First Lens Front Radius (LA1509 Reversed) r1 Infinite

First Lens Thickness Zv1,01 3.6 mm
First Lens Back Radius T 51.5 mm
First Lens “Back” Focal Length fi+ h1 97.6 mMm
Lens Spacing 21702 20 mm
Second Lens Focal Length fo 200 mm
Second Lens Front Radius (LA1708) T2 103.0 mm
Second Lens Thickness 202 v 2.8 mm
Second Lens Back Radius 5 Infinite

Second Lens Back Focal Length 5+ R, 198.2 mm

Jan. 2014 ©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides3r3—33



Example: 2X Magnifier
(Thin—Lens Approximation)

f=100mm f=200mm

! A ([
V \ |
-+ 100 »=€— 20 —p-<4+— 200
1 1 1 20mm
= + — f=71.43mm
f 100mm  200mm 100mm x 200mm
20mMmm x 100mm
— = —7.14mm
20mMmm — 100mm — 200mm
B — 20mm x 200mm —  14.98mm
~ 20mm — 100mm — 200mm '
s’ 1 1 1 1 1
—_ = -2 ’:2, and — =4 — = — 4+ —
" S i i f s + s’ s + 25

s=3f/2=107.1mm s =3f =214.3mm
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Lens T hickness Effects

e Start with Equations for Thin Lenses

e Use Principal Planes in Place of Vertices

My 1y = Loy a5 Ty By 1y HY

e Same Equation as Thin Lens but Different Meaning

1 0\ /1 =215 1 0
= 3o ) 9)
1 = =
’ f2 1 0 1 J1 1
— f1 from Hy and f] from H}
— fo from Hp and f5 from HJ

— 210 from H} to Ho
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2X Magnifier, Revisited (1)

e Principal Planes

. 20mm x 100mm
 20mm — 100mm — 200mm

= —7.14mm Hy to H

B — 20mm x 200mm

= = —14.28mm H), to H'
20mm — 100mm — 200mm

e Spacing (See Next Page)

0.713mm

e Object and Image Distances

3
s:?f: 107.1mm s =3f =214.3mm
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2X Magnifier, Revisited (2)

2.40 — le—14.28
':7.14 ] :' —1.87

N
S

F N 4 i
© I/ \] ©

97.6 —>‘ ‘4— 198.2
{o {) —d o

107.1] —» «———214.3

Jan. 2014 ©C. DiMarzio (Based on Optics for Engineers, CRC Press) slides3r3—37



2X Magnifier Revisited (3)

In—Practice

e Assuming thin lenses in a compound lens is usually a good
start.

e Locations of principal planes for the compound lens can be
adjusted.

e Lens distances may change (although not in this example)

Q: How would you change the drawing if both lenses were re-
versed? Specifically, what would be the vertex—vertex distance
between the lenses?
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A Suggestion: Global
Coordinates

e Notation: zH1
— First Letter: z
— The Remaining Characters: Plane Name (eg. H1)

e Need to Set One Plane as z =20

e Example from the Magnifier
— z = 0 at First Vertex
— zH1 = —hq
—zH =2zH1 —-h=—-hy—h
— (Text Error: Not zg =2H1 —h = hy —h)

— etc.
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Special Case: Afocal

z12 = f1+ /2
1_ N n 2. =2 _ g
I Nl fif2 fife
mo1 = 0, %z 0, or f— o0 (Afocal)
h — oo h — oo

Principal Planes are not Very Useful Here.
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Telescopes (1)

e Afocal Condition
1 1 1 2z |
— =+t - =0 it z12 = f1+ f2
I fo fi NIt

e Vertex Matrix

(1B fidfo N\ _ (- A+
Viva T\ _1l 4y htfe 1 g At )T\ g _h
J2 J1/2 J1 J2 J2

e Imaging Matrix
1 s _J2 Ji+ /2 1 s 7?2 0
] — f]- p—
mao=(o 1) (0 ") (6 1) = (3 %)
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Telescopes (2)

Bo—sPAfit Y _ (7 0
MSS’—< C{l J1 4 ):(7 ?>
2 '
f2 1 J1
—s=+ f1+ j2o — 0
i fi+ /2 ST
m=—fa/f1,  (Afocal)
ms+ f1+ fo+s/m=0 MSS/=<73 ?)
s’ = —mQS—flm(l—l-m)
s’ ~ —mZ?s s — 00
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Astronomical Telescope

e Magnification: Image is smaller (< 1) m = %

e But a Lot Closer: (m, = —m?)

e Angular Magnification is Large (mqg = 1/m)

700min 28 Jan 2014
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